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Abstract. Directional multiscale representations such as shearlets and curvelets have gained in-
creasing recognition in recent years as superior methods for the sparse representation of data.
Thanks to their ability to sparsely encode images and other multidimensional data, transform-
domain denoising algorithms based on these representations are among the best performing meth-
ods currently available. As already observed in the literature, the performance of many sparsity-
based data processing methods can be further improved by using appropriate combinations of dic-
tionaries. In this paper, we consider the problem of 3D data denoising and introduce a denoising
algorithm which uses combined sparse dictionaries. Our numerical demonstrations show that the
realization of the algorithm which combines 3D shearlets and local Fourier bases provides highly
competitive results as compared to other 3D sparsity-based denosing algorithms based on both
single and combined dictionaries.
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1. Introduction

The notion of sparse representations has been one of the most pervasive and seminal concepts in
the applied harmonic analysis and signal processing literature during the last decade. Intuitively, a
representation is sparse if it allows one to efficiently approximate functions in a certain class using
only a “small” number of terms when functions are expanded with respect to the representation.
Sparsity can be exploited very effectively in denoising applications. In fact, constructing sparse
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representations for functions in a certain class entails the ability to efficiently capture their fun-
damental structures, hence enabling to extract the features of interest and remove the unwanted
components. A transform-domain denoising algorithm exploits the concept of sparsity through the
assumption that the true data are well approximated by a linear combination of few basis elements
with respect to an appropriate representation. Hence, by preserving the few large-magnitude repre-
sentation coefficients and discarding the rest, the true signal can be effectively estimated. This con-
cept was formalized through the celebrated shrinkage algorithms originally introduced by Donoho
and Johnstone [7, 10, 11, 12], which have been spectacularly successful in the signal and image
processing community during the past 15 years.

To illustrate this denoising strategy in the classical setting of additive white Gaussian noise, let
us suppose that we want to recover f € L*(R?) from the noisy observations

y=/[f+n, (1.1)

where n is zero-mean white Gaussian noise with variance o2. If the function f to be recovered
is known to be sparse under an appropriate dictionary, say, orthogonal wavelets, then the classical
shrinkage algorithm offers a simple yet very effective approach. This consists in: (i) applying the
transform analysis operator, denoted by WV, to the noisy data, (ii) applying a thresholding operator
T and, finally, (iii) applying the inverse transform operator to obtain an estimator f of f. That is,

f=wW1lTwr. (1.2)

The performance of this estimation is closely related to the sparsity of the representation system.
In fact, suppose that W is unitary and 7 is the soft thresholding operator, defined by 7, («) =
sign(a)(|a| — 7)., where 7 is a fixed parameter. In this case, Donoho and Johnstone [10] have
shown that, if the m-term approximation error decays as

If = fullfz < Cm7™*,  asm — oo,

where f, is the m-term approximation of f, then there is a constant C’ > 0 so that
Fl12 ) 2k
b <Hf - f”p) <C'owi, aso — 0,

where E is the expectation and o is the standard deviation of the noise. For example, curvelets and
shearlets are optimally efficient for representing smooth images with edges, so that curvelet-based
and shearlet-based shrinkage algorithms are extremely effective for this type of data.

However, data found in applications are usually complex and there is no single representation
system that can optimally approximate all the features of interest. While curvelets and shearlets
are very efficient for representing data with distributed singularities such as edges, Fourier bases
are better at dealing with oscillatory features, usually described as fexture. Therefore, it seems
reasonable to consider combined representations made up of many different types of waveforms,
each type having its own area of specialization. The idea of coding images as a multi-layered
representation of a piecewise smooth layer and a texture layer is rather old [22, 28], but only more
recently the concept of combined representations has been considered within the setting of sparse
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data decompositions. In particular, one emerging approach is based on the concept morphological
diversity (see discussion in [32, 34]), which assumes that data can be modeled as a sum:

K
T = E T,
k=1

where each morphological components x;, of the data is sparse with respect to a given dictionary
®,.. In addition, the various dictionaries satisfy a form of incoherence, that is, each components x
of the data is sparse with respect to a dictionary @y, but not with respect to the other dictionaries
®, for 0 # k.

