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3D Discrete Shearlet Transform and Video
Processing

Pooran Singh Negi and Demetrio Labate

Abstract—In this paper, we introduce a digital implementation
of the 3D shearlet transform and illustrate its application to
problems of video denoising and enhancement. The shearlet
representation is a multiscale pyramid of well-localized wave-
forms defined at various locations and orientations, which was
introduced to overcome the limitations of traditional multiscale
systems in dealing with multidimensional data. While the shearlet
approach shares the general philosophy of curvelets and sur-
facelets, it is based on a very different mathematical framework
which is derived from the theory of affine systems and uses
shearing matrices rather than rotations. This allows a natural
transition from the continuous to the digital setting and a
more flexible mathematical structure. The 3D digital shearlet
transform algorithm presented in this paper consists in a cascade
of a multiscale decomposition and a directional filtering stage.
The filters employed in this decomposition are implemented as
finite-length filters and this ensures that the transform is local
and numerically efficient. To illustrate its performance, the 3D
Discrete Shearlet Transform is applied to problems of video
denoising and enhancement, and compared against other state-of-
the-art multiscale techniques, including curvelets and surfacelets.

Index Terms—Affine systems, curvelets, denoising, shearlets,
sparsity, video processing, wavelets.

I. INTRODUCTION
The shearlet representation, originally introduced in [1], [2],

has emerged in recent years as one of the most effective frame-
works for the analysis and processing of multidimensional
data. This representation is part of a new class of multiscale
methods introduced during the last 10 years with the goal
to overcome the limitations of wavelets and other traditional
methods through a framework which combines the standard
multiscale decomposition and the ability to efficiently capture
anisotropic features. Other notable such methods include the
curvelets [3] and the contourlets [4]. Indeed, both curvelets
and shearlets have been shown to form Parseval frames of
L2(R2) which are (nearly) optimally sparse in the class of
cartoon-like images, a standard model for images with edges
[3], [5]. Specifically, if fM is the M term approximation
obtained by selecting the M largest coefficients in the shearlet
or curvelet expansion of a cartoon-like image f , then the
approximation error satisfies the asymptotic estimate

||f − fSM ||22 ≍M−2(logM)3, as M → ∞.
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Up to the log-like factor, this is the optimal approximation rate,
in the sense that no other orthonormal systems or even frames
can achieve a rate better than M−2. By contrast, wavelet
approximations can only achieve a rate M−1 for functions in
this class [3]. Concerning the topic of sparse approximations, it
is important to recall that the relevance of this notion goes far
beyond the applications to compression. In fact, constructing
sparse representations for data in a certain class entails the
intimate understanding of their true nature and structure, so
that sparse representations also provide the most effective tool
for tasks such as feature extraction and pattern recognition [6],
[7].

Even though shearlets and curvelets share the same phi-
losophy of combining multiscale and directional analysis and
have similar sparsity properties, they rely on a rather different
mathematical structure. In particular, the directionality of the
shearlet systems is controlled through the use of shearing ma-
trices rather than rotations, which are employed by curvelets.
This offers the advantage of preserving the discrete integer
lattice and enables a natural transition from the continuous to
the discrete setting. The contourlets, on the other hand, are a
purely discrete framework, with the emphasis in the numerical
implementation rather than the continuous construction. The
special properties of the shearlet approach have been success-
fully exploited in several imaging application. For example, the
combination of multiscale and directional decomposition using
shearing transformations is used to design powerful algorithms
for image denoising in [7], [8]; the directional selectivity of the
shearlet representation is exploited to derive very competitive
algorithms for edge detection and analysis in [9]; the sparsity
of the shearlet representation is used to derive a very effective
algorithm for the regularized inversion of the Radon transform
in [10]. We also recall that a recent construction of compactly
supported shearlets appears to be promising in PDE’s and other
applications [11], [12].

While directional multiscale systems such as curvelets and
shearlets have emerged several years ago, only very recently
the analysis of sparse representations using these representa-
tions has been extended beyond dimension 2. This extension
is of great interest since many applications from areas such
as medical diagnostic, video surveillance and seismic imaging
require to process 3D data sets, and sparse 3D representations
are very useful for the design of improved algorithms for data
analysis and processing.

Notice that the formal extension of the construction of
multiscale directional systems from 2D to 3D is not the
major challenge. In fact, 3D versions of curvelets have been
introduced in [13], with the focus being on their discrete
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Fig. 1. From left to right, the figure illustrates the pyramidal regions P1, P2 and P3 in the frequency space R̂3.

implementations. Another discrete method is based on the
system of surfacelets that were introduced as 3D extensions
of contourlets in [14]. However, the analysis of the sparsity
properties of curvelets or shearlets (or any other similar
systems) in the 3D setting does not follow directly from the
2D argument. Only very recently [15], [16] it was shown
by one of the authors in collaboration with K. Guo that 3D
shearlet representations exhibit essentially optimal approxima-
tion properties for piecewise smooth functions of 3 variables.
Namely, for 3D functions f which are smooth away from
discontinuities along C2 surfaces, it was shown that the M
term approximation fSM obtained by selecting the N largest
coefficients in the 3D Parseval frame shearlet expansion of f
satisfies the asymptotic estimate

||f − fSM ||22 ≍M−1(logM)2, as M → ∞. (1)

Up to the logarithmic factor, this is the optimal decay rate and
significantly outperforms wavelet approximations, which only
yield a M−1/2 rate for functions in this class.

It is useful to recall that optimal approximation properties
for a large class of images can also be achieved using adaptive
methods by using, for example, the bandelets [17] or the
grouplets [18]. The shearlet approach, on the other hand,
in non-adaptive. Remarkably, shearlets are able to achieve
approximation properties which are essentially as good as an
adaptive approach when dealing with the class of cartoon-like
images.

