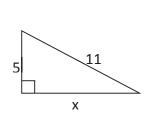
Math1312 Test 3 Review

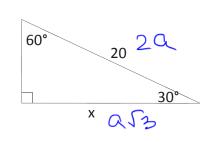
Test 3 covers chapters 5 and 6 from the textbook.


How to study: Study the class notes, review homework problems, and try to do as many exercises as you can from the textbook. Note that answers are provided at the back of the book to all odd numbered problems.

You need to know what definitions mean and theorems and postulates as facts but you do not need to memorize them word by word.

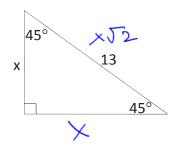
Here I provide some examples for you. This is not a complete list, studying only these examples is not enough!

1. Find the value of x. Write your answer in the simplest radical form.

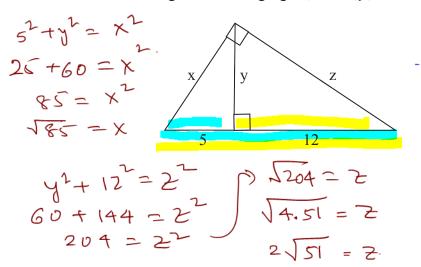

3 <u>196</u> 2 <u>32</u> 16

$$5^{7} + \chi^{2} = 11^{2}$$

 $25 + \chi^{2} = 121$
 $\chi^{2} = 96$
 $\chi = \sqrt{96} = \sqrt{3.2.16} = 4\sqrt{6}$


2. Find the value of x. Write your answer in the simplest radical form.

O.



$$2\alpha = 20$$

 $\alpha = 10$
 $-1 \times = \alpha \sqrt{3} = 10 \sqrt{3}$

3. Find the value of x. Write your answer in the simplest radical form.

4. Using the following figure, find x,y, and z.

$$-1 \quad y^2 = 5.12 \Rightarrow y^2 = 60$$

$$\Rightarrow y = 160 = \sqrt{4.15} = 2\sqrt{15}$$

$$x^{2} = 5(5+12)$$

$$= 5.17$$

$$= 12.17$$

$$= 12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.17$$

$$= -12.$$

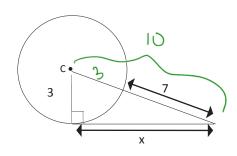
5. Given $\overline{DE} \parallel \overline{BC}$, AD = 8, BD = 4, and AE = 6, find CE.

$$\frac{AP}{AB} = \frac{DE}{3C} = \frac{AE}{AC}$$

$$\frac{8}{12} = \frac{10}{3C}$$

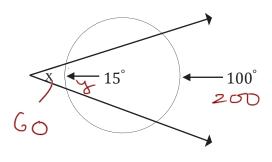
$$BC = \frac{10.12}{8}$$

AADEN AABC

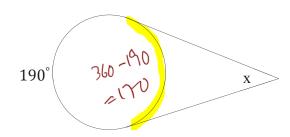

$$\frac{AE}{BC} = \frac{AD}{BD}$$

$$\frac{6A}{X} = \frac{8}{4}$$

$$6.4 = 8.X$$


$$\frac{6.4}{8} = \times \Rightarrow 3 = \times$$

6. Find the value of x in the circle below.



$$3^{2} + \chi^{2} = 10^{2}$$
 $9 + \chi^{2} = 100$
 $\chi^{2} = 100$

7. Find the value of x in the circle below.

8. Find the value of x.

$$x = \frac{1}{2} (100 - 15)$$

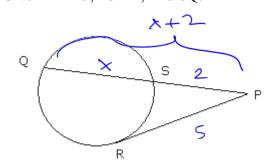
= $\frac{1}{2} (85) = 42.5^{\circ}$

$$60 = \frac{1}{2}(200 - y)$$
 $(200 - y) = y = 80$

$$X = \frac{1}{2} (190 - 170)$$

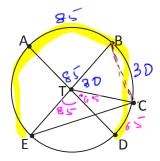
 $= \frac{1}{2} (20) = 16$

9. Find AC given DE = 5, BE = 16, and AE = 10.


DE = SBE = 16 AC = 2D AC

$$AE \cdot EC = ED \cdot EB$$

$$10 \cdot EC = 5 \cdot 16$$


$$EC = \frac{5 \cdot 16}{10} = 8$$

-- AC = AE+EC = 10+8 = 18

$$RP^{2} = PR \cdot PS$$
 $S^{2} = (x+2) \cdot 2$
 $2C = 2x + 4$
 $21 = 2x$
 $2\frac{1}{2} = x$

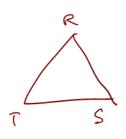
$$m \angle DTC = 180 - 85 - 30 = 65$$
 $BAE = 180^{\circ}$
 $CD = 65^{\circ}$
 $M EAD = 360 - 85^{\circ} (360 - mED)$
 $= 275^{\circ}$
 $M EAD = 180 + 20 + G5^{\circ} (mEB + mBC + mCD)$
 $= 275^{\circ}$
 $m \angle BC = \frac{1}{2} (m\angle BTC)$
 $m \angle BC = \frac{1}{2} (m\angle BTC)$
 $= \frac{1}{2} (36) = 15^{\circ}$

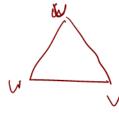
12. Given
$$\triangle ABC \sim \triangle DEF$$
 (not shown), $m \angle A = 50^\circ$, $m \angle E = 33^\circ$, and $m \angle D = 2x + 40^\circ$. Find $x, m \angle F$.

