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Abstract

The power grid is currently optimized using a MATLAB program that employs tra-
ditional methods for solving optimization problems with nonlinear constraints. These
traditional methods are slow, require very close initial guesses, and cannot handle ex-
treme deviations from the norm. We present two types of machine learning models for
the IEEE’s predefined 30-bus power flow system in this paper. The first is a neural
network algorithm with three hidden layers, 100 nodes in each layer, trained on over
20,000 samples with an accuracy rating of 99% that predicts valid generator config-
urations 80% of the time. The other model is a decision tree regression algorithm
(XGBoost) that achieved an 88% fit to the data with 1000 decision trees and a depth
of three levels per tree. Future work will include generalizing the models to higher
nodal systems, investigating higher estimators for the regression tree model, employ-
ing optimality classifications for both models, and analysis of extreme deviations from
the norm within the systems.
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1 Introduction

Electrical power flow networks across the world require regular scrutiny for efficiency and
cost-effective production. Millions of people rely on the correct operation of a single grid,
e.g., over 500 million people rely on a single grid spanning Europe, Turkey, and parts of
North Africa [1]. Finding better solutions for optimizing this network has the potential to
save millions of tax payers dollars a year in the U.S. alone [2]. This problem, originally
formulated in 1962, is a nonlinearly constrained optimization problem that has traditionally
been solved using numerical methods. However, with the changing technology of the last
couple decades, new and improved methods for solving this problem have emerged [2]. With
the recent surge in machine learning algorithms, machine learning offers a potentially faster
method and could make solving this problem significantly easier for grid operators around
the world.

Each power system can be modeled as a network of buses—the nodes of the grid topology—
and the branches between them—the edges. A subset of those buses comprise the set of
generators, which are the locations at which power is generated, stored, or balanced within
the system. Each bus serves a particular area and has a particular amount of real and re-
active power within the system. The real power is the active power, or the power that is
distributed throughout the system. The reactive power moves between the source and the
load, balancing the system. Reactive power is not usable power.

MATPOWER is a MATLAB program designed to solve these problems through a variety
of numerical methods. The program takes as inputs the network topology, limits for each bus
and node, and power requirements for each bus, and outputs the settings for the generators
that will optimize the system’s power flow and minimize cost. While very useful, this program
has limitations for solving this system based on the internal workings of the program. The
program relies on linearization methods that depend on convexity and good initial guesses,
and doesn’t account for extreme cases in which we do not have clear convexity nor do we
have an educated guess for initial conditions. As a result, we seek a new approach for these
optimization problems, that is, machine learning.

There are two stages within a machine learning algorithm using neural networks. The
first stage is the training stage in which we use a training data set to “teach” the algorithm
the patterns within the data. The training data set contains solutions for each of the elements
in the set so that the algorithm can learn the best configurations for the algorithm to obtain
the solutions given. The second stage of this process is the testing stage in which we have a
second set of solved elements and we run the program for the inputs for this set and compare
the computed solutions to the true solutions to test for the accuracy of the machine learning
model.

During the training portion of this process, the algorithm begins with an input layer,
which contains nodes or neurons that are each element of the training data set. Then the
data passes through a particular number of hidden layers in which each data point goes
through all of the nodes within each layer, multiplied by weighting values for each branch
with a bias for each hidden layer. In the beginning of this process, the weighting values and
biases are arbitrarily chosen. At the end of the process, there is an output layer that will be
the solution for the data. This solution is compared to the true solution from the training
data set, and then through back propagation, the weighting values and biases are adjusted.
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The answer is then run back through the system a given amount of times (referred to as the
number of epochs) and the answer is refined; the hope being that the answer will converge
to the appropriate value.

This year at ICML (International Conference on Machine Learning), Neel Guha and his
colleagues presented a neural network algorithm for tackling this problem [4]. Their work
was one of the first attempts to train a neural network to recognize optimal configurations
for the AC power flow problem. They used the existing technology to generate data for his
training set and then designed a machine learning algorithm to accurately predict generator
configurations for particular typical bus systems and their flows.

Our work involved modifying the neural network approach employed in [4] to include
optimization of cost per megawatt hour and a more accurate predicting system. We present
our findings to the IMSM workshop, July 2019.

2 Methods

2.1 Notation

For clarity in comparing our work to others, we adopt the following notation for the OPF
problem.

