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Abstract

The geometric separation problem, initially posed by Donoho and Kutyniok [7], aims to separate a
distribution containing a non-trivial superposition of point and curvilinear singularities into its distinct
geometric constituents. The solution proposed in [7] considers expansions with respect to a combined
wavelet-curvelet dictionary and applies an `1-norm minimization over the expansion coefficients to achieve
separation asymptotically at fine scales. However, the original proof of this result uses a heavy machinery
relying on sparse representations of Fourier integral operators which does not extend directly to the 3D
setting. In this paper, we extend the geometric separation result to the 3D setting using a novel and
simpler argument which relies in part on techniques developed by the authors for the shearlet-based
analysis of curvilinear edges. Our new result also yields a significantly simpler proof of the original 2D
geometric separation problem and extends a prior result by the authors which was limited to piecewise
linear singularities.
Key words and phrases: analysis of singularities, cluster coherence, geometric separation, `1 minimization,
shearlets, sparse representations, wavelets.
AMS Mathematics Subject Classification: 42C15, 42C40.

1 Introduction

Combining multiple basis representations and taking advantage of their sparsity properties to build a more
efficient representation of complex data has a rather long history in applied harmonic analysis and signal
processing. Among the earliest formulations of combined-basis representations, we recall the seminal papers
of Coifman and Wickerhauser [5] and Mallat and Zhang [28]. Perhaps the first attempt to introduce a
rigorous formalization of these ideas was the method of Basis Pursuit [4] by Chen, Donoho and Saunders
which established `1-norm minimization as a method to promote sparse representations from multiple bases.
In more recent years, other mostly empirical papers have further exploited this point of view and provided
remarkable applications to problems from signal and image processing. Starck et al. [30, 31], for instance,
proposed an algorithmic approach, called Morphological Component Analysis (MCA), which assumes that a
signal is the linear mixture of several morphological components, each one endowed with specific geometric
properties. Under the assumption that such components are sufficiently distinct and that each one is sparsely
represented in a specific basis, MCA algorithms (using `1-norm minimization) are able to effectively separate
the various signal components in many numerical applications. In addition to such work, we also recall the
contributions in [9, 29, 33, 35].

More recently, Donoho and Kutyniok [7, 21] introduced a rigorous mathematical formalization of the
problem of separating data into geometrically distinct components. Their motivation is the observation that
the success of many successful numerical algorithms based on multiple basis representations “stem from an
interplay between geometric properties of objects to be separated and the harmonic analysis for singularities
of various geometric types” (cf. [7]). As a mathematical idealization of two-dimensional data containing
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distinct geometric constituents, they consider distributions on R2 of the form f = P + T , where P is a
collection of point-like singularities and T is a cartoon-like image, that is, a planar region enclosed by a
smooth closed curve. The question is: how to separate f into its components P and T ?

To address this question, they observe that while points and curves may overlap spatially, they are
separated microlocally. Therefore, they construct a sparse representation of f with respect to a joint wavelet-
curvelet dictionary, where sparsity is enforced via a procedure of minimization of the expansion coefficients in
the `1-norm. The choice of such dictionary is due to the fact that wavelets provide very sparse representations
of point-like singularities, while curvelets [2] or sherlets [11, 27] provide very sparse representations of curve-
like singularities. By applying an `1-norm minimization over the expansion coefficients of the combined
dictionary, they prove that f can be separated into its components P and T asymptotically at fine scales.

The proof of this separation result in [7] relies on the heavy machinery of a sparse matrix representation
of Fourier integral operators in R2 and does not extend directly to the 3-dimensional setting. In [17],
we introduced a different and simpler argument to deal with the 3-dimensional setting which is based on
techniques we previously developed for the geometric characterization of edge singularities in terms of the
shearlet transform [12, 19, 23]. However, this result was limited to the separation of point-wise and polyhedral
singularities in R3, as our techniques could not be extended to the more difficult situation of curvilinear
singularities in R3.

In this paper, we finally introduce a new and more powerful argument that allows us to handle the
geometric separation problem in the case of 3-dimensional curvilinear singularities. Similar to the general
approach in [7, 17], we consider a combined dictionary of wavelets and shearlets and adopt the important
notion of cluster coherence as a main tool to prove geometric separation. The most critical and difficult
part of this proof is the derivation of appropriate estimates on the cluster coherence of the wavelet and
shearlet bases. As we will further explain below, this part of the proof is new and relies in part on techniques
developed by the authors for the shearlet-based analysis of curvilinear edges [13, 15, 18].

In addition to solving the 3D geometric separation problem, our new approach also yields a much simpler
and more streamlined argument for the corresponding 2D problem, without the need of the machinery based
on Fourier integral operators of the original arguments in [7]. We also recall that the geometric separation
result has important implications to the solution of the inpainting problem, as shown by King et al [22].

The rest of the paper is organized as follows. After setting some useful notation, we formulate the
geometric separation problem and state our main theorem in Section 2. We present the proof of this theorem
in Section 3.

Notation
In this paper, we adopt the convention that x ∈ R3 is a column vector, i.e., x =

x1

x2

x3

, and that ξ ∈ R̂3 (in

the frequency domain) is a row vector, i.e., ξ = (ξ1, ξ2, ξ3). A vector x multiplying a matrix A ∈ GL3(R) on
the right is understood to be a column vector, while a vector ξ multiplying A on the left is a row vector.
Thus, Ax ∈ R3 and ξA ∈ R̂3. The Fourier transform of f ∈ L1(R3) is defined as

f̂(ξ) =

∫
R3

f(x) e−2πiξx dx,

where ξ ∈ R̂3, and the inverse Fourier transform is

f̌(x) =

∫
R̂3

f(ξ) e2πiξx dξ.

Given the functions f and g, we use the notation f ' g if there exist constants 0 < C1 ≤ C2 < ∞,
independent of x, such that C1 g(x) ≤ f(x) ≤ C2 g(x). Similarly, given the index set J , we use the notation
f(j) ' g(j) if there exist 0 < C1 ≤ C2 < ∞, independent of j, such that C1 g(j) ≤ f(j) ≤ C2 g(j) for all
j ∈ J .
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2 The geometric separation problem

As a model of multidimensional data found in many applications, it is often useful to consider functions or
distributions containing different types of singularities; for instance, singularities supported at single points
or surface boundaries if the domain is R3. In this paper, we consider idealized three-dimensional objects of
the form f = P + T , where P is a collection of point singularities and T is a section of a paraboloid.

