Theorem 5.4.1: The altitude drawn to the hypotenuse of a right triangle separates the right triangle into two right triangles that are similar to each other and to the original right triangle.

Theorem 5.4.2: The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

Example 1:

$$
\frac{A D}{C D}=\frac{C D}{D B} \Rightarrow C D^{2}=A D \cdot D B
$$

Given a right triangle ABC with altitude DC:

If $B D=3, B C=5, A C=6$, find $D C$ and $A D$

$$
\begin{aligned}
\frac{A D}{C D}=\frac{C D}{D B} & \Rightarrow \frac{A D}{4}=\frac{4}{3} \\
& \Rightarrow A D=\frac{16}{3}
\end{aligned}
$$

Lemma 5.4.3: The length of each leg of a right triangle is the geometric mean of the length of the segment of the hypotenuse adjacent to that leg. Use figure 5.21page 235:
$\frac{A B}{A C}=\frac{A C}{A D}$

Theorem 5.4.4: (Pythagorean Theorem) The square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of the legs.
$c^{2}=a^{2}+b^{2} \quad c$ is the longest side or the hypotenuse and this theorem only works with right triangles.

Example 2:

Find " x " and " y ".

$$
\begin{aligned}
A B^{2} & =B D^{2}+A D^{2} \\
y^{2} & =8^{2}+6^{2} \\
& =64+36
\end{aligned}
$$

$$
\begin{aligned}
& B D^{2}=A D \cdot D C \\
& 8^{2}=6 \cdot(x-6) \\
& 64=6 x-36 \\
& 100=6 x \\
& \frac{100}{6}=x
\end{aligned}
$$

Example 3:
A hot air balloon is held in place by the ground crew at a position that is $\mathbf{2 1}$ feet from the point directly beneath the balloon. If the rope is of length 29 feet, how far above the ground level is the balloon?

$$
\begin{array}{rlrl}
x^{2} & +21^{2}=29^{2} & x^{2}+441 & =84 \\
x^{2} & =29^{2}-21^{2} & x^{2}=400 \\
& =(29+21)(29-21) & x=20 \\
& =(50)(8) & \\
& =400 & \\
x^{2} & =400
\end{array}
$$

Definition: The Pythagorean triple is a set of three numbers (a, b, c) for which.

$$
a^{2}+b^{2}=c^{2}
$$

Theorem 5.4.7: Let a, b and c represent the lengths of the three sides of the triangle with length c the length of the longest side.

1. If $c^{2}>a^{2}+b^{2}$, then the triangle is obtuse and the angle lies opposite the side of length c.
2. If $\mathbf{c}^{2}<\mathrm{a}^{2}+\mathrm{b}^{2}$, then the triangle is acute.

Example 4: Determine the type of triangle represented if the lengths if it sides are as follows:
a. $a=1.5, b=2$ and $c=2.5$

Right
\qquad

\qquad

- - -

2
b. $a=5, b=7$ and $c=9$

Obtuse

c. $\mathbf{a}=10, \mathrm{~b}=12$ and $\mathrm{c}=16$

81

Example 5:

 85

64
What is the length of a side of a square with a diagonal length of 10 ?
Draw a diagram.

$$
\begin{aligned}
& x^{2}+10 x-144=0 \\
& a x^{2}+b x+c=0 \\
& a=1 \quad b=10 \quad c=-144 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \begin{aligned}
x & =\frac{-10 \pm \sqrt{(10)^{2}-4(1)(-144)}}{2.1} \\
& =\frac{-10 \pm \sqrt{100+576}}{2}
\end{aligned} \\
& =\frac{-10 \pm \sqrt{676}}{2}=\frac{-10 \pm 26}{2}=\frac{-10+26}{2}, \frac{-10-26}{2} \\
& =\frac{016}{2} \\
& =8 \\
& 1 . x^{2}+10 x-144=0 \\
& x^{2}+18 x-8 x-144=0 \\
& x(x+18)-8(x+18)=0 \\
& (x+18)(x-8)=0 \\
& x+18=0 \quad x-8=0 \\
& x=-18 x \quad x=8 \\
& 1.144=144 \\
& 12.12 \\
& 3.48 \\
& \text { (18.8 }
\end{aligned}
$$

Example 6: Solve for \mathbf{x}.

$$
12^{2}=x(x+10)
$$

$$
144=x^{2}+10 x
$$

$$
0=x^{2}+10 x-144
$$

$$
x^{2}+10 x-144=0
$$

Example 7: Given a right triangle with right angle $C, A C=6$ and $C B=8$. Find the length of AB.

$$
\begin{aligned}
x^{2} & =6^{2}+8^{2} \\
& =36+64 \\
x^{2} & =100 \\
x & =10
\end{aligned}
$$

Example 8: Given a right triangle with right angle $C, A B=13$ and $C B=12$. Find the length of AC.

$$
\begin{gathered}
x^{2}+12^{2}=13^{2} \\
x^{2}+144=169 \\
x^{2}=25 \\
x=5
\end{gathered}
$$

Example 9: Determine the type of triangle represented if the length of its sides are as follows:
$a b c$

b^{2}
? C^{2}
a. $3,5,7$
3^{2}
5^{2}
ob Muse
b. $5,12,13$

Right
c. $7,8,9$

Acute
d. $2,6,9$

$$
\begin{aligned}
& 82+8=8 \\
&<9 \\
& \text { Not possible to be } a<1
\end{aligned}
$$

