Math 1312
Section 8.4

Circumference and Area of a Circle

Definitions:

A circle (symbol O) is the set of all points in a plane that are at the same distance from the center.

The diameter is a chord through the center of a circle.
The diameter is the distance across the circle.
The circumference of a circle is the distance around the circle.
Definition: π is a constant equal to 3.14 or 3.1416 or $\frac{22}{7}$.

Theorem 1: The circumference of a circle is given by the formula $C=\pi d$ or $C=2 \pi r$.

Definition: The length of an arc is the distance between the endpoints of the arc.

Theorem 2: In a circle whose circumference is C, the length ℓ of an arc whose degree measure is m is given by $\ell=\frac{m}{360} \cdot C$.
Theorem 3: The area A of a circle whose radius has length r is given by $A=\pi r^{2}$.
Example 1: Find the diameter, circumference, and the area of a circle whose radius is 8 cm.

$$
\begin{aligned}
& r=8 \quad d=2 r=2(8)=16 \mathrm{~cm} \\
& C=2 \pi r=2 \pi(8)=16 \pi \mathrm{~cm}^{2} \\
& A=\pi r^{2}=\pi(8)^{2}=64 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Example 2: Find the radius, the diameter, and the area of a circle whose circumference is

$$
\begin{array}{cc}
\pi \text { in. } 2 \pi r & 2 \pi r=22 \pi \\
d=2(r)=2(11) & \gamma=\frac{22 \pi}{2 \pi}=11 \\
=22 \mathrm{in} \\
A=\pi r^{2}=\pi(11)^{2}=121 \pi \mathrm{in}^{2}
\end{array}
$$

Example 3: Find the radius and circumference of a circle whose area is $49 \pi \mathrm{~m}^{2}$.

$$
\begin{aligned}
& A=\pi r^{2} \pi r^{2}=49 \pi \Rightarrow r^{2}=49 \Rightarrow r=\sqrt{49}=7 \mathrm{~m} \\
& C=2 \pi r=2 \pi(7)=14 \pi \mathrm{~m} \\
& d=2 r=2(7)=14 \mathrm{~m}
\end{aligned}
$$

Example 4: Find the length of a 48° arc in a circle whose diameter is 14 .

$$
\begin{aligned}
l & =\frac{m}{360} C_{2}^{4} \quad C=\pi d=14 \pi \\
& =\frac{48}{360}(14 \pi)=\frac{28}{15} \pi
\end{aligned}
$$

Example 5: Find the length of a 72° arc in a circle whose circumference is 45π.

$$
l=\frac{7 x}{360_{8}}(445 \pi)=9 \pi
$$

Example 6: Find the radius of a circle if a 90° arc has length of 6π.

$$
\begin{aligned}
& l=\frac{m}{360} c \\
& 6 \pi=\frac{90}{36042}(2 \pi r) \Rightarrow 6 \pi=\frac{\pi r}{2} \\
& \Rightarrow 12 \pi=\pi r \\
& \Rightarrow 12=r
\end{aligned}
$$

Example 7: Find the exact area of the shaded region.

$$
\begin{aligned}
& d^{2}=8^{2}+8^{2} \\
&=2 \cdot\left(8^{2}\right) \\
& d=\sqrt{2\left(8^{2}\right)}=8 \sqrt{2} \\
& r=\frac{d}{2}=\frac{8 \sqrt{2}}{2}=4 \sqrt{2} \\
& A_{S}=8^{2}=64 \\
& A_{C}=\pi r^{2}=\pi(4 \sqrt{2})^{2}=\pi 16(2)=32 \pi
\end{aligned}
$$

Area of shaded region

$$
=32 \pi-64
$$

Example 8: Find the exact area of the shaded region (regular hexagon is inscribed in a circle of radius 6).