Our goal is to find a highly sparse representation of f , that is, to derive a representation method such that
f can be accurately approximated using a ‘very small’ number of representation coefficients. As mentioned
above, we can find bases that are ideally suited to specific types of singularities. Wavelets, in particular, offer
optimally sparse representations, in a precise sense, for functions with point singularities, while shearlets were
shown to provide optimally sparse representations for functions with discontinuities along piecewise smooth
surfaces [14, 24]. However, neither wavelets nor shearlets alone (and no other single basis or traditional linear
representation methods) are very efficient at representing f = P + T . This observation leads to consider
a multiple-basis dictionary comprising both wavelets and shearlets. Among all possible representations of
f within this dictionary, we look for an ideally sparse representation where wavelets are used to sparsely
represent P and shearlets to sparsely represent T .

Let us be more precise about the statement of the problem and the singularities we consider. Following
the general idea from [7], we take P to be of the form

P =

N∑
i=1

|x− y(i)|−2, (2.1)

which defines a distribution being smooth away from the singularity points y(i) ∈ R3, i = 1, . . . , N . Next,
to define a singularity supported on a surface boundary, we let B to be a section of a paraboloid in R3

with graph z(u, v) for (u, v) ∈ U ⊂ R2. For α(u) ∈ C∞0 (U) and φ ∈ S(R3), we define a distribution T
concentrated on B as

〈T , φ〉 =

∫
U

φ(z(u, v), u, v)α(u, v) du dv.

The reason for choosing the exponent −2 in P is that we want to match the energies of P and T at each
scale 2−2j , j ∈ Z. That is, we want to make the two singularities comparable at each scale. Without this
assumption, it would be possible to trivially separate the two components of f at different scales, as the
energy of each singularity would dominate at a certain scale. By contrast, the model we adopt (as in [7])
makes the separation problem challenging at every scale.

To justify our observation about the matching energies, we remark that P̂(ξ) ' |ξ|−2 (cf. [34, Ch.4]) and

this implies that
∫ 22j+2

22j |P̂(ξ)|2dξ ' 22j . In Section 3.2, we will show that T satisfies a similar estimate so

that also in this case
∫ 22j+2

22j |T̂ (ξ)|2dξ ' 22j .
Following the language introduced in [7], we hence state geometric separation problem as follows.

Geometric separation problem. Given the observation f = P + T , we want to recover the unknown
components P and T of f based only on the knowledge that they are of the form (2.1) and (2.2).

To solve this problem, we will adapt the strategy based on `1 minimization proposed by Donoho and
Kutyniok [7]. That is, we will expand f with respect to a representation consisting of the union of a Parseval
frame of wavelets in L2(R3) and a Parseval frame of shearlets in L2(R3), and we will enforce sparsity
by minimizing the representation coefficients in the `1-norm. As mentioned above, the sparsity-inducing
properties of the `1-norm are well known in applied harmonic analysis and play a critical role, for instance,
in the celebrated theory of compressed sensing (cf. [3, 6]).

In the following, to simplify notation and avoid unnecessary calculations we will assume that P contains
only one singularity point. In addition we will assume that the point singularity is centered at the origin,
that is

P = |x|−2.
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For the singularity supported on a surface boundary, we let B = {( 1
2 (x2

2 + x2
3), x2, x3) : (x2, x3) ∈ U}, where

U = {(x2, x3) : x2
2 + x2

3 ≤ 1}. Hence, for α(u) ∈ C∞0 (U) and φ ∈ S(R3), we define T as

〈T , φ〉 =

∫
U

φ( 1
2 (x2

2 + x2
3), x2, x3)α(x2, x3) dx2 dx3. (2.2)

Let us next define the wavelets and shearlets systems that we will use to represent f = P + T .

2.1 A Parseval frame of 3D wavelets

As our wavelet system, we will choose a Parseval frame of Lemariè-Meyer wavelets (cf. [20]) in L2(R3). This
system will be denoted as Φ = {φλ : λ ∈ Λ}, for Λ = {λ = (j, k), j ≥ −1, k ∈ Z3}, where the functions
φλ = φj,k ∈ L2(R3) are defined in the Fourier domain by

φ̂j,k(ξ) =

{
2−3jW (2−2jξ) e2πi2−2jξk, for j ≥ 0,

W̃ (ξ) e2πiξk, for j = −1,

and W, W̃ ∈ C∞0 (R3) satisfy the condition

|W̃ (ξ)|2 +
∑
j≥0

|W (2−2jξ)|2 = 1, for a.e. ξ ∈ R̂3. (2.3)

We assume that the window function W has support supp (W ) ⊂ [− 1
2 ,

1
2 ]3 \ [− 1

16 ,
1
16 ]3 so that the dilated

functions Wj = W (2−2j ·) have supports inside the Cartesian coronae

[−2−2j−1, 2−2j−1]3 \ [−2−2j−4, 2−2j−4]3 ⊂ R̂3, (2.4)

and the resulting collection of window functions |W̃ |2, |Wj |2, j ≥ 0, produce a smooth tiling of the frequency
space into concentric Cartesian coronae associated with frequency bands indexed by j ≥ 0.

Recall that the Parseval frame condition implies that, for any f ∈ L2(R3), we have the reproducing
formula:

f =
∑
λ∈Λ

〈f, φλ〉φλ,

with convergence in L2-norm.

2.2 A Parseval frame of 3D shearlets

Shearlet were introduced to overcome certain limitations of conventional wavelets in the analysis of mul-
tivariate functions [27]. Similar to the curvelets of Candès and Donoho [2], they form a collection of well
localized functions defined not only across several scales and locations, as the conventional wavelets, but also
across several orientations and with highly anisotropic shapes, so that they can more efficiently represent
functions containing distributed singularities, e.g., edges in images. By combining multiscale anlysis and high
directional sensitivity, shearlets are able to precisely characterize of the geometry of singularities of functions
and distributions of several variables [12, 13, 19, 25] and enable optimally sparse representations, in a precise
sense, for a large class of multivariate functions where traditional wavelets are suboptimal [11, 14].

With respect to curvelets, shearlets have some distinctive features: their mathematical structure is de-
rived from the theory of affine systems and the directionality is controlled by shear matrices rather than
rotations. This last property enables a unified framework for both continuum and discrete settings since
shear transformations preserve the rectangular lattice and this is an advantage in deriving faithful digital
implementations [8, 26]. Furthermore, there is a well-developed shearlet-based theory for the analysis of
singularities (cf. [10] in addition to the references cited above). This theory sets the foundation for the main
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ideas that we employ in this paper for the analysis of surface singularities and it is the main reason for
selecting this representation in our approach to the geometric separation problem.