The objective of the paper is to present a numerical im-
plementation of the 3D Discrete Shearlet Transform which
takes advantage of the sparsity properties of the corresponding
continuous representation. To illustrate the performance of
this new numerical algorithm, we consider a number of
applications to problems of video denoising and enhancement.
As it will become apparent from the results presented below,
not only our video processing algorithm based on the 3D
Discrete Shearlet Transform outperforms those based on the
corresponding 2D Discrete Shearlet Transform (when applied
“slice by slice”), but it is also extremely competitive against
similar algorithms based on 3D curvelets and surfacelets.

II. SHEARLET REPRESENTATIONS

The shearlet approach provides a general method for the
construction of function systems made up of functions ranging
not only at various scales and locations, but also according

to various orthogonal transformations controlled by shearing
matrices.

In dimension D = 3, a shearlet system is obtained by
appropriately combining 3 systems of functions associated
with the pyramidal regions

P1 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ2

ξ1
| ≤ 1, |ξ3

ξ1
| ≤ 1

}
,

P2 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ1

ξ2
| < 1, |ξ3

ξ2
| ≤ 1

}
,

P3 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ1

ξ3
| < 1, |ξ2

ξ3
| < 1

}
,

in which the Fourier space R̂3 is partitioned (see Fig. 1).
To define such systems, let ϕ be a C∞ univariate function

such that 0 ≤ ϕ̂ ≤ 1, ϕ̂ = 1 on [− 1
16 ,

1
16 ] and ϕ̂ = 0 outside the

interval [−1
8 ,

1
8 ]. That is, ϕ is the scaling function of a Meyer

wavelet, rescaled so that its frequency support is contained the
interval [− 1

8 ,
1
8 ]. For ξ = (ξ1, ξ2, ξ3) ∈ R̂3, define

Φ̂(ξ) = Φ̂(ξ1, ξ2, ξ3) = ϕ̂(ξ1) ϕ̂(ξ2) ϕ̂(ξ3) (2)

and let W (ξ) =

√
Φ̂2(2−2ξ)− Φ̂2(ξ). It follows that

Φ̂2(ξ) +
∑
j≥0

W 2(2−2jξ) = 1 for ξ ∈ R3. (3)

Notice that each function Wj = W (2−2j ·), j ≥ 0, is
supported inside the Cartesian corona

[−22j−1, 22j−1]3 \ [−22j−4, 22j−4]3 ⊂ R̂3,

and the functions W 2
j , j ≥ 0, produce a smooth tiling of R̂3.

Next, let V ∈ C∞(R) be such that supp V ⊂ [−1, 1] and

|V (u− 1)|2 + |V (u)|2 + |V (u+1)|2 = 1 for |u| ≤ 1. (4)

In addition, we that V (0) = 1 and that V (n)(0) = 0 for all
n ≥ 1. It was shown in [5] that there are several examples of
functions satisfying these properties. It follows from equation
(4) that, for any j ≥ 0,

2j∑
m=−2j

|V (2j u−m)|2 = 1, for |u| ≤ 1. (5)
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For d = 1, 2, 3, ℓ = (ℓ1, ℓ2) ∈ Z2, the 3D shearlet systems
associated with the pyramidal regions Pd are defined as the
collections

{ψ(d)
j,ℓ,k : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3}, (6)

where

ψ̂
(d)
j,ℓ,k(ξ) = | detA(d)|−

j
2 W (2−2jξ)F(d)(ξA

−j
(d)
B

[−ℓ]
(d)

) e
2πiξA

−j
(d)

B
[−ℓ]
(d)

k
,

(7)
F(1)(ξ1, ξ2, ξ3) = V ( ξ2ξ1 )V ( ξ3ξ1 ), F(2)(ξ1, ξ2, ξ3) =

V ( ξ1ξ2 )V ( ξ3ξ2 ), F(3)(ξ1, ξ2, ξ3) = V ( ξ1ξ3 )V ( ξ2ξ3 ), the anisotropic
dilation matrices A(d) are given by

A(1) =

4 0 0
0 2 0
0 0 2

, A(2) =

2 0 0
0 4 0
0 0 2

, A(3) =

2 0 0
0 2 0
0 0 4

,
and the shear matrices are defined by

B
[ℓ]
(1)

=

1 ℓ1 ℓ2
0 1 0
0 0 1

, B[ℓ]
(2)

=

 1 0 0
ℓ1 1 ℓ2
0 0 1

, B[ℓ]
(3)

=

 1 0 0
0 1 0
ℓ1 ℓ2 1

.
Due to the assumptions on W and v, the elements of the

system of shearlets (6) are well localized and bandlimited. In
particular, the shearlets ψ̂(1)

j,ℓ,k(ξ) can be written more explicitly
as

ψ̂
(1)
j,ℓ,k(ξ) = 2−2j W (2−2jξ)V (2j ξ2

ξ1
−ℓ1)V (2j ξ3

ξ1
−ℓ2) e

2πiξA
−j
(1)

B
[−ℓ]
(1)

k
,

(8)
showing that their supports are contained inside the trape-

zoidal regions

{(ξ1, ξ2, ξ3) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1],

|ξ2
ξ1

− ℓ12
−j | ≤ 2−j , |ξ3

ξ1
− ℓ22

−j | ≤ 2−j}.

This expression shows that these support regions become
increasingly more elongated at fine scales, due to the action of
the anisotropic dilation matrices Aj

(1), with the orientations of
these regions controlled by the shearing parameters ℓ1, ℓ2. A
typical support region is illustrated in Fig. 2. Similar properties
hold for the elements associated with the regions P2 and P3.

A Parseval frame of shearlets for L2(R3) is obtained by
using an appropriate combination of the systems of shearlets
associated with the 3 pyramidal regions Pd, d = 1, 2, 3,
together with a coarse scale system, which will take care of
the low frequency region. In order to build such system in a
way that all its elements are smooth in the Fourier domain,
one has to appropriately define the elements of the shearlet
systems overlapping the boundaries of the pyramidal regions
Pd in the Fourier domain.

