Math 3321

Homogeneous Systems of Linear Differential Equations. Part I

University of Houston

Lecture 23

2 Solution of Homogeneous Systems with Constant Coefficients

Let $a_{11}(t)$, $a_{12}(t)$, ..., $a_{nn}(t)$, and $b_1(t)$, $b_2(t)$, ..., $b_n(t)$ be continuous functions on the interval I.

Let $a_{11}(t)$, $a_{12}(t)$, ..., $a_{nn}(t)$, and $b_1(t)$, $b_2(t)$, ..., $b_n(t)$ be continuous functions on the interval I.

The system of n first-order linear differential equations

$$\begin{aligned} x_1' &= a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t) \\ x_2' &= a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t) \\ \vdots & \vdots \\ x_n' &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + b_n(t) \end{aligned}$$

is called a first-order linear differential system.

Let $a_{11}(t)$, $a_{12}(t)$, ..., $a_{nn}(t)$, and $b_1(t)$, $b_2(t)$, ..., $b_n(t)$ be continuous functions on the interval I.

The system of n first-order linear differential equations

$$\begin{aligned} x_1' &= a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t) \\ x_2' &= a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t) \\ \vdots & \vdots \\ x_n' &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + b_n(t) \end{aligned}$$

is called a first-order linear differential system.

The system is **homogeneous** if

$$b_1(t) \equiv b_2(t) \equiv \cdots \equiv b_n(t) \equiv 0$$
 on I .

It is **nonhomogeneous** if the functions $b_i(t)$ are not all identically zero on I.

University of Houston

 Set

$$A(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

and

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad b(t) = \begin{pmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_n(t) \end{pmatrix}.$$

 Set

$$A(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

and

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad b(t) = \begin{pmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_n(t) \end{pmatrix}.$$

The first-order linear differential system can be written in the **vector-matrix form**

$$x' = A(t) x + b(t). \tag{S}$$

A homogeneous systems of linear differential equations has the form

$$\begin{aligned} x'_1 &= a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n(t) \\ x'_2 &= a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n(t) \\ \vdots & \vdots \\ x'_n &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n(t) \end{aligned}$$

or, in matrix form,

$$x' = A(t)x. \tag{H}$$

A homogeneous systems of linear differential equations has the form

$$\begin{aligned} x'_1 &= a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n(t) \\ x'_2 &= a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n(t) \\ \vdots & \vdots \\ x'_n &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n(t) \end{aligned}$$

or, in matrix form,

$$x' = A(t)x.$$
 (H)
Note: The zero vector $z(t) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ is a solution of (H).
This solution is called the **trivial solution**

ution is called the **trivial solu**

The following results generalize properties of standard homogeneous linear differential equations

The following results generalize properties of standard homogeneous linear differential equations

Theorem

If x_1 and x_2 are solutions of (H), then $u = x_1 + x_2$ is also a solution of (H); the sum of any two solutions of (H) is a solution of (H).

The following results generalize properties of standard homogeneous linear differential equations

Theorem

If x_1 and x_2 are solutions of (H), then $u = x_1 + x_2$ is also a solution of (H); the sum of any two solutions of (H) is a solution of (H).

Theorem

If x is a solution of (H) and a is any real number, then u = a x is also a solution of (H); any constant multiple of a solution of (H) is a solution of (H).

More generally, we have the following result.

Theorem

If x_1, x_2, \ldots, x_k are solutions of (H), and if C_1, C_2, \ldots, C_k are real numbers, then

$$C_1x_1 + C_2x_2 + \dots + C_kx_k$$

is a solution of (H); any linear combination of solutions of (H) is also a solution of (H).

Recall that a set of vectors $w_1(t), w_2(t), \ldots, w_m(t)$ is linearly dependent on I if there exist m real numbers c_1, c_2, \ldots, c_m , not all zero, such that

$$c_1 w_1(t) + c_2 w_2(t) + \dots + c_m w_m(t) \equiv 0$$
 on *I*.

