Calculus 2 Review Sheet

Question 1
Calculate the derivative of the following function:

\(f(x) = 6 \log_5 (2x) \)

a) \(f'(x) = 12 \log_5 (2x) \)

b) \(f'(x) = \frac{6}{x \ln(5)} \)

c) \(f'(x) = \frac{6}{\log_5 (2x)} \)

d) \(f'(x) = \frac{6 \ln(5)}{x} \)

e) \(f'(x) = \frac{12}{x \ln(5)} \)

Question 2
Calculate the following:

\(\frac{d}{dx} (4^{-x}) \)

a) \(-4^{-x} \ln (4)\)

b) \(4^{-x} \ln (4)\)

c) \(-x 4^{-x} \ln (4)\)

d) \(-x 4^{-x} - 1\)

e) \(\frac{4^{-x}}{\ln (4)}\)

Question 3
Calculate the following:

\(\frac{d}{dx} (\arctan(6x^2)) \)

a) \(\frac{1}{1 + 36x^4}\)

b) \(\sqrt{1 - 36x^4} \cdot \frac{12x}{12x}\)

c) \(\frac{1 + 36x^4}{2x}\)

d) \(\frac{1 + 36x^4}{6}\)

e) \(\frac{1 + 36x^4}{6}\)
Calculus 2 Review Sheet

Question 4
Find the slope of the normal line to \(f(x) \) at the point where \(x = \frac{\pi}{4} \).
\[f(x) = 2 \ln(\sec(x)) \]

a) 2
b) -2
c) 0
d) \frac{1}{2}
e) -\frac{1}{2}

Question 5
Find the slope of the normal line to \(f(x) \) at the point where \(x = 0 \).
\[f(x) = \cosh(2x) + \sinh(3x) \]

a) 0
b) \frac{1}{3}
c) 3
d) -\frac{1}{3}
e) -3

Question 6
Find the slope of the tangent line to \(f(x) \) at the point where \(x = 0 \).
\[f(x) = e^{2x} + \ln(3x + 1) \]

a) -\frac{1}{5}
b) \frac{1}{5}
c) 5
d) \frac{1}{3}
e) 3
Calculus 2 Review Sheet

Question 7
Calculate the following:

\[\int \frac{\cosh(4 \sqrt{x})}{\sqrt{x}} \, dx \]

a) \(-\frac{1}{8} \sinh(4 \sqrt{x}) + C\)
b) \(\frac{1}{2} \sinh(4 \sqrt{x}) + C\)
c) \(-\frac{1}{2} \sinh(4 \sqrt{x}) + C\)
d) \(\frac{1}{8} \sinh(4 \sqrt{x}) + C\)
e) \(2 \sinh(4 \sqrt{x}) + C\)

Question 8
Calculate the following:

\[\int \frac{1}{3 \sqrt{x} (2 + \sqrt{x})} \, dx \]

a) \(-\frac{2}{3} \ln(2 + \sqrt{x}) + C\)
b) \(\frac{2}{3} \ln(2 + \sqrt{x}) + C\)
c) \(-3 \ln(3 \sqrt{x}) + C\)
d) \(-\frac{2}{3} \ln(3 \sqrt{x}) + C\)
e) \(-3 \ln(1 + \sqrt{x}) + C\)
Calculus 2 Review Sheet

Question 9
Calculate the following:

\[
\int \frac{2 \ln(4x)}{x} \, dx
\]

a) \((\ln(4x))^2 + C\)
b) \(\frac{8}{\ln(4x)} + C\)
c) \(\frac{1}{4} (\ln(4x))^2 + C\)
d) \(\frac{2}{\ln(4x)} + C\)
e) \(8x \ln(4x) + C\)

Question 10

Part a: If \(f(x)\) is differentiable and invertible, \(f \, ^{(x)}\) is nonzero, and \(f(a) = b\), give a formula for \((f^{-1})\, ^{(b)}\)

Part b: Given

\(f(x) = -2x^3 - x - 5\)
verify that \(f(x)\) is invertible.

Part c: Using the function in part b, note that \(f(1) = -8\). Find \((f^{-1})\, ^{(-8)}\).

Part d: Find the equation of the tangent line to \(f^{-1}(x)\) at the point where \(x = -8\).
Calculus 2 Review Sheet

Question 11

Part a: If \(f(x) \) is differentiable and invertible, \(f'(x) \) is nonzero, and \(f(a) = b \), give a formula for \((f^{-1})'(b) \).

Part b: Given
\[
f(x) = 3x^3 + x - 5
\]
verify that \(f(x) \) is invertible.

Part c: Using the function in part b, note that \(f(2) = 21 \). Find \((f^{-1})'(21) \).

Part d: Find the equation of the tangent line to \(f^{-1}(x) \) at the point where \(x = 21 \).

Question 12

Part a: Solve \(\frac{dy}{dx} = -2y \) given that \(y(0) = 5 \).

Part b: A 100 liter tank initially full of water develops a leak at the bottom. Given that 10% of the water leaks out in the first 10 minutes, find the amount of water left in the tank \(t \) minutes after the leak develops if the water drains off at a rate that is proportional to the amount of water present.

Question 13

Compute the following:
\[
\int \frac{\sinh(x)}{49 + \cosh^2(x)} \, dx
\]

Question 14

Compute the following:
\[
\int \frac{x}{\sqrt{16 - x^4}} \, dx
\]

Question 15

Compute
\[
\int 3x \cos(5x) \, dx
\]
Calculus 2 Review Sheet

Question 16
Compute
\[\int 4x \ln(5x) \, dx \]

Question 17
Compute:
\[\int \cos^4(x) \sin^3(x) \, dx \]

Question 18
Compute:
\[\int \tan^4(x) \sec^4(x) \, dx \]

Question 19
Compute:
\[\int \tan^3(x) \, dx \]

Question 20
Compute:
\[\int \tan^4(x) \, dx \]