Math 3321 Matrices and Vectors. Part II

University of Houston

Lecture 20

Outline

2 Linear Dependence/Independence

Definition

A vector space is a set whose elements, called vectors, may be added together and multiplied by numbers, called scalars.

Examples

$$\mathbb{R}^2 = \{(a, b) : a, b \in \mathbb{R}\}$$
 – "the plane"

$$\mathbb{R}^3 = \{(a, b, c) : a, b, c \in \mathbb{R}\}$$
 – "3-space"

 $\mathbb{R}^n = \{(x_1, x_2, x_3, \dots, x_n)\}$ ordered *n*-tuples of real numbers For all these spaces, vector addition is defined componentwise.

Vectors

For any two vectors $u = (a_1, a_2, \ldots, a_n)$ and $v = (b_1, b_2, \ldots, b_n)$ in \mathbb{R}^n , we have

$$u + v = (a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n)$$
$$= (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and for any real number λ ,

$$\lambda v = \lambda (a_1, a_2, \dots, a_n)$$
$$= (\lambda a_1, \lambda a_2, \dots, \lambda a_n).$$

Clearly, the sum of two vectors in \mathbb{R}^n is another vector in \mathbb{R}^n and a scalar multiple of a vector in \mathbb{R}^n is a vector in \mathbb{R}^n .

Vectors

Properties of vector addition

Let u, v and w be vectors in \mathbb{R}^n .

- 1. $u + v \in \mathbb{R}^n$ closed 2. u + v = v + u commutative
- 3. u + (v + w) = (u + v) + w associative

4. **Zero vector:** There is a vector 0 = (0, 0, 0, ..., 0),

v + 0 = 0 + v = v (additive identity).

5. Additive Inverse: For each vector $v \in \mathbb{R}^n$, there is a unique vector -v such that

$$v + (-v) = v - v = 0$$

-v is the additive inverse (or negative) of v.

Properties of scalar multiplication

Let α and β be numbers, and u, v and w be vectors.

1.
$$\alpha w \in \mathbb{R}^n$$
 (closed)
2. $1w = w$ (multiplicative identity)
3. $\alpha(\beta w) = (\alpha \beta) w$ (associative property)
4. $(\alpha + \beta)w = \alpha w + \beta w$ (distributive property)
5. $\alpha(u + w) = \alpha u + \alpha w$ (distributive property)

While we have exemplified the properties of vectors using \mathbb{R}^n , the concept of vector space is much more general.

Any non-empty set V on which there are defined two operations, addition (+) and multiplication by a scalar, which satisfy the properties 1 - 5 for addition and 1 - 5 for multiplication by a scalar is a vector space. While we have exemplified the properties of vectors using \mathbb{R}^n , the concept of vector space is much more general.

Any non-empty set V on which there are defined two operations, addition (+) and multiplication by a scalar, which satisfy the properties 1 - 5 for addition and 1 - 5 for multiplication by a scalar is a vector space.

Other examples of vector spaces:

- 1. $C(0,1) = \{f : (0,1) \rightarrow \mathbb{R} \mid f \text{ is continuous}\}$
- 2. The set P_n of polynomials of degree n.
- 3. The set S of solutions of the homogeneous differential equation

$$y'' + p(x)y' + q(x)y = 0$$

Let V be a vector space and let

$$\{v_1, v_2, v_3, \cdots, v_k\}$$

be a set of vectors in V. Let

$$\{c_1, c_2, c_3, \cdots, c_k\}$$

be real numbers. Then

$$v = c_1 v_1 + c_2 v_2 + c_3 v_3 + \dots + c_k v_k$$

is a **linear combination** of v_1, \ldots, v_k .

Definition

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors. The set S is **linearly dependent** if there exist k numbers c_1, c_2, \dots, c_k **not all zero** such that

$$c_1v_1+c_2v_2+\cdots+c_kv_k=\mathbf{0}.$$

 $(c_1v_1 + c_2v_2 + \cdots + c_kv_k$ is a **linear combination** of v_1, v_2, \ldots, v_k) S is **linearly independent** if it is not linearly dependent. That is, S is linearly independent if

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = \mathbf{0}$$

implies $c_1 = c_2 = \dots = c_k = 0.$

The set S is **linearly dependent** if there exist k numbers c_1, c_2, \dots, c_k NOT ALL ZERO such that

 $c_1v_1+c_2v_2+\cdots+c_kv_k=\mathbf{0}.$

The set S is **linearly dependent** if there exist k numbers c_1, c_2, \dots, c_k NOT ALL ZERO such that

$$c_1v_1+c_2v_2+\cdots+c_kv_k=\mathbf{0}.$$

Another way to say this:

The set S is **linearly dependent** if one of the vectors can be written as a linear combination of the other vectors.