Recall that a set of vectors $w_1(t), w_2(t), \ldots, w_m(t)$ is linearly dependent on I if there exist m real numbers c_1, c_2, \ldots, c_m , not all zero, such that

$$c_1 w_1(t) + c_2 w_2(t) + \dots + c_m w_m(t) \equiv 0$$
 on *I*.

Theorem

Let $v_1(t)$, $v_2(t)$, ..., $v_k(t)$ be k, k-component vector functions defined on an interval I. If the vectors are **linearly dependent**, then the determinant

$$W(t) = \begin{vmatrix} v_{11} & v_{12} & \cdots & v_{1k} \\ v_{21} & v_{22} & \cdots & v_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ v_{k1} & v_{k2} & \cdots & v_{kk} \end{vmatrix} \equiv 0 \quad \text{on } I.$$

That is, the determinant is 0 for all $t \in I$.

University of Houston

8 / 29

Equivalently, we have the following result.

Equivalently, we have the following result.

Theorem

Let $v_1(t)$, $v_2(t)$, ..., $v_k(t)$ be k, k-component vector functions defined on an interval I. The vectors are **linearly independent** if the determinant

$$W(t) = \begin{vmatrix} v_{11} & v_{12} & \cdots & v_{1k} \\ v_{21} & v_{22} & \cdots & v_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ v_{k1} & v_{k2} & \cdots & v_{kk} \end{vmatrix} \neq 0$$

for at least one $t \in I$.

Definition

The determinant

$$W(t) = \begin{vmatrix} v_{11} & v_{12} & \cdots & v_{1k} \\ v_{21} & v_{22} & \cdots & v_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ v_{k1} & v_{k2} & \cdots & v_{kk} \end{vmatrix}$$

is called the **Wronskian** of the vector functions v_1, v_2, \ldots, v_k .

We have the following result about the solution of homogeneous systems of linear differential equations.

We have the following result about the solution of homogeneous systems of linear differential equations.

Proposition

Let x_1, x_2, \ldots, x_n be *n* solutions system of *n* equations (H). Exactly one of the following holds:

- 1. $W(x_1, x_2, \ldots, x_n)(t) \equiv 0$ on I and the solutions are linearly dependent.
- 2. $W(x_1, x_2, \ldots, x_n)(t) \neq 0$ for all $t \in I$ and the solutions are linearly independent.

The last Proposition implies the following theorem

The last Proposition implies the following theorem

Theorem

Let x_1, x_2, \ldots, x_n be *n* linearly independent solutions of (H). Let *u* be *any* solution of (H). Then there exists a unique set of constants C_1, C_2, \ldots, C_n such that

$$u = C_1 x_1 + C_2 x_2 + \dots + C_n x_n.$$

That is, every solution of (H) can be written as a unique linear combination of x_1, x_2, \ldots, x_n .

A set of n linearly independent solutions of the Homogeneous Systems of Linear Differential Equations (H)

 x_1, x_2, \ldots, x_n

is called a **fundamental set of solutions**.

A set of n linearly independent solutions of the Homogeneous Systems of Linear Differential Equations (H)

 x_1, x_2, \ldots, x_n

is called a **fundamental set of solutions**.

A fundamental set is also called a **solution basis** for (H).

A set of n linearly independent solutions of the Homogeneous Systems of Linear Differential Equations (H)

 x_1, x_2, \ldots, x_n

is called a **fundamental set of solutions**.

A fundamental set is also called a **solution basis** for (H).

In this case,

$$x = C_1 x_1 + C_2 x_2 + \dots + C_n x_n,$$

where C_1, C_2, \ldots, C_n are arbitrary constants, is the **general solution** of (H).

