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Background

In this lecture we will introduce an important method of solving
initial-value problems for linear differential equations with constant
coefficients. While this application is important for our purposes, it is
far from the only use of the Laplace transform in the study of
engineering and the sciences.

In order to understand the Laplace transform, we will need to make
sure we understand improper integrals from calculus.
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Background

In the definition of the definite integral,

∫ b

a
f(x)dx, it is assumed that

[a, b] is a finite closed interval and that f is defined and bounded on
[a, b]. Even more, f is usually assumed to be continuous on [a, b].

Using limits, we are able to extend this concept to allow us to make
sense of integrals of the form ∫ ∞

a
f(x)dx

which we understand to mean∫ ∞

a
f(x)dx = lim

b→∞

∫ b

a
f(x)dx.
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Background

Examples:

1. Evaluate the integral. ∫ ∞

1

1

x2
dx

∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx

= lim
b→∞

(
−1

x

)∣∣∣∣b
1

= lim
b→∞

(
1− 1

b

)
= 1
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Background

2. Evaluate the integral, letting a be a real number greater than 0.∫ ∞

0

1

eax
dx =

∫ ∞

0
e−axdx

∫ ∞

0
e−axdx = lim

b→∞

∫ b

0
e−axdx

= lim
b→∞

(
− 1

ae
−ax

)∣∣∣∣b
0

= lim
b→∞

(
1− 1

ae
−ab

)
= 1
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Introduction

The Laplace transform is defined in terms of an improper integral.

Definition

Let f be a continuous function on [0,∞). The Laplace transform of f ,
denoted by L[f(x)], or by F (s), is the function given by

L[f(x)] = F (s) =

∫ ∞

0
e−sxf(x)dx. (L)

The domain of the function F is the set of all real numbers s for which
the improper integral converges.

The Laplace transform L transforms a continuous function f(x) into another
function F (s).
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Introduction

Examples:

1. Let f be the constant function f(x) ≡ 1 for x ∈ [0,∞). Find the
Laplace transform of f(x).

L[1] = F (s) =

∫ ∞

0
e−sxdx

= lim
b→∞

∫ b

0
e−sxdx

= lim
b→∞

(
−1

se
−sx

)∣∣∣∣b
0

= lim
b→∞

(
1
s −

1
se

−sb
)

= 1
s

where, in the last step, we assume s > 0 to ensure convergence of the limit.
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Introduction

2. Let f(x) = erx for x ∈ [0,∞). Find the Laplace transform of f(x).
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Introduction

3. Let f(x) = cos(βx) for x ∈ [0,∞). Find the Laplace transform of
f(x).
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Introduction

University of Houston Math 3321 Lecture 13 11 / 23



Basic Properties of the Laplace Transform

Our goal is to apply the Laplace transform to initial-value problems of
the form:

y′′ + ay′ + by = f(x), y(0) = α, y′(0) = β (1)

where a, b, α, and β are constants and f is a continuous function on
[0,∞).

Our strategy will require us to find the Laplace transform of both sides
of this differential equation. That is we wish to find

L[y′′ + ay′ + by] = L[f(x)]. (2)
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Basic Properties of the Laplace Transform

In order to make sense of applying the transform in this way, we must
first address the existence of L[f(x)]. That is, we need to determine to
which functions f the Laplace transform can be applied.

Definition

A function f , continuous on [0,∞), is said to be of exponential order λ,
λ a real number, if there exist numbers M > 0 and A ≥ 0 such that for
all x ∈ [A,∞) we have

|f(x)| ≤ Meλx.
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Basic Properties of the Laplace Transform

Examples of functions which are and are not of exponential order λ for
some λ:

(a) If a function is bounded on [0,∞) it is of exponential order 0.

(b) Let f(x) = x for x ∈ [0,∞), then f is of exponential order λ for
any positive number λ.

(c) Exponential functions are of exponential order. For example, let
f(x) = e2x, then f is of exponential order 2.

(d) The function ex
2
is not of exponential order λ for any λ.
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Basic Properties of the Laplace Transform

Theorem 1

Let f be a continuous function on [0,∞). If f is of exponential order λ,
then the Laplace transform L[f(x)] exists for s > λ.