The set S is **linearly dependent** if there exist k numbers c_1, c_2, \dots, c_k NOT ALL ZERO such that

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = \mathbf{O}.$$

The set S is **linearly dependent** if there exist k numbers c_1, c_2, \dots, c_k NOT ALL ZERO such that

$$c_1v_1+c_2v_2+\cdots+c_kv_k=\mathbf{0}.$$

Another way to say this:

The set S is **linearly dependent** if one of the vectors can be written as a linear combination of the other vectors.

The set S is **linearly dependent** if there exist k numbers c_1, c_2, \dots, c_k NOT ALL ZERO such that

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = \mathbf{O}.$$

Note: If there is one such set

$$\{c_1, c_2, c_3, \ldots, c_k\},\$$

then there are **infinitely many** such sets.

University	of Houston	n
------------	------------	---

Special case: 2 vectors v_1, v_2 .

Linearly dependent iff one vector is a constant multiple of the other.

Special case: 2 vectors v_1, v_2 .

Linearly dependent iff one vector is a constant multiple of the other.

Examples:

- $v_1 = (1, -2, 4), \quad v_2 = (-\frac{1}{2}, 1, -2)$ linearly dependent: $v_1 = -2v_2$
- $v_1 = (2, -4, 5), v_2 = (0, 0, 0)$ linearly dependent: $v_2 = 0v_1$
- $v_1 = (5, -2, 0), \quad v_2 = (-3, 1, 9)$ linearly independent

Problem:

Given the three vectors v_1, v_2, v_3 in \mathbb{R}^2 :

$$v_1 = (1, -1), v_2 = (-2, 3), v_3 = (3, -5)$$

is the set $\{v_1, v_2, v_3\}$ dependent or independent?

Problem:

Given the three vectors v_1, v_2, v_3 in \mathbb{R}^2 :

$$v_1 = (1, -1), v_2 = (-2, 3), v_3 = (3, -5)$$

is the set $\{v_1, v_2, v_3\}$ dependent or independent?

Solution. Suppose they are dependent. Then there exist three numbers, c_1, c_2, c_3 , not all zero such that

$$c_1v_1 + c_2v_2 + c_3v_3 = (0,0)$$

This implies that

$$c_1(1,-1) + c_2(-2,3) + c_3(3,-5) = 0$$

giving the system of equations

$$c_1 - 2c_2 + 3c_3 = 0$$
$$-c_1 + 3c_2 - 5c_3 = 0$$

Hence, if we suppose that $\{v_1, v_2, v_3\}$ is a dependent set, the system of equations

$$c_1 - 2c_2 + 3c_3 = 0$$

$$-c_1 + 3c_2 - 5c_3 = 0$$

must have nontrivial solutions.

Hence, if we suppose that $\{v_1, v_2, v_3\}$ is a dependent set, the system of equations

$$c_1 - 2c_2 + 3c_3 = 0$$

$$-c_1 + 3c_2 - 5c_3 = 0$$

must have nontrivial solutions.

We have:

$$\begin{pmatrix} 1 & 2 & 3 & | & 0 \\ -1 & 3 & -5 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 0 & 5 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 0 & 1 & -2/5 & | & 0 \end{pmatrix}$$

This shows that the system has non-trivial solution. Hence $\{v_1, v_2, v_3\}$ is a **dependent** set.

Problem:

Given the four vectors: v_1 , v_2 , v_3 , v_4 in \mathbb{R}^3 $v_1 = (1, -1, 2), \quad v_2 = (2, -3, 0), \quad v_3 = (-1, -2, 2), \quad v_4 = (0, 4, -3)$ is the set $\{v_1, v_2, v_3, v_4\}$ dependent or independent?

