Exam 2 Review
Spring 2014
Calculus 2

1. Partial fractions
 a. \(\int \frac{x^2 - 3x - 10}{2x + 1} \, dx \)
 b. \(\int \frac{1}{(x^2 + 1)(x - 4)} \, dx \)
 c. \(\int \frac{x^3 + 4x^2}{x^3} \, dx \)
 d. \(\int \frac{x^3}{(x^2 - 2)} \, dx \)

2. Approximate \(\int_0^3 f(x) \, dx \) given

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

 a. Use trapezoid method with n=3
 b. Use midpoint method with n=3
 c. Use Simpson’s method with n=3
 d. Find value of n so that trapezoid rule integration of \(\int_0^\pi \sin(x) \, dx \) has error less than \(\epsilon = 0.001 \).

3. Write the integral for area:
 a. inside the inner loop of \(r = 1 + 2 \cos(\theta) \)
 b. inside \(r = 4 - 4 \cos(\theta) \) and left of y-axis
 c. inside the outer loop of \(r = 1 - 2 \cos(\theta) \) and below the x-axis
 d. inside both \(r = 3 \) and \(r = 6 \cos(\theta) \)
 e. inside one petal of \(r = \cos(3\theta) \)

4. a. Find the equation of the normal line at point (4, 5) to the curve

 \[
 \begin{align*}
 x(t) &= t^2 + 3x \\
y(t) &= 2t + 3
 \end{align*}
 \]

 b. Find formula for the length of the curve

 \[
 \begin{align*}
 x(t) &= \frac{t^2}{2} \\
y(t) &= 4t - 5 \\
t &\in [0, 3]
 \end{align*}
 \]

 c. Find formula for the arclength of the inner loop of \(r = 2 + 4 \sin(\theta) \)
 d. Find formula for the arclength of \(f(x) = \ln(x) \) for \(x \in [e^{-10}, e^{10}] \)
5. a. Determine whether the set \(\{ x : x^2 < 10 \} \) is bounded below/above. Find its greatest lower bound/lowest upper bound if they exist.

 b. Is sequence given by \(a_n = \cos(\frac{\pi}{2}n) \) monotone? Is it bounded?

 c. Is sequence given by \(a_n = \cos(\frac{\pi}{n}) \) monotone? Is it bounded?

6. Does the sequence converge or diverge? If converges, find limit. If diverges, explain why.

 a. \(\{ \frac{3^n}{2^n + 3} \} \)

 b. \(\{ \frac{4n^5}{5n^4 + 3n^3 + n^2 - 10} \} \)

 c. \(\{ \sin(\frac{\pi n}{4n + 1}) \} \)

 d. \(\{ \frac{1}{\sqrt{n^2 + 10}} \} \)

 e. \(\{ 0.8^{-n} \} \)

 f. \(\{ \frac{\ln(n^2 + 10)}{\sqrt{n}} \} \)

 g. \(\{ \sqrt{9 - \frac{1}{n}} \} \)

 h. \(\{ \ln(\frac{3n}{2n + 3}) \} \)

 g. \(\{ \tan \frac{n\pi}{n + 2} \} \)