N set of buses
G set of generators
n total number of simulations
L total number of branches
m total number of decision trees in XGBoost
PL
i real power demand at bus i
QL

i relative power demand at bus i
PG
i generator real power supply at bus i
QG

i generator relative power supply at bus i
V G
i generator voltage magnitude at bus i
δi voltage angle at bus i

Ṽi voltage (complex) at bus i

Ei real component of Ṽi
Fi imaginary component of Ṽi
Ỹik ikth element (complex) of the bus admittance matrix

Gik real component of Ỹik
Bik imaginary component of Ỹik

Following the notation above, we have Ṽi = Ei + iFi, and Ỹik = Gik + jBik. Also, Vi =√
E2

i + F 2
i and Yik =

√
G2

ik +B2
ik. Moreover, note that G ⊆ N.

2.2 Generated Data and Analysis

For this project, we began with two standard IEEE cases: a 30 bus system representing
the US power grid in 1961, and a 300 bus system representing the US power grid in 1993.
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To find various results, we perturbed the PD (real power output) and QD (reactive power
output) values. To create the training set for our machine learning algorithms, we randomly
sampled power inputs centered around the standard case according to a normal distribution
with mean equal to the nominal value and standard deviation equal to 0.1 of the nominal
value. Prior research on this topic used uniform distributions to perturb power demand
parameters [4]. We chose a normal distribution because we wanted the probability of a given
perturbation to be symmetrical around the base value. We also wanted as diverse a data set
as possible and so did not want to set a limit on the maximum possible perturbation as would
be required for a uniform distribution. We experimented with standard deviation values up
to 50% but as the value increased, the amount of simulations that did not converge also
increased. To maximize the amount of simulations that did converge for our training set, we
therefore settled on 10%. Note also that since this perturbation is based on a percentage of
the original value, any buses that were originally 0 remained at 0. We then evaluated each
system with MATPOWER to find the optimal generator configuration. For each sampled
input, MATPOWER would either converge to a solution, in which case it was labeled a
successful simulation, or fail to converge, in which case it was labeled a failed simulation.
The failure of a simulation may be due to the numerical solver being insufficient to find an
existent solution or because the set parameters violated the constraints detailed in equation
(1) below.

The default solver within the MATPOWER program uses an interior point method, and
the two main functions are runpf (run power flow) or runopf (run optimized power flow).
For our purposes, we used runopf because it optimizes the generator configurations in terms
of the lowest cost whereas runpf only identifies the closest solution without regard to cost.
The generalized equations and physical constraints of the system are given by equation (1)
[4]. The objective function (1) is a polynomial function with variable PG

i , (1a) and (1b) are
power flow equations in polar coordinate system, and (1c)-(1f) represent feasible ranges of
real power output, relative power output, voltage magnitude and voltage angle, respectively.

minimize
PG
i

∑
i∈G

Ci(P
G
i ), (1)

subject to
Pi(V, δ) = PG

i − PL
i , ∀i ∈ N (1a)

Qi(V, δ) = QG
i −QL

i , ∀i ∈ N (1b)

PG,min
i ≤ PG

i ≤ PG,max
i , ∀i ∈ G (1c)

QG,min
i ≤ QG

i ≤ QG,max
i , ∀i ∈ G (1d)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N (1e)
δmin
i ≤ δi ≤ δmax

i , ∀i ∈ N (1f)

For the AC power flow problem, the grid demand is given according to equation (2), and
the corresponding optimal generator supply form corresponds to equation (3)

(PL
i , Q

L
i )

n

i=1 for bus 1, 2, ..., N (2)

(PG
j , Q

G
j )

n

j=1
for generator 1, 2, ..., G (3)
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which results in a grid demand matrix with dimension n× 2N , and grid control matrix with
dimension n× 2G for each perturbation.

In AC power flow equations, voltage is expressed in polar coordinates and admittance is
expressed in rectangular coordinates. Following the notation in §2.1, AC flow equations are
as according to equation (4) [3].