Hence, we define the 3D shearlet systems for L2(R3) as the
collections{

ψ̃−1,k : k ∈ Z3
}∪∪{

ψ̃j,ℓ,k : j ≥ 0, ℓ1, ℓ2 = ±2j , k ∈ Z3
}

{
ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , |ℓ2| ≤ 2j , k ∈ Z3, d = 1, 2, 3

}
(9)

consisting of:
• the coarse-scale shearlets {ψ̃−1,k = Φ(· − k) : k ∈ Z3},

where Φ is given by (2);
• the interior shearlets {ψ̃j,ℓ,k,d = ψ

(d)
j,ℓ,k : j ≥ 0, |ℓ1||ℓ2| <

2j , k ∈ Z3, d = 1, 2, 3}, where ψ(d)
j,ℓ,k are given by (7);
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Fig. 2. Frequency support of a representative shearlet function ψj,ℓ,k , inside
the pyramidal region P1. The orientation of the support region is controlled
by ℓ = (ℓ1, ℓ2); its shape is becoming more elongated as j increases (j = 4
in this plot).

• the boundary shearlets {ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| ≤ 2j , ℓ2 =
±2j , k ∈ Z3, d = 1, 2, 3}.

These boundary shearlets are obtained by joining together the
functions ψ(1)

j,ℓ,k, ψ(2)
j,ℓ,k and ψ(3)

j,ℓ,k, for ℓ1 = ±2j or ℓ2 = ±2j ,
after they have been restricted to their respective pyramidal
regions. For example (see [19] for all cases and additional
detail), when ℓ1 = ±2j , |ℓ2| < 2j , we define

(ψ̃j,ℓ1,ℓ2,k,1)
∧(ξ) (10)

=

Γj,ℓ,k(ξ)V
(
2j ξ2

ξ1
− ℓ1

)
V
(
2j ξ3

ξ1
− ℓ2

)
, if ξ ∈ P1,

Γj,ℓ,k(ξ)V
(
2j ξ1

ξ2
− ℓ1

)
V
(
2j ξ3

ξ2
− ℓ2

)
, if ξ ∈ P2,

where

Γj,ℓ,k(ξ) = 2−2j W (2−2jξ) e
2πiξA−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
.

When ℓ1, ℓ2 = ±2j , we define

(ψ̃j,ℓ1,ℓ2,k)
∧(ξ) (11)

=


Γj,ℓ,k(ξ)V

(
2j ξ2

ξ1
− ℓ1

)
V
(
2j ξ3

ξ1
− ℓ2

)
, if ξ ∈ P1,

Γj,ℓ,k(ξ)V
(
2j ξ1

ξ2
− ℓ1

)
V
(
2j ξ3

ξ2
− ℓ2

)
, if ξ ∈ P2,

Γj,ℓ,k(ξ)V
(
2j ξ1

ξ3
− ℓ1

)
V
(
2j ξ2

ξ3
− ℓ2

)
, if ξ ∈ P3.

Notice that, thanks on the assumptions on W and V , the
piecewise defined boundary shearlet functions are smooth and
compactly supported in the Fourier domain (see [19], [16]
for additional detail). In addition, the system of shearlets (9)
is a Parseval frame. To state this result, let us introduce the
following compact notation to write the 3D shearlet system
(9) as

{ψ̃µ, µ ∈ M}, (12)

where M = MC ∪ MI ∪ MB are the indices associated
with the coarse-scale shearlets, the interior shearlets and the
boundary shearlets given by

• MC = {µ = (j, k) : j = −1, k ∈ Z3};
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• MI = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1|, |ℓ2| < 2j , k ∈
Z3, d = 1, 2, 3};

• MB = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1| ≤ 2j , ℓ2 ±
2j , k ∈ Z3, d = 1, 2, 3}.

Hence we have the following result whose proof is found
in [19]:

Theorem 1: The 3D system of shearlets (12) is a Parseval
frame of L2(R3). That is, for any f ∈ L2(R3),∑

µ∈M

|⟨f, ψ̃µ⟩|2 = ∥f∥2.

The mapping from f ∈ L2(R3) into the elements ⟨f, ψ̃µ⟩,
µ ∈ M, is called the 3D shearlet transform.

As mentioned above, it is proved in [15], [16] that the
3D Parseval frame of shearlets {ψ̃µ, µ ∈ M} achieves the
essentially optimal approximation rate (1) for functions of
3 variables which are C2 regular away from discontinuities
along C2 surfaces.

III. 3D DISCRETE SHEARLET TRANSFORM (3D DSHT)

In this section, we present a digital implementation of the
3D shearlet transform introduced above. Following essentially
the same architecture as the algorithm of the 2D Discrete
Shearlet Transform in [8], this new implementation can be
described as the cascade of a multiscale decomposition, based
on a version of the Laplacian pyramid filter, followed by a
stage of directional filtering. The main novelty of the 3D
approach consists in the design of the directional filtering
stage, which attempts to faithfully reproduce the frequency
decomposition provided by the corresponding mathematical
transform by using a method based on the pseudo-spherical
Fourier transform.

Let us start by expressing the elements of the shearlet
system in a form that is more convenient for deriving an
algorithmic implementation of the shearlet transform. For
ξ = (ξ1, ξ2, ξ3) in R̂3, j ≥ 0, and −2j ≤ ℓ1, ℓ2 ≤ 2j , we
define the directional windowing functions

U
(1)
j,ℓ (ξ) =

V (2j ξ2
ξ1

− ℓ1)V (2j ξ3
ξ1

− ℓ2) if |ℓ1|, |ℓ2| < 2j ;

V (2j ξ2
ξ1

− ℓ1)V (2j ξ3
ξ1

− ℓ2)XP1 (ξ)

+V (2j ξ1
ξ2

− ℓ1)V (2j ξ3
ξ2

− ℓ2)XP2
(ξ) if ℓ1 = ±2j , |ℓ2| < 2j ;

V (2j ξ2
ξ1

− ℓ1)V (2j ξ3
ξ1

− ℓ2)XP1 (ξ)

+V (2j ξ1
ξ2

− ℓ1)V (2j ξ3
ξ2

− ℓ2)XP2 (ξ)

+V (2j ξ1
ξ3

− ℓ1)V (2j ξ2
ξ3

− ℓ2)XP3 (ξ) if ℓ1, ℓ2 = ±2j .