Example: $x_1 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}$ and $x_2 = \begin{pmatrix} e^{3t} \\ e^{3t} \end{pmatrix}$ are solutions of the homogeneous systems of linear differential equations

$$x' = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix} x \quad (\text{Verify})$$

Example: $x_1 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}$ and $x_2 = \begin{pmatrix} e^{3t} \\ e^{3t} \end{pmatrix}$ are solutions of the homogeneous systems of linear differential equations

$$x' = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix} x \quad (\text{Verify})$$

Since $W(x_1.x_2) = \begin{vmatrix} e^{2t} & e^{3t} \\ 2e^{2t} & e^{3t} \end{vmatrix} = -e^{5t} \neq 0$, then $\left\{ \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}, \begin{pmatrix} e^{3t} \\ e^{3t} \end{pmatrix} \right\}$ is a fundamental set of solutions and

$$x(t) = C_1 \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix} + C_2 \begin{pmatrix} e^{3t} \\ e^{3t} \end{pmatrix}$$

is the general solution of the system.

University of Houston

Here we consider homogeneous systems of linear differential equations with constant coefficients

$$\begin{aligned} x'_1 &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x'_2 &= a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ - &- &- \\ x'_n &= a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{aligned}$$

where $a_{11}, a_{12}, \ldots, a_{nn}$ are constants.

The same system is written in vector-matrix form as

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}' = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

or as

$$x' = Ax.$$

Theorem

Consider the homogeneous system with constant coefficients

$$x' = Ax$$

If λ is an eigenvalue of A and v is a corresponding eigenvector, then

$$x = e^{\lambda t} v$$

is a solution.

Theorem

Consider the homogeneous system with constant coefficients

$$x' = Ax$$

If λ is an eigenvalue of A and v is a corresponding eigenvector, then

$$x = e^{\lambda t} v$$

is a solution.

Proof:

Let λ be an eigenvalue of A with corresponding eigenvector v. Set $x = e^{\lambda t} v$

Theorem

Consider the homogeneous system with constant coefficients

x' = Ax

Theorem

Consider the homogeneous system with constant coefficients

$$x' = Ax$$

If $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct eigenvalues of A with corresponding eigenvectors v_1, v_2, \dots, v_k , then

$$x_1 = e^{\lambda_1 t} v_1, \ x_2 = e^{\lambda_2 t} v_2, \ \cdots, x_k = e^{\lambda_k t} v_k$$

are linearly independent solutions of the system.

Corollary

Consider the homogeneous system with constant coefficients

$$x' = Ax$$

Corollary

Consider the homogeneous system with constant coefficients

$$x' = Ax$$

If $\lambda_1, \lambda_2, \dots, \lambda_n$ are distinct eigenvalues of A with corresponding eigenvectors v_1, v_2, \dots, v_n , then

$$x_1 = e^{\lambda_1 t} v_1, \ x_2 = e^{\lambda_2 t} v_2, \ \cdots, x_n = e^{\lambda_n t} v_n$$

is a fundamental set of solutions of the system and

$$x(t) = C_1 x_1 + C_2 x_2 + \dots + C_n x_n$$

is the general solution.

Example 1: Find the general solution of

$$x' = \left(\begin{array}{cc} 2 & 2\\ 2 & -1 \end{array}\right) x.$$

Example 1: Find the general solution of

$$x' = \left(\begin{array}{cc} 2 & 2\\ 2 & -1 \end{array}\right) x.$$

Step 1. Find the eigenvalues of A:

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix}$$
$$= \lambda^2 - \lambda - 6.$$

Example 1: Find the general solution of

$$x' = \left(\begin{array}{cc} 2 & 2\\ 2 & -1 \end{array}\right) x.$$

Step 1. Find the eigenvalues of A:

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix}$$
$$= \lambda^2 - \lambda - 6.$$

Characteristic equation:

$$\lambda^{2} - \lambda - 6 = (\lambda - 3)(\lambda + 2) = 0.$$

Example 1: Find the general solution of

$$x' = \left(\begin{array}{cc} 2 & 2\\ 2 & -1 \end{array}\right) x.$$

Step 1. Find the eigenvalues of A:

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix}$$
$$= \lambda^2 - \lambda - 6.$$

Characteristic equation:

$$\lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2) = 0.$$

Eigenvalues: $\lambda_1 = 3, \ \lambda_2 = -2.$

Step 2. Find the eigenvectors: $A - \lambda I = \begin{pmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{pmatrix}$