Pi(V, δ) = Vi

N∑
i=1

Vk(Gik cos(δi − δk) +Bik sin(δi − δk))

Qi(V, δ) = Vi

N∑
i=1

Vk(Gik sin(δi − δk)−Bik sin(δi − δk))

(4)

2.2.1 30 Bus System

We generated 30,000 samples of IEEE’s 30 bus system, with 20,797 being successful and
9,203 flagged as failures. Figure 1 illustrates how all of the PD-QD points are laid out
throughout the plane. Using red for failed simulations and blue for successful simulations,
we found the relationships between the PD and QD values were insignificant for most buses,
but bus 8 appeared to be critical in how the relationships of the values determined the
success or failure of the simulation. The circular shape on the top right portion of the graph
relates to bus 8. Figures 2 and 3 illustrate how the failures and successes were related to
the PD and QD values on each bus for all simulations. The original values for bus 8 were
the highest among those within this bus system which we hypothesize is the reason bus 8
had a higher correlation with success or failure of a system. With a larger initial value, the
percentage would be larger and therefore the perturbations would also be larger. Although
this would account for the drastically different behavior of this bus in comparison with the
other buses within the system, we do not have a good idea of why these original values were
chosen to begin with, so it is difficult to make conjectures on why bus 8 would have so much
more of an effect.

2.2.2 300 Bus System

For the more complex 300 bus system and due to the limited time frame of the workshop
and computational power, we created only 25,000 simulated points with 20,434 successful
simulations and nearly 5,000 failed simulations. Figure 4 shows the relationships of the PD
and QD values for this system. Unlike the 30 bus system, there are negative values for
power within this system. This is because the power described is directional and therefore a
negative power flow indicates that the power is moving in a direction opposite to the main
flow.

Again we see that generally there does not appear to be a correlation between the P and
Q values and the success or failure of the optimization. The vertical line at the top left of
the figure is for a particular bus that has very small P values and large Q values originally
so its perturbation range is more oblong.

We used data from both the uniform perturbation and the normal perturbation within
our attempts to make a neural network model for this system. The model did not appear
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Figure 1: P versus Q values for all buses in the 30 bus system

Figure 2: P versus Q values per bus for failed simulations
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Figure 3: P versus Q values per bus for successful simulations

Figure 4: P versus Q values for all buses in the 300 bus system
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Figure 5: Costs for the 30 bus system per hour

to be learning anything with either dataset and was showing a high success rate within
a single epoch, but a stagnant accuracy rating. There are several factors that may have
contributed to this anomaly; it may be that the data was not variant enough to show
differences between each perturbed system; or it is possible that a training dataset of 20,434
samples was insufficient to train the model.

2.2.3 Costs within the systems

One key output from an OPF solution is the cost per hour for running the optimized
system. Figures 5 and 6 show the range of cost values for the solved cases.

It is clear from these graphs that the successful simulations are generally less expensive
than those that failed. In runopf default setting, the constraint violation tolerance is 5×10−6,
and the maximum number of iterations is 150 for primal/dual interior point method [5]. So
there are several possible reasons for us getting this result - It only gives us a local minimizer
within the feasible set due to the limitation of number of iterations is not big enough, which
provides a higher cost; Or, because Newton’s method is sensitive to initial points, it makes
sense that red and blue points in Figures 5 and 6 have relatively clear differences while they
are overlapping with each other in Figures 1 and 4.

2.3 Neural Network Algorithm

Our goal was to design a neural network modeled off of a multilayer perceptron that is able
to calculate the optimal generator requirements for a given grid topology, effectively solving
the end-to-end OPF problem. This light weight model would then replace the complex,
classically solved OPF model for a given topology. To design the network, we built upon the
work in [4].

We tried different configurations and determined the optimal number of hidden layers
and number of nodes for the neural network model, shown in figure 7. For accuracy, we

8
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Figure 6: Costs for the 300 bus system per hour

used three metrics: a mean square error, the legality rate as defined in equation (5) and the
average cost deviation as defined in equation (6).

legality rate =
number of predicted grids that satisfy (1d) and (1f)

number of all predicted grids
(5)

avg. cost dev. =
1

n

n∑
i=1

∣∣∣∣1− pred costi
true costi

∣∣∣∣ (6)

Figure 7: Neural Network Multilayer Perceptron Diagram with 3 Hidden Layers
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3 Results

We used an 80/20 training/testing split for the datasets. For the 30 bus case, we generated
20,797 total samples—16,637 cases of which were used to train both 30 bus models, and the
remaining 20% were used for testing.