Notice that only the elements U (1)
j,ℓ with indices |ℓ1|, |ℓ2| <

2j are strictly contained inside the region P1; the elements
with indices ℓ1 = ±2j or ℓ2 = ±2j are supported across P1

and some other pyramidal region. However, it is convenient to
associate this family of functions with the index 1. We define
the functions U

(2)
j,ℓ and U

(3)
j,ℓ associated with the pyramidal

regions P2 and P3 in a similar way 1. Using this notation, we
can write each element of the 3D shearlet system as

ψ̂
(d)
j,ℓ,k = 2−2j W (2−2jξ)U

(d)
j,ℓ (ξ) e

−2πiξA−j
(d)

B
[−ℓ]
d k

.

1Notice however that they do not contain the boundary term for ℓ1, ℓ2 =
±2j , which only needs to be included once.

It follows from the properties of the shearlet construction that

3∑
d=1

∑
j≥0

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

|W (2−2j(ξ)|2|U(d)
j,ℓ (ξ)|

2 = 1, (13)

for |ξ1|, |ξ2|, |ξ3| ≥ 1
8 . The (fine scale) 3D shearlet transform

of f ∈ L(R3) can be expressed as the mapping from f into
the shearlet coefficients

⟨f, ψ(d)
j,ℓ,k⟩ =

∫
R3
f̂(ξ)W (2−2jξ)U

(d)
j,ℓ (ξ) e

2πiξA
−j
(d)

B
[−ℓ]
(d)

k
dξ, (14)

where j ≥ 0, ℓ = (ℓ1, ℓ2) with |ℓ1|, |ℓ2| ≤ 2j , k ∈ Z3 and
d = 1, 2, 3.

This expression shows that the shearlet transform of f , for
j, ℓ, k and d fixed, can be computed using the following steps:

1) In the frequency domain, compute the j-th subband
decomposition of f as f̂j(ξ) = f̂(ξ)W (2−2jξ).

2) Next (still in the frequency domain), compute the
(j, ℓ, d)-th directional subband decomposition of f as
f̂j,ℓ,d(ξ) = f̂j(ξ)U

(d)
j,ℓ (ξ).

3) Compute the inverse Fourier transform. This step can
be represented as a convolution of the j-th subband
decomposition of f and the directional filter Ǔ (d)

j,ℓ , that
is, ⟨f, ψ(d)

j,ℓ,k⟩ = fj ∗ Ǔ (d)
j,ℓ (A

−j
d B−ℓ

d k).
Hence, the shearlet transform of f can be described as a
cascade of subband decomposition and directional filtering
stage.

A. 3D DShT Algorithm

The new numerical algorithm for computing the digital
values of the 3D shearlet transform, which is called 3D DShT
algorithm, will follow closely the 3 steps indicated above.

Before describing the numerical algorithm, let us recall that
a digital 3D function f is an element of ℓ2(Z3

N ), where N ∈ N,
that is, it consists of a finite array of values {f [n1, n2, n3] :
n1, n2, n2 = 0, 1, 2, . . . , N − 1}. Here and in the following,
we adopt the convention that a bracket [·, ·, ·] denotes an array
of indices whereas the standard parenthesis (·, ·, ·) denotes a
function evaluation. Given a 3D digital function f ∈ ℓ2(Z3

N ),
its Discrete Fourier Transform is given by:

f̂ [k1, k2, k3] = N− 3
2

N−1∑
n1,n2,n3=0

f [n1, n2, n3] e
(−2πi(

n1
N

k1+
n2
N

k2+
n3
N

k3))

for N
2 ≤ k1, k2, k3 < N

2 . We shall interpret the numbers
f̂ [k1, k2, k3] as samples f̂ [k1, k2, k3] = f̂(k1, k2, k3) from the
trigonometric polynomial

f̂(ξ1, ξ2, ξ3) = N− 3
2

N−1∑
n1,n2,n3=0

f [n1, n2, n3] e
(−2πi(

n1
N

ξ1+
n2
N

ξ2+
n3
N

ξ3)).

We can now proceed with the description of the implemen-
tation of the 3D DShT algorithm.

First, to calculate f̂j(ξ) in the digital domain, we perform
the computation in the DFT domain as the product of the
DFT of f and the DFT of the filters wj corresponding to the
bandpass functions W (2−2j ·). This step can be implemented
using the Laplacian pyramid algorithm [20], which results in
the decomposition of the input signal f ∈ ℓ2(Z3

N ) into a
low-pass and high-pass components. After extensive testing,
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we found that a very satisfactory performance is achieved
using the modified version of the Laplacian pyramid algorithm
developed in [14]. For the first level of the decomposition, this
algorithm downsamples the low-pass output by a non-integer
factor of 1.5 (upsampling by 2 followed by downsampling by
3) along each dimension; the high-pass output is not down-
sampled. In the subsequent decomposition stages, the low-pass
output is downsampled by 2 along each dimension and the
high-pass output is not downsampled. Although the fractional
sampling factor in the first stage makes the algorithm slightly
more redundant than the traditional Laplacian pyramid, it was
found that the added redundancy is very useful in reducing
the frequency domain aliasing (see [14] for more detail).

Next, one possible approach for computing the directional
components f̂j,ℓ,d of f̂ consists in resampling the j-th subband
component of f into a pseudo-spherical grid and applying
a two-dimensional band-pass filter. Even though this is not
the approach we will use for our numerical experiments, the
method that we will use is conceptually derived from this one.

