Definition: A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center.

Definitions:
radius - a segment that has one endpoint at the center of a circle and the other endpoint on the circle. Its measure is $1 / 2$ the measure of the diameter.
diameter - a chord that contains the center of a circle. Two (2) radii make up the diameter.
chord - a segment that has endpoints that lie on the circle. The diameter is considered a chord.

Formulas:

$$
r=\frac{d}{2} \quad d=2 r \quad(r=\text { radius, } d=\text { diameter })
$$

The circumference of a circle (that is...the measure around the circle) is represented by the formula:

$$
c=2 \pi r \text { or } c=d \pi \quad C=2 \pi \gamma=\pi(2 \gamma)=\pi d
$$

When asked to find the EXACT circumference - leave the π in your answer (do not multiply it through).

Example 1:

For the given circle name all the:
center: H
diameters: $\overline{F B}, \overline{G C}, \overline{A D}$ chords: $\overline{A B}, \overline{B D}, \overline{F B}, \widehat{G C}, \overline{A D}$ radii: $\overline{F H}, \overline{G H}, \overline{A H}, \overline{H B}, \overline{A C}$

$\overline{H D}, \overline{H E}, \overline{H F}$
Definition: Concentric circles are coplanar circles that have a common center.

Semi-circle $\overparen{A B C}, \overparen{A C}$

\rightarrow more than semi-circle
Definition: A central angle of a circle is an angle whose vertex is the center of the circle whose sides are radii.

Given the circle below, find the length of PQ and arc RQ

$$
\begin{aligned}
& P Q=5 \\
& R Q=90^{\circ}
\end{aligned}
$$

Theorem 6.1.1: A radius that is perpendicular to a chord bisects the chord.

$$
\begin{aligned}
& A E=E B \\
& \overparen{A D}=\overparen{D B}
\end{aligned}
$$

Example 3:

Given $\overline{\mathbf{O C}} \perp \overline{\mathbf{A B}}$ at point C . If $\mathrm{AB}=8$ and $\mathrm{OB}=5$, find OC .

$$
\begin{aligned}
O C^{2}+C B^{2} & =O 3^{2} \\
O C^{2}+4^{2} & =5^{2} \\
O C^{2}+16 & =25 \\
O C^{2} & =9 \\
O C & =3
\end{aligned}
$$

Postulate 16: (Central Angle Postulate) In a circle, the degree measure of a central angle is equal to the degree measure of its intercepted arc.

$$
\begin{aligned}
& \widehat{A B}=110 \\
& 360-110=250^{\circ}
\end{aligned}
$$

Note: the sum of the measures of consecutive arcs that form a circle is exactly 360°.
Example 4:
If $\overline{\mathrm{SN}}$ and $\overline{\mathrm{MT}}$ are diameters with $\mathrm{m} \angle \mathrm{SPT}=51$ and $\mathrm{m} \angle \mathrm{NPR}=29$, determine whether each arc is a minor arc, a major arc, or a semicircle. Then find the degree measure of each arc. $p \rightarrow$ center

1. $\mathrm{m} \overparen{\mathrm{NR}}=29^{\circ}$
2. $\mathrm{mST}=51^{\circ}$
3. $\mathrm{mTRS}=360-51^{\circ}$
4. $\mathrm{mMST}=180^{\circ}$ (semicircle)

$$
\begin{aligned}
5 \cdot m \hat{R 7} & =180-29-51 \\
& =100^{\circ}
\end{aligned}
$$

Definition: In a circle or congruent circles, congruent arcs with equal measures.
Postulate 17: (Arc -Addition postulate) If B lies between circle A and C on a circle, then measure of $\operatorname{arc} \mathrm{AB}+$ the measure of arc $\mathrm{BC}=$ the measure of arc ABC .

Definition: An inscribed angle of a circle is an angle whose vertex is a point on the circle and whose sides are chords of the circle.

Theorem6.1.2: The measure of an inscribed angle of a circle is one half the measure of its intercepted arc.

Inscribed Angle - an angle whose vertex is on the circle (not in the center of the circle) and whose sides contain chords.

$$
\mathrm{mAB}=40 \quad \text { So } \mathrm{m} \angle \mathrm{ARB}=20^{\circ}
$$

Example 5: Find the measure of arc RS if the $\mathrm{m} \angle \mathrm{T}=30^{\circ}$

Example 6:

Given center A. Find the indicated information to the nearest tenth.
A. $\mathrm{mBC}=110^{\circ}$
a. $\mathrm{m} \angle \mathrm{BAC}=110$

$$
\begin{aligned}
m \angle B D C & =\frac{1}{2} m \widehat{B C} \\
& =\frac{1}{2} 110^{\circ} \\
& =55^{\circ}
\end{aligned}
$$

b. Find " x ".

$$
\begin{aligned}
3 x-1 & =\frac{1}{2}(82) \\
2(3 x-1) & =82 \\
6 x-2 & =82 \\
6 x & =84 \\
x & =14
\end{aligned}
$$

c. If $\mathrm{PR}=13$ and $\mathrm{RM}=24$, find PO .

$$
\begin{aligned}
& P O^{2}+O R^{2}=R P^{2} \\
& P O^{2}+12^{2}=13^{2} \\
& P O^{2}+144=169 \\
& P O^{2}=25 \\
& P O=5
\end{aligned}
$$

Note: Theorems 6.1.3-6.1.10 please read over.