Theorem 2

The operator L is a linear operator. That is, if g and h are continuous
functions on [0,∞), and if each of L[g(x)] and L[h(x)] exists for s > λ,
then L[g(x) + h(x)] and L[cg(x)], c constant, each exist for s > λ, and

L[g(x) + h(x)] = L[g(x)] + L[h(x)]

L[cg(x)] = cL[g(x)].

The proof of Theorem 2 is a direct consequence of the linearity of
integration.
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Basic Properties of the Laplace Transform
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Basic Properties of the Laplace Transform

Corollary

Let g1(x), g2(x), . . . , gn(x) be continuous functions on [0,∞). If
L[g1(x)], L[g2(x)], . . . , L[gn(x)] all exist for s > λ, and if c1, c2, . . . , cn
are real numbers, then

L[c1g1(x) + c2g2(x) + · · ·+ cngn(x)]

exists for s > λ and

L[c1g1(x) + · · ·+ cngn(x)] = c1L[g1(x)] + · · ·+ cnL[gn(x)].
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Basic Properties of the Laplace Transform

Example:

1. Find the Laplace transform of

f(x) = 2 sin(x)− 3e−x + 1.

L[2 sin(x)− 3e−x + 1] = 2L[sin(x)]− 3L[e−x] + L[1]

= 2
1

s2 + 1
− 3

s+ 1
+

1

s
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Basic Properties of the Laplace Transform

2. Find the Laplace transform of

f(x) = 3e2x cos(3x) + x sin(x)− 3x2.

L[3e2x cos(3x) + x sin(x)− 3x2] = 3L[e2x cos(3x)] + L[x sin(x)]− 3L[x2]

= 3
s− 3

(s− 2)2 + 9
+

2s

(s2 + 1)2
− 3

2

s3
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Basic Properties of the Laplace Transform

Theorem 3

Let g be a continuously differentiable function on [0,∞). If g is of
exponential order λ, then L[g′(x)] exists for s > λ and

L[g′(x)] = sL[g(x)]− g(0).

Remark.The fundamental implication of this property is that one can
use the Laplace transform to map differential equations (in fact, IVPs)
into algebraic equations with respect to the variable s.
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Basic Properties of the Laplace Transform

Corollary

Let g be function which is n-times differentiable on [0,∞). If each of
the functions g, g′, . . . , g(n−1) is of exponential order λ, then L[g(n)(x)]
exists for s > λ and

L[g(n)(x)] = snL[g(x)]− sn−1g(0)− sn−2g′(0)− · · · − g(n−1)(0).

It is worth mentioning the n = 2 case where we get

L[g′′(x)] = s2L[g(x)]− sg(0)− g′(0).
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Application to Initial-Value Problems

Examples:

1. Find the L[y(x)] = Y (s) for the solution of the IVP

y′ − y = 3e2x, y(0) = 3.

We apply the Laplace transform

L[y′ − y] = L[3e2x]

L[y′]− L[y] = 3L[e2x]

sL[y]− y(0)− L[y] = 3

s− 2

(s− 1)L[y]− 3 =
3

s− 2

Y (s) = L[y] = 3

(s− 2)(s− 1)
+

3

s− 1
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Application to Initial-Value Problems

2. Find the L[y(x)] = Y (s) for the solution of the IVP

y′′ + 3y′ − 4y = 2xe3x, y(0) = 3, y′(0) = −2.

We apply the Laplace transform

L[y′′ + 3y′ − 4y] = L[2xe3x]

L[y′′] + 3L[y′]− 4L[y] = 2L[xe3x]

s2L[y]− sy(0)− y′(0) + 3(sL[y]− y(0))− 4L[y] = 2 1
(s−3)2

(s2 + 3s− 4)L[y]− (s+ 3)y(0)− y′(0) = 2
(s−3)2

(s− 1)(s+ 4)L[y]− 3(s+ 3) + 2 = 2
(s−3)2

L[y] = 2
(s−3)2(s−1)(s+4) +

3(s+3)
(s−1)(s+4) −

2
(s−1)(s+4)
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