In this paper, we have focussed on 3D data denoising, which is an area of increasing interest
for video restoration and preprocessing of biological data. For this task, some of the most compet-
itive algorithms currently available are transform-domain algorithms which rely on the sparsity of
advanced directional multiscale systems such as curvelets, shearlets and surfacelets [25, 30, 35].
As suggested above and as indicated by several recent results in the literature, the performance
of many sparsity-based algorithm can be further improved by considering dictionaries which are
obtained as appropriate combinations of several representations, each one specialized in different
features of the data to be analyzed (e.g., textures and piecewise smooth regions). Following the
general philosophy of morphological diversity, we have assumed that typical 3D data of interest
(e.g. videos of natural scenery, biological data) are well represented through combined dictionar-
ies based on wavelets, curvelets, shearlets and Fourier bases. Using this approach we have derived
highly performing denoising algorithms which were validated through extensive numerical experi-
ments. As a benchmark, our results were compared against standard and state-of-the-art denoising
algorithms based on both single and combined dictionaries, showing that, in particular, the real-
ization of our algorithm which combines 3D shearlets and local Fourier bases provides the best
performance in terms of noise removal.

The paper is organized as follows. In Section 2. we will briefly survey the theory of sparse
representations and recall the construction of 3D shearlets, which are especially efficient for the
representation of piecewise smooth functions of three variables. In Section 3. we present an al-
gorithm for 3D data denoising which uses an appropriate combination of sparse representations.
Finally, in Section 4. we present several numerical demonstrations of our denoising algorithm, and
compare it against other standard and state-of-the-art denoising algorithms.

2. Sparse multidimensional representations

Sparsity and sparse representations are leading concepts not only in the current signal and image
processing literature, but also in a variety of areas such as inverse problems, numerical analysis
and data mining. We will not attempt to comprehensively review this topic and its applications,
but will only focus on the aspects which are most closely related to the problem of data denoising.
We start with some basic definitions.
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2.1. Sparse representations: beyond wavelets

Let B = {b; : i € I} be an orthonormal basis or even a Parseval frame for a subset U of L?(R?),
and, for f € U, let us consider its expansion in 3, that is, f = > .., o;(f) b;. The system B is
said to provide a sparse representation of U if the sorted magnitudes of the expansion coefficients
|a(f)||(s) have rapid decay according to the power law

la(f)ljvy SO fllz2 N7%, as N — oo,

where C' > 0 is a constant independent of f. This implies that, letting fy be the approxima-
tion of f obtained by using the /N largest coefficients of the expansion of f in 3, the nonlinear
approximation error, defined by || f — fn||3., decays as

If — fnllFe < CNIfIIF: N2, as N — oc.

For example, wavelet bases provide sparse representations for piecewise smooth functions of
one variable. In fact, if f is uniformly Lipschitz ~, with v > 1/2, except for finitely many discon-
tinuities on [0, 1], then one can show? that the sorted magnitudes of the wavelet coefficients decay
as

()l € C Nl fller NTF2, as N — oc.

Hence, denoting by f ](Vw) the nonlinear approximation of f using a wavelet basis, the nonlinear
approximation error decays as

If = 12 < CNfI2, N72, as N — oc. 2.1)

This is the optimal rate achievable for this class of functions, whereas, by contrast, approximations
using Fourier bases can only decay as fast as O(/N~2), due to the presence of the discontinuities.

However, while wavelets are particularly effective when approximating functions with point
discontinuities, it is not difficult to show that they do not provide very sparse representations for
multi-variable functions containing discontinuities along curves or other multidimensional mani-
folds. Consider, for example, functions of two variables of the form f = yq, where (2 is a bounded
subset of R? whose boundary has finite length. Then a simple calculation (cf. [27, Sec. 9.3.1])
shows that, in this case, the sorted magnitudes of the wavelet coefficients only decay as

la(f)ljv) SC N7, as N — oo, (2.2)

which is below the optimal theoretical rate of O(N~3/2) [8].