Recall that the pseudo-spherical grid is the 3D extension
of the 2D pseudo-polar grid and is parametrized by the planes
going through the origin and their slopes. That is, the pseudo-
spherical coordinates (u, v, w) ∈ R3 are given by

(u, v, w) =


(ξ1,

ξ2
ξ1
, ξ3ξ1 ) if (ξ1, ξ2, ξ3) ∈ DC1 ,

(ξ2,
ξ1
ξ2
, ξ3ξ2 ) if (ξ1, ξ2, ξ3) ∈ DC2 ,

(ξ3,
ξ1
ξ3
, ξ2ξ3 ) if (ξ1, ξ2, ξ3) ∈ DC3 .

Using this change of variables, it follows that f̂j,ℓ,d(ξ) can be
written as

ĝj(u, v, w)U
(d)(u, 2jv − ℓ1, 2

jw − ℓ2), (15)

where ĝj(u, v, w) is the function f̂j(ξ), after the change of
variables, and U (d) = U

(d)
0,0 . Notice that U (d) does not depend

on u. For example, when d = 1, the expression (15) can be
written as

ĝj(u, v, w)V (2jv − ℓ1)V (2jw − ℓ2),

showing that the different directional components of f̂j are
obtained by simply translating the window function V in the
pseudo-spherical domain. In fact, this is a direct consequence
of using shearing matrices to control orientations and is its
main advantage with respect to rotations. As a result, the
discrete samples gj [n1, n2, n3] = gj(n1, n2, n3) are the values
of the DFT of fj [n1, n2, n3] on the pseudo-spherical grid and
they can be computed by direct reassignment or by adapting
the Pseudo-polar DFT algorithm [21], [22] to the 3D setting.
The 3D Pseudo-polar DFT evaluates the Fourier transform of
the data on the Pseudo-polar grid and is formally defined as

P̂1(f)(k, l, j) := f̂(k,− 2l

N
k,−2

2j

N
k),

P̂2(f)(k, l, j) := f̂(− 2l

N
k, k,−2

2j

N
k),

P̂3(f)(k, l, j) := f̂(− 2l

N
k,−2

2j

N
k, k),

for k = −2N
2 , · · · ,

2N
2 and l, k = −N

2 , · · · ,
N
2 .

Let {u(d)j,ℓ1,ℓ2
[n2, n3] : n2, n3 ∈ Z} be the sequence whose

DFT gives the discrete samples of the window functions
U (d)(2jv− ℓ1, 2

jw− ℓ2). For example, when d = 1, we have
that u(1)j,ℓ1,ℓ2

[k2, k3] = V (2jk2 − ℓ1)V (2jk3 − ℓ2). Then, for
fixed k1 ∈ Z, we have

F2

(
F−1

2 (ĝj) ∗ ǔ
(d)
j,ℓ1,ℓ2

[n2, n3]
)
[k1, k2, k3]

= ĝj [k1, k2, k3]u
(d)
j,ℓ1,ℓ2

[k2, k3] (16)

where F2 is the two dimensional DFT, defined as

F2(f)[k2, k3] =
1

N

N−1∑
n2,n3=0

f [n2, n3] e
(−2πi(

n2
N k2+

n3
N k3)),

for −N
2 ≤ k2, k3 <

N
2 . Equation (16) gives the algorithmic

procedure for computing the discrete samples of the right hand
side of (15). That is, the 3D shearlet coefficients (14) can
be calculated from equation (16) by computing the inverse
pseudo-spherical DFT by directly re-assembling the Cartesian
sampled values and applying the inverse 3-dimensional DFT.

In fact, the last observation suggests an alternative approach
for computing the directional components f̂j,ℓ,d of f̂ . This
approach was found to perform better and it was used to
produce the numerical results below. The main idea consists
in mapping the filters from the pseudo-spherical domain back
into the Cartesian domain and then perform a convolution
with band-passed data, similar to one of the methods used for
the 2D setting in [8]. Specifically if ϕP is the mapping from
Cartesian domain into the pseudo-spherical domain then the
3D shearlet coefficients in the Fourier domain can be expressed
as

ϕ−1
P

(
ĝj [k1, k2, k3]u

(d)
j,ℓ1,ℓ2

[k2, k3]
)
.

Following the approach in [8], this can be expressed as

ϕ−1
P (ĝj [k1, k2, k3]) ϕ

−1
P

(
δ̂P [k1, k2, k3]u

(d)
j,ℓ1,ℓ2

[k2, k3]
)
,

where δ̂P is the DFT of the (discrete) delta distribution
in the pseudo-spherical grid. Thus the 3D discrete shearlet
coefficients in the Fourier domain can be expressed as

f̂j [k1, k2, k3] ĥ
(d)
j,ℓ1,ℓ2

[k1, k2, k3],

where

ĥ
(d)
j,ℓ1,ℓ2

[k1, k2, k3] = ϕ−1
P

(
δ̂P [k1, k2, k3]u

(d)
j,ℓ1,ℓ2

[k2, k3]
)
.

Notice that the new filters h
(d)
j,ℓ1,ℓ2

are not obtained by a
simple change of variables, but by applying a resampling
which converts the pseudo-spherical grid to a Cartesian grid.
This resampling is done using a linear map where possibly
several points from the polar grid are mapped to the same
point on the rectangular grid. Although these filters are not
compactly supported, they can be implemented with a matrix
representation that is smaller than the size of the data f , hence
allowing to implement the computation of the 3D DShT using
a convolution in space domain. One benefit of this approach
is that one does not need to resample the DFT of the data into
a pseudo-spherical grid, as required using the first method.

Since the computational effort is essentially determined
by the FFT which is used to transform data and compute
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convolutions, it follows that the 3D DShT algorithm runs in
O(N3 log(N)) operations.