Problem:

Given the four vectors: v_1 , v_2 , v_3 , v_4 in \mathbb{R}^3 $v_1 = (1, -1, 2), \quad v_2 = (2, -3, 0), \quad v_3 = (-1, -2, 2), \quad v_4 = (0, 4, -3)$ is the set $\{v_1, v_2, v_3, v_4\}$ dependent or independent?

Solution.

As we saw above, solving this problem requires to check if there are 4 real numbers c_1, c_2, c_3, c_4 , not all zero, such that

$$c_{1}v_{1} + c_{2}v_{2} + c_{3}v_{3} + c_{4}v_{4} = (0, 0, 0)$$

$$\begin{pmatrix} 1 & 2 & -1 & 0 & | & 0 \\ -1 & -3 & -2 & 4 & | & 0 \\ 2 & 0 & 2 & -3 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 0 & | & 0 \\ 0 & -1 & -3 & 4 & | & 0 \\ 0 & -1 & -3 & 4 & | & 0 \\ 0 & 0 & -4 & -13/4 & | & 0 \end{pmatrix}$$
Hence it is a **dependent** set

The examples above show that a homogeneous system with more unknowns than equations always has infinitely many nontrivial solutions.

This implies the following useful observation

Proposition (Linear dependence)

Let v_1, v_2, \dots, v_k be a set of k vectors in \mathbb{R}^n . If k > n, then the set of vectors is (automatically) linearly dependent.

Example. Consider the following vector in \mathbb{R}^3 : $v_1 = (1, -1, 2), \quad v_2 = (2, -3, 0), \quad v_3 = (-1, -2, 2), \quad v_4 = (0, 4, -3)$ Are the following sets dependent or independent?

(a)
$$\{v_1, v_2, v_3, v_4\}$$

(b) $\{v_1, v_2, v_3\}$
(c) $\{v_1, v_2\}$

Example. Consider the following vector in \mathbb{R}^3 : $v_1 = (1, -1, 2), \quad v_2 = (2, -3, 0), \quad v_3 = (-1, -2, 2), \quad v_4 = (0, 4, -3)$ Are the following sets dependent or independent?

(a) $\{v_1, v_2, v_3, v_4\}$ (b) $\{v_1, v_2, v_3\}$ (c) $\{v_1, v_2\}$

Solution.

(a) Since the set $\{v_1, v_2, v_3, v_4\}$ consists of 4 vectors in \mathbb{R}^3 , it is necessarily **dependent**.

(c) Since v_1 is not a constant multiple of v_2 , then the set $\{v_1, v_2\}$ is **independent**.

(b) In this case, we need to check directly if the equation $c_1v_1 + c_2v_2 + c_3v_3 = 0$ has non-trivial solutions. That is, does

$$c_1 + 2c_2 - c_3 = 0$$
$$-c_1 - 3c_2 - 2c_3 = 0$$
$$2c_1 + 2c_3 = 0$$

have non-trivial solutions?

(b) In this case, we need to check directly if the equation $c_1v_1 + c_2v_2 + c_3v_3 = 0$ has non-trivial solutions. That is, does

$$c_1 + 2c_2 - c_3 = 0$$
$$-c_1 - 3c_2 - 2c_3 = 0$$
$$2c_1 + 2c_3 = 0$$

have non-trivial solutions?

Augmented matrix and row reduce:

$$\begin{pmatrix} 1 & 2 & -1 & | & 0 \\ -1 & -3 & -2 & | & 0 \\ 2 & 0 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -1 & -3 & | & 0 \\ 0 & -4 & 4 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

This shows that the system of equation has only the trivial solution. Thus, the vectors $\{v_1, v_2, v_3\}$ are **independent**.

Alternatively, to solve problem (b), we can calculate the determinant

$$\left|\begin{array}{rrrrr}1&2&-1\\-1&-3&-2\\2&0&2\end{array}\right|$$

We have $\begin{vmatrix} 1 & 2 & -1 \\ -1 & -3 & -2 \\ 2 & 0 & 2 \end{vmatrix} = 2(-4-3) + 2(-3+2) = -16$

det $\neq 0$ implies unique solution $c_1 = c_2 = c_3 = 0$ and **independent**.