The reason for the limitations of wavelets is their intrinsic isotropic nature, which makes these
systems not sufficiently flexible to capture the dominant features of multivariable functions effi-
ciently. Starting with the introduction of wedgelets [9] and ridgelets [3], it was recognized that
to achieve sparser representations of multidimensional data, one has to consider larger representa-
tion systems offering the ability to handle efficiently the anisotropic features which dominate most

20ne need to assume that the wavelet generator has sufficiently many vanishing moments (cf. [27, Ch.9]).
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classes of multivariate functions. The construction of curvelets [4] has been a milestone in this
area of investigation, by showing that it is possible to define non-adaptive representations provid-
ing (nearly) optimal sparse representations for a large class of functions of two variables. Curvelets
form a tight frame of functions defined not only at various scales and locations, like wavelets, but
also at various orientations, with the number of orientations increasing at finer scales and with
highly anisotropic supports. Following the general idea of the curvelets, several other directional
multiscale systems were introduced, most notably the shearlets, originally introduced by one of the
authors and their collaborators in [17, 24]. Unlike curvelets, shearlets exploit the general frame-
work of affine systems and use shearing matrices rather than rotations to control the directional
selectivity of the system. As a result, shearlets provide a very flexible approach for the construc-
tion of sparse representations in any dimensions and a unified framework for both the continuous
and discrete setting. Shearlets are currently the only systems known to provide nearly optimally
sparse representations for a large class of functions of two and three variables [18, 19, 20].

2.2. 3D shearlet representations

A 3D shearlet system is obtained by combining three function systems associated with the pyra-
midal regions

Pr={(66.&) e R 12 <1 <1}, P = {(6.6.6) € R : 2] < LI <1},

and P; = {(51 52,63) ERS ’51‘ <1, ’52‘ < 1}

in which the Fourier space R? is partitioned (see Flg 1). To define such systems, let ¢ be a C*°

univariate function such that 0 < ¢ <1, ¢ = 1 on [— and ¢ = 0 outside the interval [—1, 1].

16’ 16]

That is, ¢ is the scaling function of a Meyer wavelet. For & = (&1, &, &) € R?, define v
B(E) = D61, &2.6) = D(&1) D(&2) Dl&s) (2.3)
and let TV/(€) = 1/@2(2-2€) — 32(¢). It follows that
(€)+ ) W 27%¢) =1 for € R®. (2.4)

j=>0
Note that each function W; = W (27% ), j > 0, is supported inside the Cartesian corona
[0%—1 92i=1]3\ [_9%i—4 9%~4]3 R?,

and the functions VVjZ, j > 0, produce a smooth tiling of RS, Next, let V€ C*°(R) be such that
V(0) =1, V™W(0) = 0, forany n > 1, suppV C [—1,1] and

V(=P + V@) +|V(+1)?=1 for|ul <1. (2.5)
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Figure 1: From left to right, the figure illustrates the pyramidal regions P;, P, and Pj in the
frequency space R3.

It was shown in [18] that there are several examples of functions V' satisfying these properties.
For d = 1,2,3, { = ({1,05) € 72, the 3D shearlet systems associated with the pyramidal
regions P, are defined as the collections

{wg(jd[),k . ] Z O, —2j S €17€2 S 2j7k € Z3}7 (26)

where

N ] y —q — i —j pl—4
PSP(6) = [ det A |72 W (279¢) Flop (€A} Bl ) 4@ P, 2.7

F(1)(51,§2,f3) = V(%)V(%)a F(2)(51,§2753) = V(%)V(%)v F(a)(51,§2753) = V(%)V(%)a the
anisotropic dilation matrices A4 are given by

4 0 0 200 200
A(l) = O 2 O 5 A(g) = 0 4 O 5 A(g) - 0 2 0 5
00 2 00 2 00 4
and the shear matrices are defined by
’ 1 4 4 ’ 1 0 0 . 1 0 0
B(1) =10 1 0], B(Q) =106 1 4], B(3) =10 1 0
0 0 1 0 0 1 0 Uy 1