Step 2. Find the eigenvectors: $A - \lambda I = \begin{pmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{pmatrix}$ For $\lambda_1 = 3$, solve $(A - \lambda_1 I)u_1 = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}u_1 = 0$ We find the family of eigenvectors $u_1 = \alpha \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Step 2. Find the eigenvectors: $A - \lambda I = \begin{pmatrix} 2 - \lambda & 2\\ 2 & -1 - \lambda \end{pmatrix}$ For $\lambda_1 = 3$, solve $(A - \lambda_1 I)u_1 = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}u_1 = 0$ We find the family of eigenvectors $u_1 = \alpha \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ For $\lambda_2 = -2$ solve $(A - \lambda_2 I)u_2 = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} u_2 = 0$ We find the family of eigenvectors $u_2 = \beta \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

Hence we find the fundamental set of solution vectors:

$$\left\{ x_1 = e^{3t} \begin{pmatrix} 2\\1 \end{pmatrix}, \quad x_2 = e^{-2t} \begin{pmatrix} -1\\2 \end{pmatrix} \right\}$$

Hence we find the fundamental set of solution vectors:

$$\left\{ x_1 = e^{3t} \begin{pmatrix} 2\\1 \end{pmatrix}, \quad x_2 = e^{-2t} \begin{pmatrix} -1\\2 \end{pmatrix} \right\}$$

The general solution of the system is:

$$x = C_1 e^{3t} \begin{pmatrix} 2\\1 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} -1\\2 \end{pmatrix}.$$

Example 2: Find the general solution of
$$x' = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 3 & 2 \\ 4 & -1 & -2 \end{pmatrix} x$$
.

Example 2: Find the general solution of $x' = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 3 & 2 \\ 4 & -1 & -2 \end{pmatrix} x$.

Step 1. Find the eigenvalues of A:

$$det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ -2 & 3 - \lambda & 2 \\ 4 & -1 & -2 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + 4\lambda^2 - \lambda - 6.$$

Example 2: Find the general solution of $x' = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 3 & 2 \\ 4 & -1 & -2 \end{pmatrix} x$.

Step 1. Find the eigenvalues of A:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ -2 & 3 - \lambda & 2 \\ 4 & -1 & -2 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + 4\lambda^2 - \lambda - 6.$$

Characteristic equation:

$$\lambda^{3} - 4\lambda^{2} + \lambda + 6 = (\lambda - 3)(\lambda - 2)(\lambda + 1) = 0.$$

Example 2: Find the general solution of $x' = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 3 & 2 \\ 4 & -1 & -2 \end{pmatrix} x$.

Step 1. Find the eigenvalues of A:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ -2 & 3 - \lambda & 2 \\ 4 & -1 & -2 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + 4\lambda^2 - \lambda - 6.$$

Characteristic equation:

$$\lambda^{3} - 4\lambda^{2} + \lambda + 6 = (\lambda - 3)(\lambda - 2)(\lambda + 1) = 0.$$

Eigenvalues:

$$\lambda_1 = 3, \quad \lambda_2 = 2, \quad \lambda_3 = -1.$$

University of Houston

Step 2. Find the eigenvectors: $A - \lambda I = \begin{pmatrix} 3 - \lambda & -1 & -1 \\ -2 & 3 - \lambda & 2 \\ 4 & -1 & -2 - \lambda \end{pmatrix}$

Step 2. Find the eigenvectors: $A - \lambda I = \begin{pmatrix} 3 - \lambda & -1 & -1 \\ -2 & 3 - \lambda & 2 \\ 4 & -1 & -2 - \lambda \end{pmatrix}$ For $\lambda_1 = 3$, we solve $(A - \lambda_1 I)v_1 = \begin{pmatrix} 0 & -1 & -1 \\ -2 & 0 & 2 \\ 4 & -1 & 5 \end{pmatrix}v_1 = 0$ This gives the family of eigenvectors $v_1 = \alpha \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$.