Our shearlet system is defined by introducing an angular subdivision within the multiscale decomposition
associated with the window functions W̃ 2,W 2

j used above for the construction of the wavelet system. For

this construction, we start by first partitioning the Fourier space R̂3 into the following 3 pyramidal regions
in R̂3:

C1 =

{
(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ2

ξ1
| ≤ 1, |ξ3

ξ1
| ≤ 1

}
,

C2 =

{
(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ1

ξ2
| < 1, |ξ3

ξ2
| ≤ 1

}
,

C3 =

{
(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ1

ξ3
| < 1, |ξ2

ξ3
| < 1

}
.

We let W ∈ C∞0 (R3) be the same window as the one defined in Section 2.1 and let v ∈ C∞(R) be an
appropriate ‘bump function’ satisfying supp v ⊂ [−1, 1] and

|v(u− 1)|2 + |v(u)|2 + |v(u+ 1)|2 = 1 for |u| ≤ 1. (2.5)

For d = 1, 2, 3, ` = (`1, `2) ∈ Z2, a 3D shearlet systems associated with the pyramidal regions Cd is a collection

{ψ(d)
j,`,k : j ≥ 0,−2j ≤ `1, `2 ≤ 2j , k ∈ Z3}, (2.6)

where

ψ̂
(d)
j,`,k(ξ) = |detA(d)|−j/2W (2−2jξ)V(d)(ξA

−j
(d)B

[−`]
(d) ) e

2πiξA−j
(d)
B

[−`]
(d)

k
, (2.7)

V(1)(ξ1, ξ2, ξ3) = v( ξ2ξ1 )v( ξ3ξ1 ), V(2)(ξ1, ξ2, ξ3) = v( ξ1ξ2 )v( ξ3ξ2 ), and V(3)(ξ1, ξ2, ξ3) = v( ξ1ξ3 )v( ξ2ξ3 ); the matrices A(d)

are given by

A(1) =

4 0 0
0 2 0
0 0 2

 , A(2) =

2 0 0
0 4 0
0 0 2

 , A(3) =

2 0 0
0 2 0
0 0 4

 ,

and the matrices B(d), called shear matrices, are defined by

B
[`]
(1) =

1 `1 `2
0 1 0
0 0 1

 , B
[`]
(2) =

 1 0 0
`1 1 `2
0 0 1

 , B
[`]
(3) =

 1 0 0
0 1 0
`1 `2 1

 .

Notice that (B
[`]
(d))
−1 = B

[−`]
(d) . Let us make a few observations about the properties of these systems.

Due to the support conditions on W and v, the elements of the system of shearlets (2.6) have compact

support in Fourier domain. In particular, for d = 1, the shearlets ψ̂
(1)
j,`,k(ξ) can be written explicitly as

ψ̂
(1)
j,`1,`2,k

(ξ) = 2−2jW (2−2jξ) v
(

2j
ξ2
ξ1
− `1

)
v
(

2j
ξ3
ξ1
− `2

)
e

2πiξA−j
(1)
B

[−`1,−`2]

(1)
k
, (2.8)

showing that their supports are contained inside the regions

Uj,` = Uj,`1,`2

= {(ξ1, ξ2, ξ3) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2ξ1 − `12−j | ≤ 2−j , | ξ3ξ1 − `22−j | ≤ 2−j}. (2.9)

That is, the shearlets ψ̂
(1)
j,`,k have supports contained in trapezoidal regions defined at various scales, controlled

by j > 0, and various orientations, controlled by the shear parameters `1, `2. This shows that elements of the

5



shearlet system (2.6) the are well-localized functions, defined over a range of locations, scales and orientations,
controlled by the indices j, ` = (`1, `2) and k, respectively.

A Parseval frame of shearlets for L2(R3) is obtained by combining the shearlet systems (2.6) associated
with the cone-shaped regions Cd together with the coarse scale system {φ−1,k : k ∈ Z3}. Note that this
is the same coarse scale system of the Lemeriè-Meyer wavelet system defined above. For brevity, in the
following we will denote the Parseval frame of 3D shearlets as Ψ = {ψη : η ∈ M} ⊂ L2(R3), where the
index set is M = MC ∪MF , MC = {k ∈ Z3} is the set of indices associated with coarse-scale shearlets and
MF = {η = (j, `, k, d) : j ≥ 0, |`1| ≤ 2j , |`2| ≤ 2j , k ∈ Z2, d = 1, 2, 3} is the set of indices associated with
fine-scale shearlets. As above, the Parseval frame condition implies that, for any f ∈ L2(R3), we have the
reproducing formula:

f =
∑
η∈M
〈f, ψη〉ψη,

with convergence in L2-norm.
Remark. To simplify the presentation, our construction above omits a technical detail. To ensure that

the frame of shearlets obtained by combining the elements from the different pyramidal systems is tight while
guaranteeing that all such elements are C∞0 in the Fourier domain, one has to slightly modify the functions

ψ
(d)
j,`1,`2,k

, for `1, `2 = ±2j (these are the functions whose support overlap the boundaries of the regions Pd) by
merging shearlet elements from contiguous pyramidal regions. The construction of these boundary shearlets
is rather technical and plays no role in the paper. We refer the interested reader to [14, 16].

2.3 Main theorem

Our main theorem below shows that it is possible to separate geometrically distinct components of a dis-
tribution f = P + T by taking advantage of the sparsity properties of the Parseval frames of wavelets and
shearlets. Similar to the result in [7, 17], the separation result holds asymptotically in scale, that is, we can
separate point singularities and singularities along a parabolic surface only as a limiting process, when the
scale tends to zero (i.e., j → ∞). To formulate this result, we start by deriving an appropriate multiscale
decomposition of f .