Due to the assumptions on W and v, the elements of the system of shearlets (2.6) are well localized
and bandlimited. In particular, the shearlets wj(lg) () can be written more explicitly as

v — oW V(22 ) V(28 g) M T o)
7.01,02,k f §
T 1 1
showing that their supports are contained inside the trapezoidal regions
{(€1,62,&) : & € [-2971, 297U 2974, 2971], % — 627 <27, % — 0277 < 277}
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This expression shows that these support regions become increasingly more elongated at fine
scales, due to the action of the anisotropic dilation matrices A{l), with the orientations of these
regions controlled by the shearing parameters ¢, ¢5. A typical support region is illustrated in
Fig. 2. Similar properties hold for the elements associated with the regions P, and Ps.

Figure 2: Frequency support of a representative shearlet function ;¢ , inside the pyramidal re-
gion Py. The orientation of the support region is controlled by { = ({1, (s); its shape is becoming
more elongated as j increases (j = 4 in this plot).

A Parseval frame of shearlets for L?(R?) is obtained by combining the systems of shearlets
associated with the 3 pyramidal regions Py, d = 1, 2, 3, together with a coarse scale system, which
will take care of the low frequency region. Namely, we define the 3D shearlet systems for L*(IR3)
as the collections

{{E_Lk ke 23} U {@Zj,g,k,d >0, |0] <20, |6 <2 ke d= 1,2,3}

@Z-M:j>0,£1,€2——i2j,k623 2.9)
]7 b
consisting of:

e the coarse-scale shearlets {J_Lk = ®(- — k) : k € Z3}, where @ is given by (2.3);

e the interior shearlets {Jj’&k,d = ¢J(dé)k 27 > 0,06 < 27k € Z3,d = 1,2,3}, where

%(dg) . are given by (2.7);

o the boundary shearlets {%7(7,{;@ D> 0,60 <20, =42 ke Zd=1,2,3}, obtained
by appropriately joining together w%k, wﬁ)k and zﬁ](gg)k, for (1,0, = £27 (see [20, 21] for
details). Note that these functions are band-limited and smooth in the Fourier domain.
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For simplicity of notation we will write the 3D shearlet system (2.9) as

{0, 1€ M}, (2.10)

where M = M U M; U Mg are the indices associated with the coarse-scale shearlets, the
interior shearlets and the boundary shearlets, as given by (2.9). Hence, we have the following
result which uses properties (2.4)-(2.5) and whose proof is found in [20].

Theorem 1. The 3D system of shearlets (2.10) is a Parseval frame of L*(R?). That is:
YKL =P Vf e LP(RY).

nemM

2.3. Optimally sparse 3D approximations using shearlets

One of the most important results about shearlet representations is that the 3D Parseval frame of
shearlets {1, € M} achieve an essentially optimal approximation rate for piecewise smooth
functions of three variables [19, 20]. More precisely, let M be the class of indicator functions
of sets B C [0, 1]> whose boundary is C? regular and let C?(]0, 1]*) be the collection of twice
differentiable functions supported inside [0, 1]°. Hence, we define the set £2([0, 1]?) of functions
which are C* away from a C? surface as the collection of functions of the form

[ =Jo+ fixs,

where fo, fi € CZ([0,1]*), B € Mand || f|lcz = >, <o/ D flloc < 1. This is a reasonable model
for piecewise smooth 3D data, extending the similar 2D model of cartoon-like images introduced
by Donoho in [9]. We have the following result [20].

Theorem 2. Let f € £2 and f3 be the N—term approximation of f obtained from the N largest
coefficients of its shearlet expansion, namely

f]k\gf = Z<fa@zu>{/;m

HEIN
where Iy C M is the set of indices corresponding to the N largest entries of the sequence
{|3M(f)| = |<f7 77Z),u>|2 Ny S M} Then
If = f3ll; < C N~ (log N)2.

