Theorem 5.4.1: The altitude drawn to the hypotenuse of a right triangle separates the right triangle into two right triangles that are similar to each other and to the original right triangle.

Theorem 5.4.2: The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

Example 1: Given a right triangle ABC with altitude DC:

Lemma 5.4.3: The length of each leg of a right triangle is the geometric mean of the length of the segment of the hypotenuse adjacent to that leg. Use figure 5.21page 235:

$$\frac{AB}{AC} = \frac{AC}{AD}$$

 $\frac{Ai}{D} = \frac{CD}{DB} \Rightarrow CO^{2} AD. DB$

 $c^2 = a^2 + b^2$ c is the longest side or the hypotenuse and this theorem only works with right triangles.

Example 2:

Find "x" and "y".

$$AB^{2} = BD^{2} + AD^{2}$$

$$Y^{2} = Q^{2} + G^{2}$$

$$E 64 + 36$$

$$BD^{2} = AD \cdot DC$$

$$Q^{2} = 16D$$

$$Q^{2} = 16D$$

$$Q^{2} = 6 \cdot (x - 6)$$

$$G4 = 6x - 36$$

$$100 = 6x$$

$$\frac{100}{6} = x$$

Example 3:

X

X

A hot air balloon is held in place by the ground crew at a position that is 21 feet from the point directly beneath the balloon. If the rope is of length 29 feet, how far above the ground level is the balloon?

$$\chi^{2} + 21^{2} = 29^{2}$$

$$\chi^{2} + 441 = 841$$

$$\chi^{2} = 29^{2} - 21^{2}$$

$$\chi^{2} = 400$$

$$\chi^{2} = 400$$

$$\chi^{2} = 400$$

$$\chi^{2} = 400$$

$$\chi^{2} = 20$$

Definition: The Pythagorean triple is a set of three numbers (a, b, c) for which.

$$\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$$

Theorem 5.4.7: Let a, b and c represent the lengths of the three sides of the triangle with length c the length of the longest side.

- 1. If $c^2 > a^2 + b^2$, then the triangle is obtuse and the angle lies opposite the side of length c.
- 2. If $c^2 < a^2 + b^2$, then the triangle is acute.

Example 4: Determine the type of triangle represented if the lengths if it sides are as follows:

	ar	52	6	C .
a. a= 1.5, b = 2 and c =2.5	(1.5)2	+ (2)2		$(2.5)^{2}$
Right	2.25	+ 4		6-25
b. $a = 5, b = 7 \text{ and } c = 9$				6.25
Obtuse	(5) 25	- + + - - +		(9)- 8-1
c. a = 10, b = 12 and c = 16				81
Obtuse	102	$+ 12^{1}$		162
d. $a = 6, b = 7 \text{ and } c = 8$		244	<	256
ACUYP	62	+ 72		82
	36	+ 49		64
Example 5:		85	>	64

What is the length of a side of a square with a diagonal length of 10?

Draw a diagram.

$$x^{L} + 10\chi - 1|k| 4 = 0 \qquad ax^{L} + bx + c = 0$$

$$a = 1 \quad b = 10 \quad c = -144 \qquad x = -b \pm \sqrt{b^{2} - 4ac}$$

$$x = -b \pm \sqrt{b^{2} - 4ac}$$

$$x = -b \pm \sqrt{b^{2} - 4ac}$$

$$x = -b \pm \sqrt{b^{2} - 4ac}$$

$$2a$$

$$x = -10 \pm \sqrt{100^{12} - 4(1)(-144)}$$

$$2a$$

$$x = -10 \pm \sqrt{b^{2} - 4ac}$$

$$2a$$

$$x = -10 \pm \sqrt{b^{2} - 4ac}$$

$$2a$$

$$x = -10 \pm \sqrt{b^{2} - 4ac}$$

$$2a$$

$$x = -b \pm \sqrt{b^{2} - 4ac}$$

$$z = -b \pm \sqrt{b^{2} - 4ac}$$

Example 7: Given a right triangle with right angle C, AC = 6 and CB = 8. Find the length of AB.

X =	6782
2	36+84
x2-	י דט ו
\times =	10

Example 8: Given a right triangle with right angle C, AB = 13 and CB = 12. Find the length of AC.

$\chi^{L} + 1$	$2^{2} = 13^{2}$
x ^L t	144 = 169
XL	= 25
X	= 5

Example 9: Determine the type of triangle represented if the length of its sides are as follows:

a b C	ar	+	54	2 °	C2	
a. 3, 5, 7	34	Т	S2		72	
ов Нисе b. 5, 12, 13	9	τ 34	25 t	<	49 49	
Right	25	+14	+ 4 69	7	169 169	
A CU K d. 2, 6, 9	3	2 + 49 -	g ² t 64 11 3	>	92 81 81	
8 2-18 -8	<9 NOF PUSSIL	ole to	bead	1		-