We recall that the window functions Wj used in the construction of the wavelet and shearlet systems
produce a multiscale decomposition of the Fourier space L2(R3) into the Cartesian coronae (2.4). Consistently

with this decomposition, we define a family of band-pass filters Fj , j ≥ −1, by F̂j(ξ) = W (2−2jξ), for j ≥ 0,

F̂−1(ξ) = W̃ (ξ). By applying these filters to f , P and T we obtain

Pj = P ∗ Fj , Tj = T ∗ Fj , fj = f ∗ Fj , (2.10)

where, as observed above, we have that ‖Pj‖2 ' 2−j and ‖Tj‖2 ' 2−j . It follows that the functions f̂j are
band-limited with frequency support contained in the Cartesian coronae [−22j−1, 22j−1]3\ [−22j−4, 22j−4]3 ⊂
R̂3. In addition, for f ∈ L2(R3), it follows from (2.3) that

f =
∑
j

Fj ∗ fj , (2.11)

with convergence in the L2-norm.
Let Fj denote the range of the operator of convolution with Fj . Using a simple calculation one can verify

that shearlets and wavelets at level j′ are orthogonal to Fj unless |j′−j| ≤ 1, that is, unless j′ = j−1, j, j+1.
It is useful to introduce the notation

Λj = {λ = (j′, k) : |j′ − j| ≤ 1, k ∈ Z3} ⊂ Λ (2.12)

and
Mj = {η = (j′, `, k, d) : |j′ − j| ≤ 1, |`1| ≤ 2j , |`2| ≤ 2j , k ∈ Z3, d = 1, 2, 3} ⊂M. (2.13)
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Due to the Parseval frame property and the observation above, any function fj ∈ Fj can be expanded using
only the elements of the wavelet system in Λj but also using only the elements of the shearlet system in Mj .
In other words, at the level j, we can use the wavelet system to represent fj as

fj =

j′=j+1∑
j′=j−1

∑
k′∈Z2

〈fj , φj′,k′〉φj′,k′ =
∑
λ∈Λj

〈fj , φλ〉φλ;

or we can use the shearlet system to represent fj as

fj =

3∑
d=1

j′=j+1∑
j′=j−1

∑
|`1|≤2j′

∑
|`2|≤2j′

∑
k∈Z2

〈fj , ψ(d)
j′,`1,`2,k

〉ψ(d)
j′,`1,`2,k

=
∑
η∈Mj

〈fj , ψη〉ψη.

Clearly, we can also consider a combined representation of the form

fj =
∑
λ∈Λj

pλ φλ +
∑
η∈Mj

tη ψη,

for an appropriate choice of coefficients p = (pλ) and t = (tη). Since the last expression involves an
overcomplete dictionary, there are many possible choices of coefficients p and t, some of which may provide
sparser representations than either one of the two expansions above. Similar to [7, 17], we seek a solution
enabling a geometric separation, that is, we consider the following dual-frame component separation problem
based on `1 minimization:

(P ∗j , T
∗
j ) = arg min(‖p‖1 + ‖t‖1), subject to fj = Pj + Tj , (2.14)

where pλ = 〈Pj , φλ〉, λ ∈ Λj and tη = 〈Tj , ψη〉, η ∈Mj . It follows from (2.11) that, if we let P̃ =
∑
j Fj ∗Pj ,

T̃ =
∑
j Fj ∗ Tj , then we can express f as the superposition f = P̃ + T̃ .

The main result of our paper is the following theorem, showing that, by applying `1 minimization over
the expansion coefficients of f with respect to our combined wavelet-shearlet dictionary, we achieve the
separation of the distinct geometric objects P and T , asymptotically at fine scales. That is, asymptotically
as the scale tends to zero, the pointlike component of f is captured by the Parseval frame of wavelets and
the curvilinear component of f is captured by the Parseval frame of shearlets.

Theorem 2.1. Let Φ and Ψ be the Parseval frames of wavelets and shearlets, respectively, defined above,
with Λj, Mj given by (2.12)-(2.13). Let fj = Pj + Tj be given as above and Pj, Tj be given by (2.10). Then

lim
j→∞

‖Pj − Pj‖1,Φ + ‖Tj − Tj‖1,Ψ
‖Pj‖2 + ‖Tj‖2

= 0.

This theorem extends our previous result in [17], where T was a piecewise linear singularity. We also
recall that the geometric separation result originally obtained in [7] deals with 2D images containing point-
like and smooth curve-like singularities, The approach presented in this paper can be easily adapted to the
two-dimensional case yielding a much simpler and more direct proof of the result in [7].

As already observed in [7], the method of geometric separation presented in this work can be generalized
to other situations, for example we can allow small perturbations and consider f = (P + T + g)h, where
g, h are smooth function of rapid decay. Then we can set ‖fj‖2 in the denominator of the expression in
Theorem 2.1. One could also potentially consider the situation where f = (P + T + L), where L is a line
singularities. In this case, one should introduce a third dictionary in addition to wavelets and shearlets that
sparsely represents L and has some incoherence with respect to the other two dictionaries. One reasonable
choice could a dictionary of ridgelets [1], as it is optimally suited to deal with line singularities.

The rest of the paper is devoted to the proof of Theorem 2.1.
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3 Proof of main theorem

Our proof follows the general architecture of the proof in [7, 17], which is relies on the notion of cluster
coherence. The most critical and difficult part of the proof is about showing that the cluster coherence goes
asymptotically to zero for the three-dimensional curvilinear discontinuities considered in this paper. The
way we address this part of the proof is completely original and does not follow from the arguments in [7, 17]
which in fact cannot handle this situation. The new technical elements of our new arguments are contained
in the proofs of Lemmata 3.5, 3.6 and in the proof of Theorem 2.1 in Section 3.2.

Let Φ = {φλ : λ ∈ Λ} and Ψ = {ψµ : µ ∈ M} be the Parseval frames of 3D wavelets and 3D shearlets
introduced above, respectively. For each level j ∈ Z, we will identify certain subsets of the indices Λ and M
that we denote as S1,j ⊂ Λj and S2,j ⊂Mj . Following the terminology in [7], we refer to them as indices of
significant wavelet coefficients and indices of significant shearlet coefficients, respectively. These index sets
will identify, essentially, those wavelet and shearlet coefficients whose magnitude is above a certain scale-
dependent threshold (hence, the name ‘significant’). Their explicit definition, when the expansion coefficients
are computed on f = P+T , will be determined in Sec. 3.1 (for S1,j) and Sec. 3.2, in the proof of Theorem 2.1
(for S2,j).

Corresponding to the sets S1,j and S2,j , we define the wavelet approximation error and the shearlet
approximation error at the level j as

δ1,j =
∑
λ∈Sc1,j

|〈Pj , φλ〉|, δ2,j =
∑
η∈Sc2,j

|〈Tj , ψη〉|

respectively. As we will see below, it will be possible to determine the indices of significant wavelet and
shearlet coefficients S1,j and S2,j in such a way that the wavelet and shearlet approximation errors are small,
meaning that the `1-norm of the wavelet and shearlet coefficients is negligible (asymptotically, at fine scales),
when the indices are outside the sets S1,j and S2,j .