B. Implementation issues.

In principle, for the implementation of the 3D DShT algo-
rithm one can choose any collection of filters U (d)

j,ℓ as long as
the tiling condition (13) is satisfied. The simplest solution is
to choose functions U (d)

j,ℓ which are characteristic functions of
appropriate trapezoidal regions in the frequency domain, but
this type of filters are poorly localized in space domain. To be
faithful to the continuous construction and also to ensure well
localized filters in the space domain, our implementation uses
filters of Meyer type. A similar choice was also found effective
in [8] for the 2D setting. As mentioned above, by taking the
inverse DFT, it is possible to implement these filters using
matrix representations of size L3 with L ≪ N , where N3 is
the data size. In the numerical experiment considered below,
we have chosen L = 24, which was found to be a very good
compromise between localization and computation times. Fi-
nally, for the number of directional bands, our algorithm allows
us to choose a different number of directional bands in each
pyramidal region. The theory prescribes to choose a number
n of directional bands which, in each pyramidal region, grows
like 22j , hence giving n = 4, 16, 64, . . . directional bands, as
the scale is becoming finer. As will discuss below, we found
it convenient to slightly modify this canonical choice in the
video denoising applications.

As a first illustration of the new 3D shearlet decomposition,
we have run the 3D DShT algorithm using the Tempete video,
of size 1923 voxels. Fig. 3 shows some representative 2D
frames reconstructed from the 3-level 3D DShT decomposition
of the Tempete video sequence. In particular, the figure shows
a frame reconstructed from the approximation levels and some
frames reconstructed from some representative directional
subbands. The reconstruction from the directional subbands
reported in this figure indicates that the shearlet decomposition
is very sensitive to directional features.

C. Correlation With Theory

The numerical implementation of the 3D shearlet transform
attempts to faithfully reproduce the frequency footprint asso-
ciated with the 3D shearlet decomposition. Hence, it is natural
to ask how does this numerical implementation behave with
respect to the theoretical estimate (1).

To demonstrate that the approximation properties predicted
by the theory are reflected in the approximation properties
of the digital implementation, we have run some numerical
experiments using a piece-wise constant radial function f with
jump discontinuities of the form

f(x, y, z) = ci if ri ≤ x2 + y2 + z2 < ri+1,

for given vectors c = (ci) in Rn, r = (ri)
in Rn+1. For example, by choosing r =
(1, 10, 18, 27, 36, 44, 53, 62, 70, 79, 87, 96) and
c = (50, 0, 120, 35, 100, 180, 5, 200, 20, 220, 1, 240), we
found that the error ∥f − fSM∥ decays like M−0.6192 for
our test image, as compared to a theoretical rate which

Original Approximation

1st level Detail (ℓ1 = ℓ2 = 4) 2nd level Detail (ℓ1 = ℓ2 = 2)

3rd level Detail (ℓ1 = ℓ2 = 2)

Fig. 3. 3D DShT Decomposition of Tempete movie. The figure illustrates
some representative 2D frames reconstructed from the 3D DShT decomposi-
tion of the movie. All detail frames are extracted from directional subbands
contained in the pyramidal region DC1 . Detail frames, which show highly
directional features, are shown in inverted gray scale.
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Fig. 4. Analysis of the nonlinear approximation error using the 3D
DShT algorithm. (a) Cross section of the piecewise constant radial
function f (on R3). (b) Approximation error ∥f − fM∥2.

is of the order (logM)M−0.5. Here fM is the nonlinear
approximation of f obtained using the M largest shearlet
coefficient in its 3D DShT expansion. The results of this test
are plotted in Fig. 4 showing the nonlinear approximation
error ∥f − fSM∥ and comparing this plot to the theoretical
curve (logM)M−0.5.

IV. NUMERICAL EXPERIMENTS

As in the 2D setting, the ability of the 3D shearlet transform
to deal with geometric information efficiently and its sparsity
properties have the potential to produce significant improve-
ment in many 3D data processing applications. As examples
of these applications, we have developed algorithms for video
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denoising and enhancement which are based on the new 3D
Discrete Shearlet Tranform presented above.

A. Video Denoising

The denoising of video is highly desirable for enhanced per-
ceptibility, better compression and pattern recognition applica-
tions. While noise can have different distributions like Poisson,
Laplacian or Gaussian distribution, we only considered the
situation of zero-mean additive white Gaussian noise, which
offers a good model for many practical situations. Hence, we
assume that, for a given video f , we observe

y = f + n,

where n is Gaussian white noise with zero mean and standard
deviation σ.

It is well known that the ability to sparsely represent data
is very useful in decorrelating the signal from the noise.
This notion has been precisely formalized in the classical
wavelet shrinkage approach by Donoho and Johnstone [23],
[24], which has lead to many successful denoising algorithms.
In the following, we adapt this idea to design a simple video
denoising routine based on hard thresholding. That is, in our
approach, we attempt to recover the video f from the observed
data y as follows.

1) We compute the 3D shearlet decomposition of y as y =∑
µ⟨y, ψ̃µ⟩ ψ̃µ.

2) We set to zero the coefficients cµ(y) = ⟨y, ψ̃µ⟩ such that
|cµ(y)| < T , where T depends on the noise level.

3) We obtain an approximation f̃ of f as f̃ =∑
µ c

∗
µ(y) ψ̃µ, where

c∗µ(y) =

{
cµ(y) if |cµ(y)| ≥ T ;
0 otherwise.

For the choice of the threshold parameter, we adopt the same
criterion which was found successful in the 2D setting, based
on the classical BayesShrink method [25]. This consists in
choosing

Tj,ℓ =
σ2

σj,ℓ
,

where σj,ℓ is the standard deviation of the shearlet coefficients
in the (j, ℓ)-th subband. Although hard thresholding is a rather
crude form of thresholding and more sophisticated methods are
available, still this method is a good indication of the potential
of a transform in denoising applications. Also notice that hard
thresholding performs better when dealing with data where it is
important to preserve edges and sharp discontinuities (cf. [10],
[26]).