Similarly,

For
$$\lambda_2 = 2$$
, we solve $(A - \lambda_2 I)v_2 = \begin{pmatrix} 1 & -1 & -1 \\ -2 & 1 & 2 \\ 4 & -1 & -4 \end{pmatrix}v_2 = 0$
This gives the family of eigenvectors $v_2 = \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Similarly,

For
$$\lambda_2 = 2$$
, we solve $(A - \lambda_2 I)v_2 = \begin{pmatrix} 1 & -1 & -1 \\ -2 & 1 & 2 \\ 4 & -1 & -4 \end{pmatrix}v_2 = 0$
This gives the family of eigenvectors $v_2 = \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

For
$$\lambda_3 = -1$$
, we solve $(A - \lambda_3 I)v_3 = \begin{pmatrix} 4 & -1 & -1 \\ -2 & 4 & 2 \\ 4 & -1 & -1 \end{pmatrix}v_3 = 0$
This gives the family of eigenvectors $v_3 = \gamma \begin{pmatrix} 1 \\ -3 \\ 7 \end{pmatrix}$.

Hence we find the fundamental set of solution vectors:

$$x_1 = e^{3t} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}, \quad x_2 = e^{2t} \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix},$$
$$x_3 = e^{-t} \begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix}.$$

Hence we find the fundamental set of solution vectors:

$$x_1 = e^{3t} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}, \quad x_2 = e^{2t} \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix},$$
$$x_3 = e^{-t} \begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix}.$$

The general solution of the system is:

$$x = C_1 e^{3t} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} + C_2 e^t \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} + C_3 e^{-t} \begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix}$$

•

Example 3: Find the solution of the initial-value problem

$$x' = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 3 & 2 \\ 4 & -1 & -2 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}.$$

Example 3: Find the solution of the initial-value problem

$$x' = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 3 & 2 \\ 4 & -1 & -2 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}.$$

We found above that the general solution of the system is:

$$x = C_1 e^{3t} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} + C_2 e^t \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} + C_3 e^{-t} \begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix}$$

To find the solution satisfying the initial condition, we set t = 0 and solve

$$C_{1}\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} + C_{2}\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} + C_{3}\begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix} = \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1\\ -3\\ 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1\\ -1 & 0 & -3\\ 1 & 1 & 7 \end{pmatrix} \begin{pmatrix} C_{1}\\ C_{2}\\ C_{3} \end{pmatrix} = \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}.$$

or

To find the solution satisfying the initial condition, we set t = 0 and solve

$$C_{1}\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} + C_{2}\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} + C_{3}\begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix} = \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix} \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}.$$

or

Hence we need to solve an algebraic linear system

To find the solution satisfying the initial condition, we set t = 0 and solve

$$C_{1}\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} + C_{2}\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} + C_{3}\begin{pmatrix} 1\\ -3\\ 7 \end{pmatrix} = \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix} \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}.$$

 or

Hence we need to solve an algebraic linear system

We write the augmented matrix:

By Gaussian elimination we get

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ -1 & 0 & -3 & | & -3 \\ 1 & 1 & 7 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & -2 & | & -2 \\ 0 & 0 & 6 & | & 0 \end{pmatrix}$$

By Gaussian elimination we get
$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ -1 & 0 & -3 & | & -3 \\ 1 & 1 & 7 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & -2 & | & -2 \\ 0 & 0 & 6 & | & 0 \end{pmatrix}$$

This gives the solution $C_3 = 0, C_2 = -2, C_1 = 3.$

By Gaussian elimination we get
$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ -1 & 0 & -3 & | & -3 \\ 1 & 1 & 7 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & -2 & | & -2 \\ 0 & 0 & 6 & | & 0 \end{pmatrix}$$

This gives the solution $C_3 = 0, C_2 = -2, C_1 = 3.$

Hence the IVP solution is

$$x = 3e^{3t} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} - 2e^{2t} \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}.$$