Up to the log-like factor, Theorem 2 yields the optimal approximation rate, outperforming
wavelet approximations which only achieve an approximation rate of order O(N~'/2). Shearlets
are the only system known to satisfy such approximation properties. As a consequence of this
result, it follows from the observation of Section 1. that, for the solution of the denoising prob-
lem (1.1), under the assumption that f € £2, a shearlets-based shrinkage estimator achieves the
essentially optimal rate O(c), in contrast to wavelets which only achieve the rate O(03 ). An im-
plementation of the shearlet-based estimator for 3D data denoising has been derived by two of the
authors in [30], where several numerical demonstrations have shown that the performance of this
algorithm is very competitive, as compared to other advanced multiscale methods including 3D
curvelets and surfacelets.
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3. 3D data denoising using combined dictionaries

Let us examine the denoising problem from the point of view of discrete signals. Let z € RY * and
suppose that we want to recover x from the noisy observations (1.1). Since the signals of interest
have some “structure”, adopting the point of view of sparse representations we assume that z is
sparse in an overcomplete dictionary, represented in a matrix form as D where D € RY XK with
K > N3. That is, writing

K
r=Da = g oy dy,
k=1

where D = [d;,...,d;], d, € RY ° we expect that “many” of the representations coefficients o,
are negligible. If we want to minimize the number of non-negligible coefficients, we can set up the
minimization problem

& = min||allp  subjectto ||y — Dallz < o, 3.1

where the ¢, norm® is counting the number of nonzero entries of o = (ay), that is, ||(az)|lo =
#{k : oy # 0}. Since the algorithmic solution of (3.1) is NP-hard, this problem is usually modified
by relaxing ¢, to an ¢;-norm, hence leading to the basis pursuit denoising (BPDN) problem [5]

& = minlja||; subjectto ||y — Dol < o, (3.2)

and the estimator £ = Da. There are many ways to solve this problem rather efficiently including
interior point methods and gradient projections (cf. [15]). For an appropriate Lagrange multiplier
), the solution of (3.2) is exactly the solution of the unconstrained optimization problem*

) 1
min Allal|s + 5 ly = Dall3. (3.3)

In the special case where the analysis operator W associated with the dictionary D is unitary, then
equation (1.2), with D = W is the unique solution of problem (3.2) or (3.3). Interestingly, in this
case, the shrinkage algorithm also yields the solution of problem (3.1). We refer to Ch. 5 in [15] for
further detail. When the dictionary is redundant, then the solution of minimization problem (3.2) or
(3.3) is not necessarily the solution of the shrinkage method (1.2). Yet, also in this case, appropriate
iterative-shrinkage algorithms have been introduced which extend the classical Donoho-Johnstone
wavelet shrinkage method, such as the algorithms introduced by Starck et al. [1, 33] and the
celebrated algorithm of Daubechies et al. [6].

We are interested in the situation where the data to be recovered are known to be a superpo-
sition of several components, each one having a sparse representation with respect to a certain
dictionary. In this case, we model the data x to be recovered in (1.1) as x = Zszl x) and we
use a dictionary built by amalgamating several subdictionaries Dy, . .., Dk such that each z; has
a sparse representation in the subdictionary D;, but its representation in the subdictionaries D,

3This is not technically a norm, but this abuse of notation is customary in the literature.
“4This last formulation is known in statistics as penalized least square estimation problem.
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[ # k, is not sparse. Specifically, in many situations it is reasonable to assume that the data con-
tain textured components along with piecewise smooth components. Hence, we assume that z is a
superposition