3.1 Neural Network Model

Table 1 shows the results of our investigation into different configurations for the 30 bus
neural network algorithm. The first column indicates the number of hidden layers, which
we varied as 2, 3, or 5; the second column shows the number of nodes in each of the hidden
layers; the third column indicates the activation function, for which we had two choices:
ReLU (rectified linear unit) or tanh (hyperbolic tangent); the fourth column shows the
validation accuracy; and the fifth column shows the mean cost deviation of the system,
determined by equation (6).

There is a third choice for the activation function, the sigmoid function, but it performed
significantly worse than the other functions so we did not include it within this table. The
learning rate was set as 0.001 for all configurations and the number of epochs was set to 500.
For the learning rate, we tried 0.1 initially but found the 0.001 was more effective for the
accuracy of the model.

Hidden Nodes Activation Validation Avg. Cost
Layers Function Accuracy Deviation

1 1 10 ReLU 0.8769 0.0063
2 2 100/100 ReLU 0.9663 0.0042
3 3 5/10/5 ReLU 0.8724 0.0071
4 3 50/50/50 ReLU 0.9820 0.0038
5 3 100/50/100 ReLU/Tanh/ReLU 0.9880 0.0030
6 3 100/100/100 ReLU 0.9911 0.0025
7 3 100/100/100 Tanh 0.9418 0.0127
8 3 100/200/100 ReLU 0.9863 0.0046
9 5 100 - 100 ReLU 0.9932 0.0060

Table 1: Configurations investigated for fitting the 30 bus neural network model

If the constraints from (1d) and (1f) are violated, the system does not function within
the engineering specs of the grid. The legality rate indicated in Table 2 is the percentage of
legal outcomes predicted by the 30 bus algorithm with the indicated configurations.

We settled on line 6 from Table 1, having three hidden layers, each with 100 nodes, using
the ReLU activation function for all three layers. Line 9 appears to have the best validation
accuracy, but the accuracy fluctuated significantly with 500 epochs. The configuration we
chose does not have that fluctuation, and it also has a higher legality rate and a lower
average cost deviation. This configuration employs 27,512 parameters. We also note that the
neural network had orders of magnitude faster computation time compared to the runopf

MATPOWER function, showing that machine learning could in fact significantly reduce
computation time for the OPF problem.

10
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Hidden Layers Nodes Activation Function Legality

1 1 10 ReLU 86%
2 2 100/100 ReLU 74%
3 3 5/10/5 ReLU 98%
4 3 50/50/50 ReLU 76%
5 3 100/50/100 ReLU/Tanh/ReLU 74%
6 3 100/100/100 ReLU 80%
7 3 100/100/100 Tanh 94%
8 3 100/200/100 ReLU 72%
9 5 100 - 100 ReLU 76%

Table 2: Legality for 30 bus model configurations

It should be noted that we made several attempts to fit this algorithm to a 300 bus
system, and the results that we found is that this network is not able to be scaled up for use
in the 300 bus system.

In the Neural Network Diagram shown in Figure 7, we found the optimal number of
hidden layers is 3. ip is the number of input notes, and op is the number of output notes.
For bus number n = 30, ip = 60, and op = 12. To improve upon the original model from
Neel Guha, we added in a batch normalization program within each hidden layer. This
normalizes the data within each layer after the activation function to re-scale the data for
less variance and avoid overfitting.

After getting an appropriate model based on training data, we used the three metrics
mentioned in section 2.3 to determine its performance and effectiveness. For the 30 bus case,
the prediction performance is summarized in Table 3.

Grid Accuracy Legality Rate Avg. Cost Dev.

case 30 99% 80% .25 %

Table 3: Prediction performance for neural network 30 bus model

Figure 8 from left to right shows the model accuracy, mean absolute error, and the loss
of the model for bus 30 case as the number of epochs increases. The blue line is for training
data and the orange line is for testing data.

