Math 1312 Section 8.2 Regular Polygons and Area

Definition:

A **regular polygon** is a polygon that is both equilateral (all sides are congruent) and equiangular (all angles are congruent).

Example1:

Theorem 1: The measure *I* of each interior angle of a regular polygon of *n* sides is

$$I = \frac{(n-2) \cdot 180^{\circ}}{n} \,.$$

Definitions:

A polygon is **circumscribed about** a circle if all of its vertices lie on the circle.

A polygon is **inscribed in** a circle if each of its sides is tangent to the circle.

The **center of a regular polygon** is the common center for the inscribed and circumscribed circles of the polygon.

Definitions:

The segment from the center of a regular polygon perpendicular to a side of a regular polygon is called an **apothem**. (α)

The segment from the center to a vertex a regular polygon is the **radius** of the regular polygon.

A central angle of a regular polygon is the angle formed by two consecutive radii.

Example 3:

Theorem 2: The measure of each central angle is found by: $C = \frac{360}{n}$

Theorem 3: Any radius of a regular polygon bisects the angle at the vertex to which it is drawn and any apothem bisects the side to which it is drawn.

Theorem 4: The area of any regular polygon can be found by: $A = \frac{1}{2}aP$, where a = apothem and P = perimeter.

Example 4: Find the apothem (a), area (A), and perimeter (P) of each regular polygon.

$$2a = 6$$

$$a = 3 \text{ units}$$

$$a\sqrt{3} = 3\sqrt{3}$$

$$\therefore \text{ side = } 2a\sqrt{3}$$

$$= 2(3\sqrt{3}) = 6\sqrt{3} \text{ units}$$

$$Perimeter = 3(6\sqrt{3}) = 18\sqrt{3} \text{ units}$$

$$Area = \frac{1}{2}aP = \frac{1}{2}3(48\sqrt{3}) = 27\sqrt{3} \text{ equinits}$$

Example 5: Find the apothem (a), area (A), and perimeter (P) of each regular polygon.

a) Hexagon with a=8

 $I = \frac{(n-2)(80}{n} = \frac{(6-2)}{6} \frac{180}{10} = \frac{14}{3} \frac{13}{3}$ $I = \frac{(n-2)(80}{n} = \frac{(6-2)}{6} \frac{180}{10} = 4(80) = 120$ $x\sqrt{3} = 8 \Rightarrow x = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{8}{3}\frac{63}{3}$ $\text{cide} = (2x) = 2(\frac{9}{3}\sqrt{3}) = \frac{16}{3}(3) \text{ units}$ $Penimeter = 6(\frac{16}{3}\sqrt{3}) = 32\sqrt{3} \text{ units}$ $Area = \frac{1}{2}ar = \frac{18}{3}(32\sqrt{3}) = 128\sqrt{3} \text{ sq} \text{ units}$

b) Octagon with apothem = 4.8, side = 4

Perimeter =
$$8(4) = 32$$
 units
 $Area = \frac{1}{2}aP = \frac{1}{4}(4.8)(37)$
 $= 76.8$ squarits

c) Square with apothem = 24

apothen (a) = 24 units [vadices = 24,52 units]

Side =
$$2a$$

= $2(24) = 48$ units

Perimeter = 4(48) = 192 unitsArea = $\frac{1}{2}aP = \frac{1}{2}(24)(192) = 2304 \text{ squarits}$