We define the cluster coherences as

µc(S1,j ,Φ; Ψ) = max
η

∑
λ∈S1,j

|〈φλ, ψη〉|, µc(S2,j ,Ψ; Φ) = max
λ

∑
η∈S2,j

|〈φλ, ψη〉|.

The notion of cluster coherence was originally proposed in [7]. Unlike the more standard definition of
coherence, given by µ(Φ,Ψ) = maxλ,η |〈φλ, ψη〉|, the cluster coherence bounds coherence between a single
member of a frame and a cluster of members of another frame.

Let Φ be the matrix representation of the Parseval frame of wavelets and Ψ the matrix representation of
our Parseval frame of shearlets. For a gj ∈ L2(R3) ∩ L1(R3) such that supp (ĝj) ⊂ Fj , let

‖1S1,jΦ
T gj‖1 =

∑
λ∈S1,j

|〈gj , φλ〉|, ‖1S2,jΨ
T gj‖1 =

∑
η∈S2,j

|〈gj , ψη〉|.

We define the joint concentration by

κ = κ(S1,j , S2,j) = sup
gj

‖1S1,jΦ
T gj‖1 + ‖1S2,jΨ

T gj‖1
‖ΦT gj‖1,Φ + ‖ΨT gj‖1,Ψ

.

The following known observation (Proposition 2.1 in [7]) illustrates the relationship between joint con-
centration and data separation.

Proposition 3.1. Suppose that, for j ∈ Z, fj = Pj + Tj so that each component of fj is relatively sparse in
Φ or Ψ, that is,

‖1SC1,jΦ
TPj‖1 ≤ δ1,j , ‖1SC2,jΨ

TTj‖1 ≤ δ2,j .

If (P ∗j , T
∗
j ) solves (2.14), then

‖P ∗j − Pj‖1,Φ + ‖T ∗j − Tj‖1,Ψ ≤
2(δ1,j + δ2,j)

1− 2κ
.
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A related observation from [7] is that the joint concentration is bounded above by the maximum of the
cluster coherences. We have (cf. [7, Lemma 2.1]):

Lemma 3.2.
κ(S1,j , S2,j) ≤ max{µc(S1,j ,Φ; Ψ), µc(S2,j ,Ψ; Φ)}

It follows from Proposition 3.1 and Lemma 3.2 that Theorem 2.1 is proved if we can construct appropriate
sets of significant wavelet and shearlet coefficients S1,j and S2,j such that δ1,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ),
δ2,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ) and

µc(S1,j ,Φ; Ψ)→ 0, µc(S2,j ,Ψ; Φ)→ 0, as j →∞. (3.15)

The rest of the proof is hence devoted to construct such sets S1,j , S2,j and prove estimates (3.15). In
Section 3.1, we will select an appropriate set S1,j and show that µc(S1,j ,Φ; Ψ) → 0 and δ1,j = o(‖Pj‖1,Φ +
‖Tj‖1,Ψ). This part of the proof is rather simple and follows from an idea similar to [7]. For the difficult
part of the proof, concerning the analysis of curvilinear, it is not possible to apply the argument from [7]
or [17] and we introduce a novel approach which is derived in Section 3.2. Our new argument is inspired in
part from techniques for the analysis of singularities developed for the characterization of piecewise smooth
boundaries of multivariate functions in [13, 15, 18].

In the following, for all our arguments, it will be sufficient to consider the shearlet system associated with
the pyramidal shaped regions C1 ⊂ R̂3 only since the systems in C2 and C3 behave essentially in the same
way. The elements (2.8) of such shearlet system can be written1 as

ψ̂
(1)
j,`1,`2,k

(ξ) = 2−2jΓj,`1,`2(ξ) e
2πiξA−j

(1)
B

[−`1,−`2]

(1)
k
, (3.16)

where

Γj,`1,`2(ξ) = W (2−2jξ) v
(

2j
ξ2
ξ1
− `1

)
v
(

2j
ξ3
ξ1
− `2

)
.

Note that A−j(1)B
[−`1,−`2]
(1) k = (2−2j(k1 − `1k2 − `2k3), 2−jk2 + 2−jk3). Each function Γj,`1,`2 is supported

inside the set Uj,`1,`2 , given by (2.9). It is easy to verify that its measure satisfies |Uj,`1,`2 | ≤ C 24j .

3.1 Analysis of point singularities

This section is very similar to the corresponding section in [17] and is reported below for completeness.
In the following, we will select a set S1,j and prove that µc(S1,j ,Φ; Ψ)→ 0 and δ1,j = o(‖Pj‖1,Φ+‖Tj‖1,Ψ),

asymptotically as j →∞.
Let φj′,k′ and ψj,`1,`2,k be generic elements from a Parseval frame of wavelets and shearlets, respectively.

Due to our assumptions on the Fourier support of W , for any `1, `2, k and k′ we have that 〈ψ̂j,`,k, φ̂j′,k′〉 = 0
if |j − j′| > 1. Hence, for all large j′ and j = j′ − 1, j′, j′ + 1, we observe

|〈 ̂ψj,`1,`2,k, φ̂j′,k′〉| =

∣∣∣∣∫
R2

(
2−2jΓj,`1,`2(ξ) e

−2πiξA−j
(1)
B

[−`1,−`2]

(1)
k

)(
2−3j′W (2−2j′ξ)e2πi2−3j′ξ·k′

)
dξ

∣∣∣∣
≤ 2−2j2−3j′

∫
R3

|Γj,`1,`2(ξ)W (2−2j′ξ)| dξ

≤ C 2−2j2−3j′
∫

Ωj,`1,`2

dξ ≤ C 2−2j2−3j′24j ≤ C 2−j ,

where C is independent of `1, `2, k, k
′ and j.

1Here we ignore that boundary elements corresponding to ` = ±2j are slightly modified as it is irrelevant for our arguments.
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For a fixed ε ∈ (0, 1), set S1,j = {(j′, k′) : j′ = j− 1, j, j+ 1; |k′| ≤ 2εj
′}. Using the calculation above, we

have that

µc(S1,j ,Φ; Ψ) ≤ C max
`1,`2,k

j+1∑
j′=j−1

∑
|k′|≤2εj′

|〈 ̂ψj,`1,`2,k, φ̂j′,k′〉| ≤ C2(−1+ε)j

and, thus, µc(S1,j ,Φ; Ψ)→ 0, as j →∞.