For the 3D discrete shearlet decomposition, in all our tests
we have applied a 3-level decomposition according to the
algorithm described above. For the number of directional
bands, we have chosen n = 16, 16, 64 (from the coarsest
to the fines level) in each of the pyramidal region. Even
though this does not exactly respect the rule canonical choice
(n = 4, 16, 64) prescribed by the continuous model, we found
that increasing the number of directional subbands at the
coarser level produces some improvement in the denoising

Original frame Noisy frame

3D SHEAR SURF

2D SHEAR DWT

Fig. 5. Video Denoising of Mobile Video Sequence. The figure compares
the denoising performance of the denoising algorithm based on the 3D DShT,
denoted as 3DSHEAR, on a representative frame of the video sequence
Mobile against various video denoising routines. Starting from the top left:
original frame, noisy frame (PSNR=18.62 dB, corresponding to σ = 30),
denoised frame using 3DSHEAR (PSNR=28.68 dB), SURF (PSNR=28.39
dB), 2DSHEAR (PSNR=25.97 dB) and DWT (PSNR=24.93 dB).

performance. Recall that, as indicated above, in our numerical
implementation, downsampling occurs only at the bandpass
level, and there is no anisotropic down-sampling. Thus, the
numerical implementation of the 3D DShT which we found
most effective in the denoising algorithm is highly redundant.
Specifically, for data set of size N3, a 3-level 3D DShT decom-
position produces 3∗

(
64 ∗N3 + 16 ∗ ( 23N)3 + 16 ∗ ( 26N)3

)
+

( 26N)3 ≈ 208 ∗ N3 coefficients. As we will see below
(Table II), this requires a higher computational cost than less
redundant algorithms.

The 3D shearlet-based thresholding algorithm was tested
on 3 video sequences, called mobile, coastguard and tempete,
for various values of the standard deviation σ of the noise
(values σ = 30, 40, 50 were considered). All these video
sequences, which have been resized to 192×192×192, can be
uploaded from the website http://www.cipr.rpi.edu.
For a baseline comparison, we tested the performance of
the shearlet-based denoising algorithm (denoted by 3DS-
HEAR) against the following state-of-the-art algorithms: 3D
Curvelets (denoted by 3DCURV, cf. [13]), Undecimated Dis-
crete Wavelet Transform (denoted by UDWT, based on symlet
of length 16), Dual Tree Wavelet Transform (denoted by
DTWT, cf. [27]) and Surfacelets (denoted by SURF, cf. [14]).
We also compared against the 2D discrete shearlet transform
(denoted by 2DSHEAR), which was applied frame by frame,
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in order to illustrate the benefit of using a 3D transform, rather
than a 2D transform acting on each frame.

As a performance measure, we used the standard peak
signal-to-noise ratio (PSNR), measured in decibel(dB), which
is defined by

PSNR = 20 log10
255N

∥f − f̃∥F

,

where ∥·∥F is the Frobenius norm and f is an array of size
N ×N ×N.

The performance of the shearlet-based denoising algorithm
3DSHEAR relative to the other algorithms is shown in Table I,
with the numbers in bold indicating the best performance.
Notice that performance values for the algorithms 3DCURV,
UDWT and DTWT are taken from [14].

Table I: Video denoising performance using different video sequences.

PSNR (dB) Mobile Coastguard Tempete
Noise σ 30 40 50 30 40 50 30 40 50

3DCURV 23.54 23.19 22.86 25.05 24.64 24.29
UDWT 24.02 22.99 22.23 25.95 24.95 24.2
DTWT 24.56 23.43 22.58 26.06 25.01 24.22
SURF 28.39 27.18 26.27 26.82 25.87 25.15 24.2 23.26 22.61

3DSHEAR 28.68 27.15 25.97 27.36 26.10 25.12 25.24 23.97 22.81
2DSHEAR 25.97 24.40 23.20 25.20 23.82 22.74 22.89 21.63 20.75

DWT 24.93 23.94 23.03 24.34 23.44 22.57 22.09 21.5 20.92

The data in Table I show that the 3D Discrete Shearlet
Denoising Algorithm 3DSHEAR is highly competitive against
both traditional and other state-of-the-art video denoising algo-
rithm. In particular, 3DSHEAR consistently outperforms the
curvelet-based routine 3DCURV, the wavelet-based routines
UDWT and DTWT and the 2D shearlet-based algorithm.
3DSHEAR also outperforms or is essentially equivalent to the
surfacelets-based denoising algorithm in all cases we tested,
except for one case, namely the mobile video sequence for low
noise, with standard deviation σ = 50. Notice that for higher
noise level 3DSHEAR always provide the best performance
in all tests that were run.

Table II: Comparison of running times for different 3D transforms.

Algorithm Running time (data size: 1923)
SURF 34 sec

3DSHEAR 263 sec
2DSHEAR 154 sec
3D DWT 7.5 sec

The superior performance of the 3DSHEAR algorithm de-
pends in part on its excellent directional selectivity; but it
also benefits from the redundancy of the transform, since high
redundancy usually produces a better performance in denoising
applications. The drawback is that the higher redundancy
requires higher computational effort, which explains the worse
performance of 3DSHEAR with respect to 3D DWT and
SURF in terms of running times. This is reported in the
Table II, which compares the running times for these different
3D transforms, applied to a data set of size 1933; all routines
were run using the same system which is based on an Intel
CPU 2.93GHz.

Original frame Noisy frame

3D SHEAR SURF

2D SHEAR DWT

Fig. 6. Video Denoising of Coast Guard Video Sequence. The figure
illustrates the denoising performance on a representative frame of the video
sequence using various denoising routines. Starting from the top left: original
frame, noisy frame (PSNR=18.62 dB), denoised frame using 3DSHEAR
(PSNR=27.36 dB), SURF (PSNR=26.82 dB), 2DSHEAR (PSNR=25.20 dB),
DWT (PSNR=24.34 dB).