T = Tp + Ty,

where z, and z, are the piecewise smooth component and textured component of the data, re-
spectively. In this setting, for the subdictionary associated with texture component of the data we
can choose a local discrete cosine dictionary or an appropriate Gabor frame, which are known to
be sparse for locally periodic patterns. For the piecewise smooth component of the data, we can
choose a shearlet or a curvelet dictionary, which are known to be sparse for this type of data. The
incoherence of the two dictionary has been verified heuristically in [32] (using DCT and curvelet
dictionaries) and more recently and rigorously in [23]. Then, to solve this problem, we can set up
the following the minimization problem:

i,y = min A (Jaulh + ) + 5 1y = Deae = Dyl (3.4)
where D;, D, are the dictionary associated with the piecewise smooth component and textured
component of the data, respectively.. The final estimate is then found by adding together the
two components obtained by #, = D,¢&, and z; = D;¢&;. Note that, since the dictionaries are
assumed to be tight frames, then D,, is the Moore-Penrose pseudo inverse of the analysis operator
W, associated with piecewise smooth data, i.e. D, = W); and, similarly, D; is the Moore-Penrose

pseudo inverse of the analysis operator VV, associated with texture data, i.e., D; = V\/,fT .

For reason which will become clear below, rather than using a sparsity-based synthesis model
as in (3.4), we have preferred to use a sparsity-based analysis model leading to the minimization
problem

PR . 1
Ty, Ty = argmlri)\HWp Tpllr + AWr a1 + §||y — 2, — 74[3. (3.5)
Tp,T

The dichotomy between the synthesis and analysis models ° is well discussed, for example, in [16].
While in the synthesis formulation signals are modeled as sparse linear combinations of dictionary
atoms, the analysis formulation emphasizes the zeros in the analysis side (rather than the non-
zeros), leading to better performance. In particular, one of the major advantages of using the
formulation (3.5) rather than (3.5) is that it requires searching lower dimensional vectors rather
than longer dimensional representation coefficient vectors.

To further improve the performance, we have also included a total variation regularization term,
which is effective at reducing possible ringing artefacts near the edges. This idea was proposed
and validated not only in [32], bur also in earlier wavelet papers such as [26]. Thus, we finally
have the optimization problem:

PN . 1
Tp, Ty = argmin N||W, xp|l1 + AW x|l + 7TV (2p) + §||y —z, — 74l3, (3.6)
Tp,Tt

Note that the two models coincide when the dictionary is an ON basis.

10
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where T'V is the Total Variation. Once the separate estimates z,, and , are obtained as a solution
of (3.6), the final estimator of x is given as & = T, + ;.
A fast convergent iterative shrinkage algorithm that solves (3.6) may be derived by using Sepa-
rable Surrogate Functionals (SSF) (see [31] for its derivation) which can be summarized as follows.
We start the algorithm by initializing k& = 1 and setting ) = 0, 20 = 0, 7* = y — 20 — 2, and
A =1 (IW,ylloo + [IWhyllso) - We repeatedly update the estimate of x,, and x, as

where H is the undecimated Haar wavelet transform. The parameter c is chosen so that it is
greater than the maximum eigenvalue of (W]I W, + )/VtT W,). In this particular case, ¢ set to 3 is
heuristically found to work well. The residual is updated as

rk:y—x’;—xf.

and the shrinkage parameter is updated as
1
A= S (W oo + [Wer*lec)

The Haar shrinkage value 7* is dependent on the kth iteration since it is set to 3%5, where Ok is

the standard deviation of the noise estimate of i’; found by using a median estimator on the finest
scale of the Haar wavelet coefficients. In our numerical tests, the iterations are stopped when \*
becomes smaller then a chosen threshold. For this procedure, we chose this stopping threshold to
be 2.1 times the estimate of the standard deviation of the noisy data.

4. Numerical experiments

To validate our denosing strategy, based on the method described in the previous section, we have
built and applied two different types of combined dictionaries, using in one case a combination
of our new 3D shearlet transform [30] and local 3D DCT; in another case, a combination of 3D
curvelets [2] and local 3D DCT. We denote these dictionary by Shear/DCT and Curv/DCT, respec-
tively.