Alternatively, to solve problem (b), we can calculate the determinant

$$\left|\begin{array}{rrrrr} 1 & 2 & -1 \\ -1 & -3 & -2 \\ 2 & 0 & 2 \end{array}\right|$$

We have
$$\begin{vmatrix} 1 & 2 & -1 \\ -1 & -3 & -2 \\ 2 & 0 & 2 \end{vmatrix} = 2(-4-3) + 2(-3+2) = -16$$

det $\neq 0$ implies unique solution $c_1 = c_2 = c_3 = 0$ and **independent**.

In general,

- det $\neq 0$ implies unique solution and **independent**
- det = 0 implies infinitely many solutions and **dependent**.

Example. Consider the vectors in \mathbb{R}^3 $w_1 = (a, 1, -1), \quad w_2 = (-1, 2a, 3), \quad w_3 = (-2, a, 2), \quad w_4 = (3a, -2, a)$ For what values of a are the vectors linearly dependent? **Example.** Consider the vectors in \mathbb{R}^3 $w_1 = (a, 1, -1), \quad w_2 = (-1, 2a, 3), \quad w_3 = (-2, a, 2), \quad w_4 = (3a, -2, a)$ For what values of a are the vectors linearly dependent?

Solution.

Since the set $\{w_1, w_2, w_3, w_4\}$ consists of 4 vectors in \mathbb{R}^3 , it is necessarily **dependent**.

Example. Consider the vectors in \mathbb{R}^3 $w_1 = (a, 1, -1), \quad w_2 = (-1, 2a, 3), \quad w_3 = (-2, a, 2)$ For what values of a are the vectors linearly dependent?

Example. Consider the vectors in \mathbb{R}^3 $w_1 = (a, 1, -1), \quad w_2 = (-1, 2a, 3), \quad w_3 = (-2, a, 2)$ For what values of a are the vectors linearly dependent?

Solution.

We can solve the problem by applying row reduction on the matrix of coefficients or by computing the determinant (we can write the vectors by row or column).

$$\begin{vmatrix} a & -1 & -2 \\ 1 & 2a & a \\ -1 & 3 & 2 \end{vmatrix} = a(4a - 3a) + (2 + a) - 2(3 + 2a) = a^2 - 3a - 4$$

We find that det = 0 if a = 4 or a = -1, in which cases the set of vectors is **dependent**.

(Note: if
$$a = -1$$
, then $w_3 = w_1 + w_2$)

Tests for independence/dependence Let $S = v_1, v_2, \dots, v_k$ be a set of vectors in \mathbb{R}^n .

- Case 1: k > n: S is linearly dependent.
- Case 2: k = n: Solution 1. Solve the system of equations

$$c_1v_1+c_2v_2+\cdots+c_kv_k=\mathbf{0}.$$

If a unique solution:

$$c_1 = c_2 = \cdots = c_n = 0,$$

the vectors are **independent**.

If infinitely many solutions, the vectors are **dependent**.

• Case 2: k = n:

<u>Solution 2.</u> Form the $n \times n$ matrix A whose rows are

 v_1, v_2, \cdots, v_n and row reduce A:

if the reduced matrix has n nonzero rows, i.e., if the rank of A is n, then **independent**;

if the reduced matrix has one or more zero rows, then **dependent**.

Solution 3. Calculate det A: If det $A \neq 0$, the vectors are **independent**. If det A = 0, the vectors are **dependent**.

• Case 2: k = n:

<u>Solution 2.</u> Form the $n \times n$ matrix A whose rows are

 v_1, v_2, \cdots, v_n and row reduce A:

if the reduced matrix has n nonzero rows, i.e., if the rank of A is n, then **independent**;

if the reduced matrix has one or more zero rows, then **dependent**.

Solution 3. Calculate det A: If det $A \neq 0$, the vectors are **independent**. If det A = 0, the vectors are **dependent**.

Note: If v_1, v_2, \dots, v_n is a linearly independent set of vectors in \mathbb{R}^n , then each vector in \mathbb{R}^n has a unique representation as a linear combination of v_1, v_2, \dots, v_n .

• Case 3: k < n:

(i) Form the $k \times n$ matrix A whose rows are v_1, v_2, \cdots, v_k

(ii) Row reduce A:

if the reduced matrix has k nonzero rows, set is **independent**; if it has one or more zero rows, set is **dependent**.