We also observe that 〈φ̂j′,k′ , P̂j〉 = 0 for all k′ if |j′ − j| > 1. For |j′ − j| ≤ 1, we have that

〈φ̂j′,k′ , P̂j〉 = 2−3j′ C

∫
R3

W (2−2j′ξ) e2πi2−2j′ξ·k′W (2−2jξ)|ξ|−2 dξ

= C2−j
′
∫
R3

W (ξ)W (22(j′−j)ξ) e2πiξ·k′ |ξ|−2 dξ.

Hence, for |k′| ≥ 2εj , integration by parts gives that

|〈φ̂j′,k′ , P̂j〉| ≤ CN 2−j(1 + |k′|)−N ≤ CN 2−(1+Nε)j .

By choosing N sufficiently large, we conclude that

δ1,j =
∑
λ∈Sc1,j

|〈φλ, Pj〉| ≤ C 2−2j = o(2−j) = o (‖Pj‖1,Φ + ‖Tj‖1,Ψ) .

3.2 Analysis of curvilinear singularities

We start by proving the following estimate for the functions Tj , j ≥ 0.

Proposition 3.3. For j ≥ 0 we have:
‖Tj‖2 ' 2j

To prove Proposition 3.3, we need the following lemma which is a special case of the classical method of
stationary phase (cf. Proposition 8.6 in [32]).

Lemma 3.4. Let Uε be the ball in R2 with center at the origin and radius ε > 0 and ψ ∈ C∞0 (Uε). Let
J(λ) =

∫
R2 e

i λH(u) ψ(u) du. For u0 ∈ suppψ ⊂ Uε, if ∆φ(u0) = 0 and the determinant of the Hessian
matrix of H at u0 is not zero, then

J(λ) = ei λH(u0)λ−1[a(u(u0)) +O(λ−
1
2 )],

as λ→∞, where a(u0) is a smooth function of u0.

Proof of Proposition 3.3. The Fourier transform of T , given by (2.2), is

T̂ (ξ) = χ̂B(ξ) =

∫
U

e−2πiξ·( 1
2 (u2

1+u2
2),u) α(u) du,

where ξ ∈ R3 and the sets B,U are defined in Sec. 2. By converting to polar coordinates with ξ = ρΘ(θ, φ),
where Θ(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ), θ ∈ [0, 2π] and φ ∈ [0, π], we have

T̂ (ρ, θ, φ) =

∫
U

e−2πiρΘ(θ,φ)·( 1
2 (u2

1+u2
2),u) α(u) du.

Let H(u) = Θ(θ, φ) · ( 1
2u

2
1 + 1

2u
2
2, u). Then ∆H(u) = (Θ(θ, φ) · (u1, 1, 0),Θ(θ, φ) · (u2, 0, 1)). It is easy to

see that, for the given θ and φ, the solution uθ,φ of ∆H(u) = (0, 0) is uθ,φ = −(tan θ, sec θ cotφ). Without
loss of generality we may assume that the solution uθ,φ ∈ U for all θ and φ.
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Now applying Lemma 3.4 and omitting the higher order decay term, for ρ→∞, we have

T̂ (ρ, θ, φ) =
1

ρ
a(uθ,φ) e−2πiρH(uθ,φ) (3.17)

and, thus, we have

‖Tj‖22 '
∫ 22j+2

22j

∫ 2π

0

∫ π

0

ρ−2a2(uθ,φ)ρ2 sinφdθ dφ dρ ' 22j .

It follows that ‖Tj‖2 ' 2j . 2

We also need the following lemma

Lemma 3.5. Let k = (k1, k2, k3) ∈ Z3, k′ = (k′1, k
′
2, k
′
3) ∈ Z3 and ` = (`1, `2) ∈ Z2 with |`1| ≤ 2j , |`2| ≤ 2j,

let Qk,k′ = {` = (`1, `2) : | 12 (1 + `1)2 + 1
2 (1 + `2)2 + k2 + k3 + k′1 + 2−j`1k

′
2 + 2−j`2k

′
3| ≤ 2

1
2 j}. Then the

cardinality of the set Qk,k′ satisfies the inequality #(Qk,k′) ≤ C 2
1
2 j , with C independent of k and k′.

Proof: We have that

1

2
(1 + `1)2 +

1

2
(1 + `2)2 + k2 + k3 + k′1 + 2−j`1k

′
2 + 2−j`2k

′
3

=
1

2
(1 + `1)2 +

1

2
(1 + `2)2 + k2 + k3 + k′1 + 2−jk′2(1 + `1)− 2−jk′2 + 2−jk′3(1 + `2)− 2−jk′3

=
1

2
(2−jk′2 + 1 + `1)2 +

1

2
(2−jk′3 + 1 + `2)2 + k2 + k3 + k′1 − 2−jk′2 − 2−jk′3.

Let α = 2(k2 +k3 +k′1−2−jk′2−2−jk′3). To prove the Lemma, we consider two separate cases dependent
on the value of α.

Case 1: α > −2
1
2 j+1. In this case, we have Qk,k′ ⊂ {` = (`1, `2) : (2−jk′2 +1+`1)2 +(2−jk′3 +1+`2)2 ≤

2
1
2 j+2}. It follows that there is constant C independent of k and k′ such that

#(Qk,k′) ≤ C

∫
(x+1+2−jk′2)2+(y+1+2−jk′3)2≤ 2

1
2
j+4

dx dy

= C 2π

∫ 2
1
4
j+2

0

r dr

≤ C 2
1
2 j .

Case 2: α ≤ −2
1
2 j+1. In this case, we have

Qk,k′ = {` = (`1, `2) : −α− 2
1
2 j+1 ≤ (2−jk′2 + 1 + `1)2 + (2−jk′3 + 1 + `2)2 ≤ −α+ 2

1
2 j+1}.

It follows that there is constant C independent of k and k′ such that

#(Qk,k′) ≤ C

∫
−α−2

1
2
j+1≤(x+1+2−jk′2)2+(y+1+2−jk′3)2≤−α+2

1
2
j+1

dx dy

= C 2π

∫ √
−α+2

1
2
j+1

√
−α−2

1
2
j+1

r dr

≤ C 2
1
2 j .

This finishes the proof of the lemma. 2

We can now complete the proof of our main theorem.
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Proof of Theorem 2.1. From (3.17), we have that

T̂j(ρ, θ, φ) = 1
ρW (2−2jρΘ(θ, φ)) a(uθ,φ) e−2πiρH(uθ,φ).