3.2 The XGBoost Model

XGBoost stands for Extreme Gradient Boosting and is a decision tree classification or
regression model. The training method for this algorithm computes and minimizes the
residual difference between the predicted value and the true value with each estimator or
tree. In a classification algorithm, the first decision tree classifies as many points as possible
and the output will be a binary representation of the success of the classifications. Those
that were misclassified in the first tree are the focus of the second decision tree. This process
perpetuates itself through the total amount of decision trees designated for the model and
the output of the classification algorithm is a binary representation of the success of the

11
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(a) NN Model Accuracy for the 30 bus case (b) The loss of the model for the 30 bus case

Figure 8: From left to right: MA and ML for 30 bus neural network model

classifications across all decision trees. In the case of a regression model, the output of each
decision tree is approximated parameters and we take the mean of all of the outputs as the
output for the entire model.

Table 4 shows the options that we tested for the XGBoost system with the 30 bus case.
The first column is the number of decision trees within the algorithm. The R2 score from
the second column is the goodness of fit rating and is calculated using the following formula:

R2 = 1−
∑m

i=1(yit − yip)2∑m
i=1(yit − yit)2

, (7)

where yit is the true value of ith data point, yip is the predicted value of ith data point, and
yit is the mean value of true values. Then the last column is the mean cost deviation of the
system, as defined in equation (6). All of these examples have a learning rate of 0.1 and tree
depth of 3.

Num of Trees R2 Score Avg. Cost Dev. Legality

1 100 0.7890 0.0141 86.13%
2 150 0.8044 0.0118 85.19%
3 200 0.8148 0.0104 84.76%
4 250 0.8226 0.0097 84.25%
5 300 0.8293 0.0093 84.18%
6 400 0.8411 0.0078 84.13%
7 600 0.8659 0.0074 83.82%
8 800 0.8738 0.0072 83.89%
9 1000 0.8809 0.0068 83.77%

Table 4: XGBoost configurations for 30 bus system

From Figure 9 it is clear that as we increase the amount of decision trees our fit rating
is increasing at 800 trees, and our cost deviation is decreasing, which is to be expected.
To optimize the system, we would want to check the R2 values for an interval of decision
trees and watch for overfitting or a decrease in goodness of fit. For the 30 bus system our

12



SAMSI–IMSM 2019 AC Optimal Power Flow Report Page 13 of 16

Figure 9: Goodness of fit score for XGBoost model as a function of the number of decision
trees (estimators)

computer hardware limited us to testing large increments within the number of trees, and to
optimize the system we need the capacity to evaluate the number of trees in much smaller
increments.

3.3 Cost Analysis

Our neural network and XGBoost algorithm predictions both maintained a close approxi-
mation to the true costs indicated in the datasets. Figure 10 shows the distributions for the
predicted costs versus the true costs for the neural network model, and Figure 11 shows the
differences in cost for the XGBoost model. The XGBoost model had a bit more deviation
from the true costs and appeared to be overestimating the costs, but that may be due to the
lack of hardware necessary to fit the model.

3.4 Comparison of the Models

Given its prevalence in the current machine learning literature, we wanted to investigate
the usefulness of the decision tree regression models while also experimenting with the more
common neural network model. The XGBoost model required a significantly larger amount
of computational power than the neural network model, but generally the XGBoost model
is known for being more effective for a higher amount of input features. We also found that
the legality rate for the XGBoost model was much more stable and remained rather high in
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Figure 10: Comparison of predicted costs and true costs for the neural network model
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Figure 11: Comparison of predicted costs and true costs for the XGBoost model
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comparison to the neural network which fluctuated through a 70-80% range.

4 Conclusions and Future Work

4.1 Conclusions

For this project, we created two machine learning models for solving the OPF for a 30 bus
power grid system. The neural network model included three hidden layers with 100 nodes
per layer, and with 500 epochs we found an accuracy rating of 99% for the training dataset
and an 80% legality rate for the predictions. We were unable to optimize the XGBoost
model due to insufficient computer processing capabilities, but found an 88% fit with 1000
decision trees. The neural network model was significantly faster than the XGBoost model
in terms of computation time. We were unsuccessful at creating both types of models for
the 300 bus system and we conjecture this failure has something to do with the dataset not
being variant enough or large enough for the algorithm to recognize any patterns.

4.2 Future Work

This project represents just the beginning of research into using machine learning algo-
rithms for solving the OPF problem. Generalizing the models to be effective for higher nodal
systems is the next step, along with optimizing the number of decision trees for the regression
tree model. Finding optimality classifications for each of these models and analyzing how
they behave within extreme deviations from the norm are both future projects as well.
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