Math 1312
 Section 8.2
 Regular Polygons and Area

Definition:

A regular polygon is a polygon that is both equilateral (all sides are congruent) and equiangular (all angles are congruent).

Example1:

Theorem 1: The measure I of each interior angle of a regular polygon of n sides is

$$
I=\frac{(n-2) \cdot 180^{\circ}}{n} .
$$

Definitions:

A polygon is circumscribed about a circle if all of its vertices lie on the circle.
A polygon is inscribed in a circle if each of its sides is tangent to the circle.
The center of a regular polygon is the common center for the inscribed and circumscribed circles of the polygon.

Definitions:

The segment from the center of a regular polygon perpendicular to a side of a regular polygon is called an apothem. (a)
The segment from the center to a vertex a regular polygon is the radius of the regular polygon.

A central angle of a regular polygon is the angle formed by two consecutive radii.

Example 3:

Theorem 2: The measure of each central angle is found by: $C=\frac{360}{n}$
Theorem 3: Any radius of a regular polygon bisects the angle at the vertex to which it is drawn and any apothem bisects the side to which it is drawn.

Theorem 4: The area of any regular polygon can be found by: $A=\frac{1}{2} a P$, where $\mathrm{a}=$ apothem and $\mathrm{P}=$ perimeter.

Example 4: Find the apothem (a), area (A), and perimeter (P) of each regular polygon.

$$
\begin{aligned}
& a \sqrt{3}=7 \\
& a=\frac{7}{\sqrt{3}}=\frac{7 \sqrt{3}}{\sqrt{3} \sqrt{3}}=\frac{7 \sqrt{3}}{3} \text { units } \\
& P=3(14)=42 \text { units } \\
& A=\frac{1}{2} a P=\frac{1}{22} \frac{7}{20} \sqrt{3} 42=49 \sqrt{3} \text { sq units }
\end{aligned}
$$

$$
\begin{aligned}
2 a & =6 \\
a & =3 \text { units } \\
a \sqrt{3} & =3 \sqrt{3} \\
\therefore \text { side } & =2 a \sqrt{3} \\
& =2(3 \sqrt{3})=6 \sqrt{3} \text { units } \\
\text { Perimeter } & =3(6 \sqrt{3})=18 \sqrt{3} \text { units } \\
\text { Area }=\frac{1}{2} a P & =\frac{1}{2} 3(18 \sqrt{3})=27 \sqrt{3} \text { squnits }
\end{aligned}
$$

$$
a=7.5 \text { (apothem) } \quad[\text { radius }=7.5 \sqrt{2}]
$$

$$
\begin{aligned}
& \text { Perimeter }=4(15)=60 \text { units } \\
& \text { Area } \left.=\frac{1}{2} \text { aP }=\frac{1}{2}(7.5)(60)=225 \mathrm{cq}\right)=2 \text { units }
\end{aligned}
$$

[since this is a square $A=(15)^{2}=225$ sq units]

Example 5: Find the apothem (a), area (A), and perimeter (P) of each regular polygon.
a) Hexagon with $\mathrm{a}=8$

$$
\left[\text { radius }=\frac{16}{3} \sqrt{3}\right]
$$

$$
I=\frac{(n-2)(80}{n}=\frac{(6-2)}{6} \frac{180}{60}=4(30)=120
$$

$$
x \sqrt{3}=8 \Rightarrow x=\frac{8}{\sqrt{3}}=\frac{8 \sqrt{3}}{\sqrt{3} \sqrt{3}}=\frac{8}{3} \sqrt{3}
$$

$$
\begin{aligned}
& \text { side }=[2 x)=2\left(\frac{8}{3} \sqrt{3}\right)=\frac{16}{3} \sqrt{3} \text { units } \\
& \text { Penmeter }=6^{2}\left(\frac{16}{3} \sqrt{3}\right)=32 \sqrt{3} \text { units } \\
& \text { Area }=\frac{1}{2} a^{?}=\frac{1}{2} 8^{4}(32 \sqrt{3})=128 \sqrt{3} \text { sq units }
\end{aligned}
$$

b) Octagon with apothem $=4.8$, side $=4$

$$
\begin{aligned}
\text { Perimeter } & =8(4)=32 \text { units } \\
\text { Area }=\frac{1}{2} a P & =\frac{1}{2}(4.8)\left(\frac{16}{16}\right) \\
& =76.8 \text { squnits }
\end{aligned}
$$

c) Square with apothem $=24$

$$
\begin{aligned}
& \text { apothem }(a)=24 \text { units } \\
& {[\text { radius }=24 \sqrt{2} \text { units }]}
\end{aligned}
$$

$$
\begin{aligned}
\text { Side } & =2 a \\
& =2(24)=48 \text { units }
\end{aligned}
$$

$$
\begin{aligned}
\text { Perimeter } & =4(48)=192 \text { units } \\
\text { Area } & =\frac{1}{2} a P=\frac{1}{2}(24)(192)=2304 \text { squnits }
\end{aligned}
$$