$$m 2A = M2D$$

$$50 = 2x + 40$$

$$10 = 2x$$


$$5 = x$$

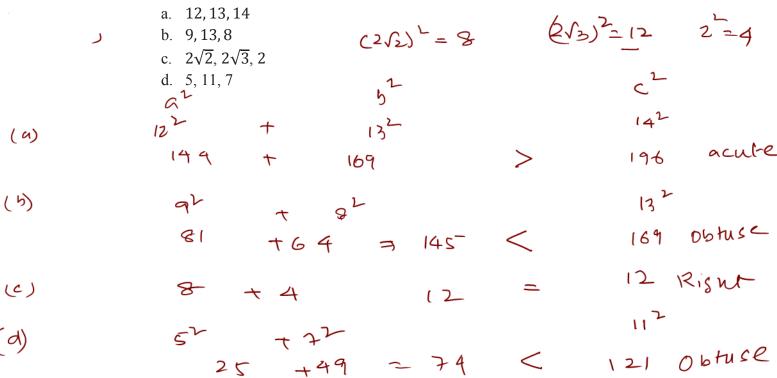

$$MLD + MLE + M LF = 180$$

 $50 + 33 + MLF = 180$
 $83 + MLF = 180 - 83$
 $MLF = 180 - 83$
 $= 97^{\circ}$

13. Given
$$\Delta RTS \sim \Delta UWV$$
 (not shown). Find WV if $RT = 4$, $UW = 6$, and $TS = 8$.

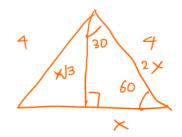
$$\frac{RT}{UW} = \frac{TS}{WV} = \frac{RS}{UV} = \frac{4}{6} = \frac{8}{WV} = \frac{4.WV}{4} = \frac{8.6}{4} = 12$$

14. Name the method that is used to show that
$$\triangle RTS$$
 is similar to $\triangle UWV$ if $WU = 2TR$, $WV = 2TS$, and $UV = 2RS$.

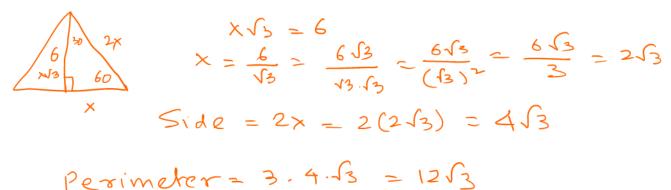


$$WV = 2TR \Rightarrow \frac{WU}{TR} = 2$$

$$WV = 2TS \Rightarrow \frac{WV}{TS} = 2$$


$$\frac{WV}{TR} = \frac{WV}{TS} = \frac{UV}{RS} = 2$$
 SSS

15. Tell whether each set of numbers represents the lengths of the sides of an acute triangle, an obtuse triangle, of a right, or of no triangle.


16. Find the length of an altitude of an equilateral triangle if each side is 4 in long.

2x - 4

$$x = 2$$
Altitude = $x\sqrt{3} = 2\sqrt{3}$

17. Find the perimeter of an equilateral triangle if an altitude is 6 in long.

- 18. State whether the following statement is Always True, Sometimes True, or Never True.
 - a) The ratio of perimeters of two similar polygons is equal to their scale factor.

Always

b) The ratio of areas of two similar polygons is equal to their scale factor.

Never true, equals to the agrane of the scale factor

c) Any two rectangles are similar.

Some times time, all Ls are 90° but sides may not be proportional

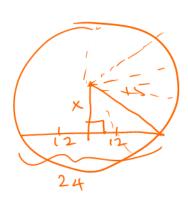
d) Any two equilateral triangles are similar.

Always true, all LS 600 & sides will be proportional

e) A trapezoid can be inscribed in a circle.

Sometimes true, only if the trap- is isoec.

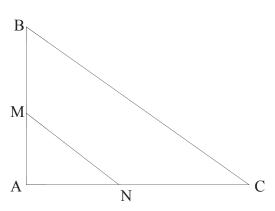
f) Concentric circles with different radii have no common tangents.


Always mue

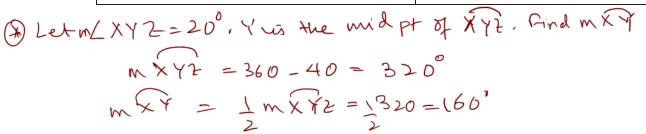
g) Tangents to a circle at the endpoints of a diameter are parallel.

Alwaystrae

19. The length of the radius of a circle is 15. The length of a chord is 24. Find the distance from the center of the circle to the chord.



$$x^{2} + 12^{2} = 15^{2}$$
 $x^{2} + 194 = 225$
 $x^{2} = 81$
 $x = 9$


20. Complete the following proof.

Given: $\triangle ABC$; M and N are midpoints of \overline{AB} and \overline{AC} , respectively.

Prove: $\triangle AMN \sim \triangle ABC$

PROOF	
Statements	Reasons
1. ΔABC ; M and N are midpoints of \overline{AB} and \overline{AC} , respectively.	1. Given
2. $AM = \frac{1}{2}(AB)$ and $AN = \frac{1}{2}(AC)$	Deformid 12t
$3. MN = \frac{1}{2}(BC)$	3. Line seg that connects the mid pts of sides of a side of side of side of side of side of side of the 3rd si
4. $\frac{AM}{AB} = \frac{1}{2}$, $\frac{AN}{AC} = \frac{1}{2}$, and $\frac{MN}{BC} = \frac{1}{2}$	4. Division
5. AM = AN = MN AB AC BC	substitution
6. DAMNNDAMBC	6. S S S