Let βj,`,k = 〈Tj , ψ(1)
j,`,k〉. Using the expression of T̂j above and of ψ̂(1) in (3.16), we have

βj,`,k =

∫
R3

ψ̂
(1)
j,`,k(ξ) T̂j(ξ) dξ

= 2−2j

∫
R3

W 2(2−2jξ) v
(

2j ξ2ξ1 − `1
)
v
(

2j ξ3ξ1 − `2
)
e

2πiξA−j
(1)
B

[−`1,−`2]

(1)
k T̂ (ξ) dξ

= 2−2j

∫
R3

W 2(2−2jξ) v
(

2j ξ2ξ1 − `1
)
v
(

2j ξ3ξ1 − `2
)
e2πiξ·(2−2j(k1−`1k2−`2k3), 2−jk2, 2

−jk3) T̂ (ξ) dξ (3.18)

= 2−2j

∫ ∞
0

∫ π

0

∫ 2π

0

W 2(2−2jρΘ(θ, φ)) v
(

2j tan θ − `1
)
v
(

2j sec θ cotφ− `2
)
×

× e2πiρΘ(θ,φ)·(2−2j(k1−`1k2−`2k3), 2−jk2, 2
−jk3)e−2πiρH(uθ,φ) ρ a(uθ,φ) sinφdφ dθ dρ

= 2−2j

∫ ∞
0

∫ π

0

∫ 2π

0

W 2(2−2jρΘ(θ, φ)) v
(

2j tan θ − `1
)
v
(

2j sec θ cotφ− `2
)
×

× e
2πiρΘ(θ,φ)·

(
(2−2j(k1−`1k2−`2k3), 2−jk2, 2

−jk3)−(
1
2 (tan θ)2+

1
2 (sec θ cotφ)2,− tan θ,− sec θ cotφ)

)
ρa(uθ,φ) sinφdφ dθ dρ

= 22j

∫ ∞
0

∫ π

0

∫ 2π

0

W 2(ρΘ(θ, φ)) v
(

2j tan θ − `1
)
v
(

2j sec θ cotφ− `2
)
×

× e2πiρΘ(θ,φ)·(k1−`1k2−`2k3− 1
2 (tan θ)2− 1

2 (sec θ cotφ)2, 2jk2+22j tan θ, 2jk3+22j sec θ cotφ)ρ a(uθ,φ) sinφdφ dθ dρ.

Let L be the differential operator:

L =

(
I − ( 22j

2π )2 ∂
2

∂ξ2
1

) (
1− ( 2j

2π )2 ∂
2

∂ξ2
2

)2(
1− ( 2j

2π )2 ∂
2

∂ξ2
3

)
.

From (3.18), we have that for any N ∈ N

βj,`,k = 2−2j

∫
R3

LN
(
W 2(2−2jξ) T̂ (ξ) v

(
2j ξ2ξ1 − `1

)
v
(

2j ξ3ξ1 − `2
))
×

× L−N
(
e2πiξ·(2−2j(k1−`1k2−`2k3), 2−jk2, 2

−jk3)
)
dξ.

Hence, using the fact that W , v and T are continuously differentiable N times, for any N , a direct compu-
tation shows that there exists a constant CN such that

|βj,`,k| ≤ CN

∫
U

(
1 + (k1 − `1k2 − `2k3 − 22j(

1

2
u2

1 +
1

2
u2

2))2

)−N
×

(
1 + (k2 − 2ju1)2

)−N (
1 + (k3 − 2ju2)2

)−N
du.

Let
J = {k = (k1, k2, k3) , |k2| > 2 · 2j or |k3| > 2 · 2j or |k1| > 3 · 22j}.

Then |k2 − 2ju1| > 2j or |k3 − 2ju2| > 2j or |k1 − k2`1 − k3`2 − 22j( 1
2u

2
1 + 1

2u
2
2)| > 22j for k ∈ J and for all

(u1, u2) ∈ U . It follows that ∑
k∈J

|βj,`,k| ≤ CN 2−(2N−1)j . (3.19)
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Also we have

βj,`,k

= 22j

∫ ∞
0

∫ 2π

0

∫ π

0

W 2(ρΘ(θ, φ)) v
(

2j tan θ − `1
)
v
(

2j sec θ cotφ− `2
)

× e2πiρΘ(θ,φ)·((k1−`1k2−`2k3− 22j

2 tan2θ− 22j

2 (sec θ cotφ)2, 2jk2+22j tan θ, 2jk3+22j sec θ cotφ)ρ a(uθ,φ) sinφdφ dθ dρ

= P1(j, `, k) + P2(j, `, k),

where P1(j, `, k) is obtained by restricting the integration with respect to the variable θ to the interval
[−π2 ,

π
2 ] and P2(j, `, k) by restricting the integration with respect to the variable θ to the interval [π2 ,

3π
2 ].

For P1(j, `, k), we use the change of variables t1 = 2j tan θ − `1, t2 = 2j sec θ cotφ − `2 so that θ(t1) =
tan−1(2−j(t1 + `1)), φ(t1, t2) = 2−j cos(θ(t1))(t2 + `2) and dφ dθ = 2−2j cos3(θ(t1)) sin2(φ(t1, t2)dt2 dt1. It
follows that

P1(j, `, k) =

∫ ∞
0

∫ 1

−1

∫ 1

−1

W 2(ρΘ(θ(t1), φ(t1, t2))) v(t1) v(t2) ρ a(uθ(t1),φ(t1,t2)) cos3(θ(t1)) sin3(φ(t1, t2))

× e2πiρ cos(θ(t1)) sin(φ(t1,t2))((k1−`1k2−`2k3+ 1
2 (t1+`1)2+ 1

2 (t2+`2)2+[(t1+`1)k2+(t2+`2)k3)dt2 dt1 dρ

=

∫ ∞
0

∫ 1

−1

∫ 1

−1

W 2(ρΘ(θ(t1), φ(t1, t2))) v(t1) v(t2) ρ a(uθ(t1),φ(t1,t2)) cos3(θ(t1)) sin3(φ(t1, t2))

× e2πiρ cos(θ(t1)) sin(φ(t1,t2))( 1
2 (t1+`1)2+ 1

2 (t2+`2)2+k1+t1k2+t2k3)dt2 dt1 dρ.

For P2(j, `, k), we first let θ′ = θ − π which implies that cos θ = − cos θ′, sin θ = − sin θ′, tan θ = tan θ′.
Next, using the change of variables t1 = 2j tan θ′ − `1, t2 = −2j sec θ′ cotφ− `2 we have

P2(j, `, k) =

∫ ∞
0

∫ 1

−1

∫ 1

−1

W 2[ρ(− cos(θ′(t1)) sin(φ(t1, t2),− sin(θ′(t1)) sin(φ(t1, t2), cos(φ(t1, t2))] v(t1) v(t2)

× ρ a(uθ′(t1),φ(t1,t2)) cos3(θ′(t1)) sin3(φ(t1, t2))

× e−2πiρ cos(θ(t1)) sin(φ(t1,t2))( 1
2 (t1+`1)2+ 1

2 (t2+`2)2+k1+t1k2+t2k3)dt2 dt1 dρ.