In Fig. 5 and 6, we illustrate the performance of the various
video denoising routines on a typical frame extracted from the
denoised video sequences Mobile and Coast Guard. Although
this type of comparison is more subjective in nature, the figures
show that the visual quality of the shearlet-denoised frame is
also superior.

B. Video Enhancement

In several imaging applications, it is important to enhance
the visual appearance of certain features that carry useful
information. For example, in ultrasound medical images weak
edges are usually related to important physical or structural
properties so that it is desirable to make weak edges more
prominent while keeping the strong features intact. A classical
application is mammography, where image enhancement can
be useful to improve the visibility of small tumors for early
detection [28].

Several techniques have been proposed to enhance the
contrast level of an image. For example, since weak edges
are mostly associated with the high frequency components of
an image, many traditional enhancement methods consist in
amplifying the highpass subbands of an image which has been
decomposed into different frequency subbands. Unfortunately,
these methods are not very efficient to preserve the geometrical
features of the data and, as a result, when they are applied
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Noisy frame (PSNR 28.16) Wavelet-based enhancement Shearlet-based enhancement

Noisy frame (PSNR 28.16) Wavelet-based enhancement Shearlet-based enhancement

Fig. 7. Video Enhancement. Representative frames from the Barbara video sequence (above) and from the Anterior ultrasound video sequence (below)
illustrate the performance of the shearlet-based enhancement algorithm. This is compared against a similar wavelet-based enhancement algorithm.

to enhance weak edges, they also amplify noise and produce
visual artifacts.

By contrast, multiscale techniques are much more effective
in enhancing weak edges without blowing up the noise [28],
[29]. The advantage of the shearlet framework, in particular, is
to provide a unique ability to control the geometric information
associated with multidimensional data. Thus, shearlets appear
to be particularly promising as a tool for selectively enhancing
the component of the data associated with the weak edges, as
was recently observed in [30] for 2D images (see also [31],
[32] for other results concerning the application of directional
multiscale transforms in image enhancement). In this section,
we present an algorithm which extends this approach to the
3D setting and applies the 3D Discrete Shearlet Transform
to decompose data into several directional subbands and to
selectively amplify some of the shearlet coefficients. In fact,
by the properties of the shearlet decomposition, the shearlet
coefficients which are large in magnitude, at fine scales, are
closely associated with the singularities of the data. More
precisely, strong surfaces of discontinuity will produce large
or significant coefficients in all directional subbands, whereas
weak surfaces of discontinuity will produce large or significant
coefficients only in very few directional subbands. On the other
hand, no significantly large coefficients are produced by the
noise (provided, of course, SNR is “reasonable”).

Based on these observations, each voxel k of a data set
f ∈ ℓ2(Z3

N ) can be classified into one of three distinct
categories by analysing the magnitude of the corresponding
shearlet coefficients ⟨f, ψ(d)

j,ℓ,k⟩. Notice that heuristic obser-
vations have shown that it is sufficient to consider only the
shearlet coefficents at the finest scale, so that the parameter
j is fixed in the procedure described below. Hence, in our
enhancement algorithm, for each voxel k, we compute the
average and the maximum of the magnitude of the shearlet

coefficients taken over all the directional subbands, which we
denoted by the functions mean and max, respectively; next,
we compute the enhanced coefficient as follows (cf. a similar
enhancement is defined in [33]):

E(x) =


x if mean(x) ≥ c σ,
max{( cσ

|x| )
p, 1}x if mean(x) < cσ& max(x) ≥ c σ,

0 if mean(x) < cσ& max(x) < cσ,

where x is the input coefficient, σ is the standard deviation of
the noise in the subband associated with the finest resolution
level, 0 < p < 1 is a parameter controlling the portion of edges
to be treated as considered “weak edges” and c is a tuning
parameter, determining the enhancement factor (c ∈ [1, 5]).

To illustrate its performance, the shearlet-based enhance-
ment algorithm was tested to enhance two noisy video se-
quences, the Barbara movie, obtained from the Barbara picture
by moving a window frame around the picture) and the Ante-
rior ultrasound movie, showing an ultrasound movie sequence
of the Anterior triangle, a muscular region near the neck. In
both cases, the noise is additive white Gaussian noise with
zero mean and standard deviation σ = 10. Also, in both
case the enhancement algorithm was run using parameters
c = 1, p = 1, and the performance of the algorithm was
compared against an undecimated wavelet-based enhancement
routine, which uses the same enhancement function E. Rep-
resentative 2D frames from the enhanced video sequences
are illustrated in Figure 7, showing that the shearlet-based
routine performs significantly better both in terms of contrast
improvement and noise suppression. For comparison with the
shearlet-based enhancement, we also run a similar routine
based on the surfacelets, but its performance was not better
than the wavelet-based routine. This is due in most part to the
fact that the surfacelets algorithm has low redundancy, unlike
the shearlet-based and wavelet-based algorithms.

9



Since the performance of the enhancement algorithm is only
partially illustrated by the video frames in Figure 7, to better
convince the reader, the complete enhancement videos are
available at http://www.math.uh.edu/∼dlabate/software.

V. CONCLUSION

This paper describes an implementation of the 3D Discrete
Shearlet Transform which is based on the directional multi-
scale framework of the shearlet representation. This imple-
mentation faithfully reproduces the frequency decomposition
of the 3D shearlet transform which was recently shown to
provide optimally sparse approximations for a large class of
3D data. To illustrate the benefits derived from the sparsity
of the shearlet representation, our 3D algorithm was tested
on problems of video denoising and video enhancement. The
performance was found to be extremely competitive against
other multiscale methods including wavelets, 3D curvelets and
surfaclets. With respect to some of these transforms, the 3D
shearlet algorithm has higher redundancy, which accounts for
the additional computation effort which requires.
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