
1

5.5

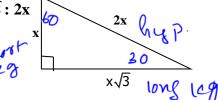
THESE ARE ALWAYS RIGHT TRIANGLES!!!!

45-45-90 Triangles

The ratio of the sides of a 45-45-90 triangle are: $x:x: x\sqrt{2}$

45-45-90

if this measure is given:	and you want this measure:	then do this:
the leg	hypotenuse	multiply the leg by $\sqrt{2}$
hypotenuse	the leg	divide hypotenuse by $\sqrt{2}$


remember: the legs of a 45-45-90 are the SAME measure!

$$Leg = \frac{\text{hypotenuse}}{\sqrt{2}} \qquad \qquad Hypotenuse = Leg(\sqrt{2})$$

30-60-90 Triangles

The ratio of the sides of a 30-60-90 triangle are: $x: x\sqrt{3}: 2x$

The short leg is always opposite the 30° angle!

30-60-90

if this measure is given:	and you want this measure:	then do this:
short leg	hypotenuse	multiply short leg by 2
short leg	long leg	multiply short leg by $\sqrt{3}$
long leg	short leg	divide long leg by $\sqrt{3}$
hypotenuse	short leg	divide hypotenuse by 2

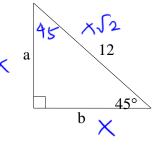
remember: it is best to find the measure of the short leg first (that is if it is not given)

Short Leg =
$$\frac{\text{hypotenuse}}{2}$$

Short Leg =
$$\frac{\text{long leg}}{\sqrt{3}}$$

Hypotenuse = 2 (short leg)

Long Leg = (short leg)
$$\sqrt{3}$$

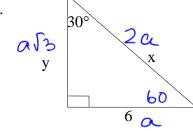

Theorem 5.5.1 and Theorem 5.5.2 is summarized on the previous page.

Example 1:

Find the missing sides for each of the following:

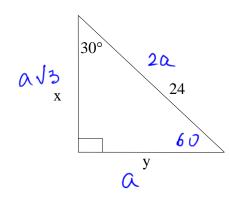
a = 16

as2 = 1652



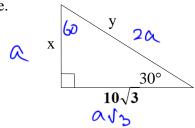
 $x\sqrt{2} = 12$

$$X = \frac{12}{\sqrt{2}}$$


$$= \frac{12\sqrt{2}}{\sqrt{2}\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$$

c.

a = 6 $y = a \sqrt{3} = 6 \sqrt{3}$ x = 2a = 2.6 = 12


d..

 $2\alpha = 24$ $\alpha = 12$


$$y_2 a = 12$$

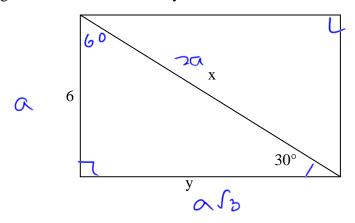
 $x = a\sqrt{3} = 12\sqrt{3}$

e.

$$X = Q = 10$$

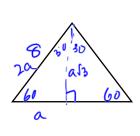
 $Y = 2Q = 2.10 = 20$

f.



$$\chi = \alpha = 7\sqrt{3}$$
 $y = \alpha\sqrt{2} = 7\sqrt{3}.\sqrt{2} = 7\sqrt{3}.2 = 7\sqrt{6}$

$$(\sqrt{3} + \sqrt{2} + \sqrt{6})$$


Example 2:

Rectangle find the values for and y.

$$a = 6$$

 $x = 2a = 2 - 6 = 12$
 $y = a s = 6 s$

Example 3:

$$2\alpha = 8$$

$$\alpha = 4$$
Altitude = $\alpha\sqrt{3}$

$$= 4\sqrt{3}$$

The length of the side of an equilateral triangle is 8. Find the length of altitude.

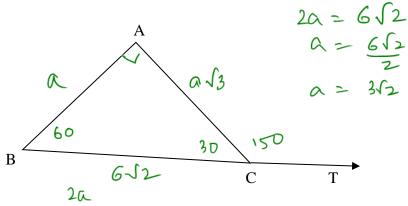
$$2\alpha = 8$$

$$\alpha = 4$$

$$\alpha = 4$$

$$Altitude = \alpha \sqrt{3}$$

$$Altitude = \alpha \sqrt{3}$$


$$24\sqrt{3}$$

$$= \frac{12}{\sqrt{3}}$$

$$= \frac{12\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{12\sqrt{3}}{3} =$$

Example 4:

Given $\triangle ABC$ is a right triangle with angle A is 90° , $BC=6\sqrt{2}$ and the m $\angle ACT=150^{\circ}$. Find AB and AC.

$$AB = a = 3\sqrt{2}$$

$$AC = a\sqrt{3} = (3\sqrt{2})(\sqrt{3})$$

$$= 3\sqrt{6}$$

Example 5:

A tightrope performer in a circus begins his act by walking up a wire to a platform that is 120 feet high. If the wire makes an angle of 30° with the ground, how far does he walk along the wire to reach the platform? Assume the pole with the platform is vertical.

$$9 = 120$$
 $2a = 2(120)$
 $= 240 \text{ ft}$