Equivalently, solve the system of equations

$$c_1v_1+c_2v_2+\cdots+c_kv_k=\mathbf{0}.$$

If unique solution: $c_1 = c_2 = \cdots = c_n = 0$, then **independent**; if infinitely many solutions, then **dependent**.

Example.

Consider the set $v_1 = (1, -2, 3), v_2 = (2, -3, 1), v_3 = (3, -4, -1).$ Is it dependent or independent?

Example.

1

р

Consider the set $v_1 = (1, -2, 3), v_2 = (2, -3, 1), v_3 = (3, -4, -1)$. Is it dependent or independent?

Row reduce:

$$\begin{pmatrix} 1 & -2 & 3 \\ 2 & -3 & 1 \\ 3 & -4 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -5 \\ 0 & 2 & -10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -5 \\ 0 & 0 & 0 \end{pmatrix}$$

This shows that the set is **dependent**.

It also shows that row 3 is a linear combination of row 1 and and row 2; hence, the vector equation

$$c_1v_1 + c_2v_2 + c_3v_3 = \mathbf{O}$$

has infinitely many non-zero solutions.

Example. Consider the vectors in \mathbb{R}^4 $v_1 = (1, -1, 2, 1), \quad v_2 = (3, 2, 0, -1), \quad v_3 = (-1, -4, 4, 3),$ $v_4 = (2, 3, -2, -2)$ a. Is the set $\{v_1, v_2, v_3, v_4\}$ dependent or independent?

b. If dependent, what is the maximum number of independent vectors?

Example. Consider the vectors in \mathbb{R}^4 $v_1 = (1, -1, 2, 1), \quad v_2 = (3, 2, 0, -1), \quad v_3 = (-1, -4, 4, 3),$ $v_4 = (2, 3, -2, -2)$ a. Is the set $\{v_1, v_2, v_3, v_4\}$ dependent or independent?

b. If dependent, what is the maximum number of independent vectors? Row reduce:

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ 3 & 2 & 0 & -1 \\ -1 & 4 & 4 & 3 \\ 2 & 3 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 5 & -6 & -4 \\ 0 & -5 & 6 & 4 \\ 0 & 5 & -6 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 5 & -6 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Example. Consider the vectors in \mathbb{R}^4 $v_1 = (1, -1, 2, 1), \quad v_2 = (3, 2, 0, -1), \quad v_3 = (-1, -4, 4, 3),$ $v_4 = (2, 3, -2, -2)$ a. Is the set $\{v_1, v_2, v_3, v_4\}$ dependent or independent?

b. If dependent, what is the maximum number of independent vectors? Row reduce:

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ 3 & 2 & 0 & -1 \\ -1 & 4 & 4 & 3 \\ 2 & 3 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 5 & -6 & -4 \\ 0 & -5 & 6 & 4 \\ 0 & 5 & -6 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 5 & -6 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(a) Since the rank of the matrix is less than 4, then the vectors are **dependent.**

Example. Consider the vectors in \mathbb{R}^4 $v_1 = (1, -1, 2, 1), \quad v_2 = (3, 2, 0, -1), \quad v_3 = (-1, -4, 4, 3),$ $v_4 = (2, 3, -2, -2)$ a. Is the set $\{v_1, v_2, v_3, v_4\}$ dependent or independent?

b. If dependent, what is the maximum number of independent vectors? Row reduce:

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ 3 & 2 & 0 & -1 \\ -1 & 4 & 4 & 3 \\ 2 & 3 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 5 & -6 & -4 \\ 0 & -5 & 6 & 4 \\ 0 & 5 & -6 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 5 & -6 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(a) Since the rank of the matrix is less than 4, then the vectors are **dependent.**

(b) Since the rank of the matrix is 2, then there are **2 linearly independent vectors**.

General Result

Remark

Given a set of vectors $\{v_1, v_2, \ldots, v_k\}$ in \mathbb{R}^n . Form the matrix V with v_1, v_2, \ldots as rows and row reduce.

If you get a row of 0's, the vectors are linearly dependent and at least one of the vectors is a linear combination of the other vectors. If you get no rows of 0's, the vectors are linearly independent.