We have run several numerical experiments for 3D data denoising using as sample data two
video sequences that we refer to as Tempete and Oil painting. All these video sequences, which
have been resized to 1923 can be uploaded from the website http://www.cipr.rpi.edu.
For a baseline comparison, we tested the performance of the combined-dictionary denoising algo-
rithm against: 3D discrete wavelet transform (DWT) using the “Sym4” filter; 3D curvelet trans-
form (Curv); 3D shearlet transform (shear); the 3D Laplacian Pyramid (LP). In all these cases, the

11
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(@) (b)

Figure 3: (a) The 150th image frame of the Tempete video with an additive Gaussian noise whose
standard deviation is 20. (b) The 60th image frame of the Oil painting video with an additive
Gaussian noise whose standard deviation is 20.

denoising algorithm is based on the standard soft thresholding, as described in Section 1.. To pro-
vide additional baseline comparisons of our combined dictionary techniques, we also expanded the
comparisons to include an adaptation of our projection iterative scheme to work with the combina-
tions of the 3D wavelet transform and the local DCT (DWT/DCT) and the 3D Laplacian Pyramid
and the local DCT (LP/DCT).

The results of these numerical experiments are given in Tables I and II where we used the peak
signal-to-noise ratio (PSNR), measured in decibles (dB), given as

255N

1F = il

where || - || 7 is the Frobenius norm and f is the video array assumed to be of size N x N x N. The
numbers in bold indicate the best performance for the given experiment. Furthermore, we included
several figures extracted from the video sequences to illustrate the performance of the various
denoising algorithms. Figure 3 shows representative image slices with an additive Gaussian noise
incorporated. Illustrations from the Tempete and Oil painting video are reported in Figures 4 and
5, respectively.

The result reported in this paper show that the new denosing algorithm based on the combina-
tion of 3D shearlet and local DCT dictionaries provide the best performance among the methods
considered, which are state-of-the-art. As compared with the performance of the ‘standard’ 3D
shearlet (Shear) denosing routine, this result shows the advantage of using a combined rather than
a single dictionary, consistently with the general principles which are discussed above (Section 3.).
Furthermore, our results show that the Shear/DCT routine performs significantly better than simi-
lar routines which use combined dictionaries of 3D curvelets and DCT or 3D wavelets and DCT.

12
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The improvement with respect to wavelet-based routines is expected, since shearlets provide a
sparser dictionary for piecewise smooth data, and their superior performance in denoising appli-
cations was already observed in [13, 14, 30]. For the comparison with curvelets, the difference
in performance is due mostly to the different strategy used for the implementation of the discrete
shearlet transform versus the discrete curvelet transform, where the first transform uses higher re-
dundancy and highly selective directional filter. We refer to [30] for a comparison of 3D shearlets,
3D curvelets, surfacelets and other multiscale transforms in denoising applications using single
sparse dictionaries.

Table I: Denoising results (PSNR) using Tempete video.

| 0 || Noisy | DWT | LP | Shear | Curv | Shear/DCT | DWT/DCT | LP/DCT | Curv/DCT |

20 || 22.14 | 22.61 | 23.10 | 25.87 | 22.60 27.47 24.09 24.45 25.29
30 || 18.62 | 22.10 | 22.04 | 24.63 | 22.27 25.61 22.38 22.61 23.02
40 | 16.12 | 20.47 | 21.30 | 23.69 | 22.00 24.34 21.40 21.51 21.97

Table II: Denoising results (PSNR) using Oil painting video.

| o || Noisy | DWT | LP | Shear | Curv | Shear/DCT | DWT/DCT | LP/DCT | Curv/DCT |

20 || 22.14 | 26.34 | 27.01 | 28.04 | 27.32 31.01 27.74 28.32 27.66
30 || 18.62 | 24.81 | 25.52 | 27.12 | 26.86 29.07 26.03 26.37 25.94
40 | 16.12 | 23.87 | 24.26 | 26.33 | 26.44 27.68 24.89 25.02 24.67

In addition to testing the performance of the new denoising routines on video sequences, we
have also tested the routine on a 3D scan of a neuronal network dataset that naturally contains
noise due to the imaging sensor. In this case, we cannot provide a quantitative measure of the
performance, but only a qualitative assessment based on appearance. Figure 6 displays the results
of the various denoising methods for a particular slice of the original 1923 dataset.
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