Next, we define the set S2,j as S2,j =
⋃4
i=0 Fi,j , where

F0,j = {(`, k) : |1
2

(`21 + `2)2 + k1| ≤ 2
1
4 j , }

F1,j = {(`, k) : |1
2

(1 + `1)2 +
1

2
(1 + `2)2 + k1 + k2 + k3| ≤ 2

1
4 j},

F2,j = {(`, k) : |1
2

(−1 + `1)2 +
1

2
(−1 + `2)2 + k1 − k2 − k3| ≤ 2

1
4 j},

F3,j = {(`, k) : |1
2

(1 + `1)2 +
1

2
(−1 + `2)2 + k1 + k2 − k3| ≤ 2

1
4 j},

F4,j = {(`, k) : |1
2

(−1 + `1)2 +
1

2
(1 + `2)2 + k1 − k2 + k3| ≤ 2

1
4 j}.

Let g(t1, t2) = 1
2 (t1 +`1)2 + 1

2 (t2 +`2)2 +k1 + t1k2 + t2k3. Then ∂g
∂t1

(t) = `1 + t1 +k2 and ∂g
∂t2

(t) = `2 + t2 +k3.

If `1 + k2 ≥ 1, then ∂g
∂t1

(t) ≥ 0 on [−1, 1], while if ` + k2 ≤ −1, then ∂g
∂t1

(t) ≤ 0 on [−1, 1]. It follows that
for `1 6= −k2 and for each fixed t2, the function g(t1, t2) is monotone for t1 ∈ [−1, 1]. Similarly for `2 6= −k3

and for each fixed t1, the function g(t1, t2) is monotone for t2 ∈ [−1, 1]. When `1 = −k2 and `2 = −k3, the
function g(t1, t2) has only the critical point (0, 0). Therefore the function g(t) can attain its extreme values
only at the points (1, 1), (−1,−1), (1,−1), (−1, 1), (0, 0).

Thus, since Sc2,j =
⋂5
p=1 F

c
2,j , we see that |g(t)| ≥ 2

1
4 j for all t ∈ [−1, 1]2 and all (`, k) ∈ Sc2,j . Due to

the assumptions on support of the functions W and v, we have that 1
16 < ρ < 1

2 , |θ| ≤ π
4 , |φ − π

2 | ≤
π
4
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so that ρ cos(θ(t1)) sin(φ(t1, t2) ≥ c > 0 for ρ ∈ suppW and for |θ| ≤ π
4 , |φ −

π
2 | ≤

π
4 . It follows that

if, (`, k) ∈ Sc2,j , then integration by parts N times on the variable ρ of the integral P1(j, `, k) yields that

there is a constant CN independent of `, k such that |P1(j, `, k)| ≤ CN2−
1
4Nj . Similarly we have the estimate

|P2(j, `, k)| ≤ CN2−
1
4Nj . This implies that there is a constant CN independent of `, k such that

|βj,`,k| ≤ 2CN2−
1
4Nj .

Combining (3.19) and the above estimate, we have

δ2,j =
∑

(`,k)∈Sc2,j

|βj,`,k|

=
∑

(`,k)∈Sc2,j
⋂
J

|βj,`,k|+
∑

(`,k)∈Sc2,j
⋂
Jc

|βj,`,k|

≤ CN

(
2−(2N−1)j + 24 · 2− 1

4Nj 24j
)
,

which is valid for any N ∈ N. By taking N = 13, we have that δ2,j = o(2j) as j →∞.
As we pointed out above, to complete the proof of Theorem 2.1 it remains to show that µc(S2,j ,Ψ; Φ) =

maxk′∈Z3

∑
(`,k)∈S2,j

|〈φj,k′ , ψj,`,k〉| → 0, as j →∞. By the construction of S2,j , it follows that the proof of
Theorem 2.1 is completed once we show the following lemma.

Lemma 3.6. Let Φ and Ψ be defined as in Theorem 2.1. For any p = 1, 2, 3, 4, 5, there exists a constant
C > 0 independent of j, `, k, k′ such that ∑

(`,k)∈Fp,j

|〈ψj,`,k, φj,k′〉| ≤ C 2−
1
2 j .

Proof. We will only verify the above inequality for F1,j as all other cases can be handled using a very
similar argument.

For fixed k2, k3 and `, let Kk2,k3,` = {k1, (`, k) ∈ F1,j}. Since |`1| ≤ 2j , |`2| ≤ 2j , for ` = (`1, `2), we

have that ‖`‖ ≤ 2j+
1
2 . We need to show that there is a constant C independent of j, `, k, k′ such that∑

‖`‖≤2j+
1
2

∑
k2∈Z

∑
k3∈Z

∑
k1∈Kk2,k3,`

|〈ψj,`1,`2,k, φj,k′〉| ≤ C2−
1
4 j .

Let L1 be the differential operator

L1 =

(
I − 1

(2π)2

∂2

∂ξ2
1

) (
I − 1

(2π)2

∂2

∂ξ2
2

)(
I − 1

(2π)2

∂2

∂ξ2
3

)
.

For brevity, let

α = α(j, `, k) = B`(1)A
j
(1)(2

−2jk′) = (k′1 + 2−j`1k
′
2 + 2−j`2k

′
3, 2
−jk′2, 2

−jk′3),

and α = (α1, α2, α3). By direct calculation, for any positive integer N we have that

〈ψ̂j,`,k, φ̂j,k′〉 =

∫
R3

(
2−2j Γj,`1,`2(ξ) e

2πiξA−j
(1)
B

[−`]
(1)

k
)(

2−3jW (2−2jξ) e−2πi2−2jξ·k′
)
dξ

= 2−5j

∫
R3

Γj,`1,`2(ξ)W (2−2jξ) e
2πiξ[A−j

(1)
B

[−`]
(1)

(k−α)]
dξ

= 2−j
∫
R3

ψ̂2(η2η1 )ψ̂2(η3η1 )W 2(η1, 2
−j(`1η1 + η2), 2−j(`2η1 + η3)) e2πiη·(k−α) dη

= 2−j
∫
R3

LN1

(
ψ̂2(η2η1 )ψ̂2(η3η1 )W 2(η1, 2

−j(`1η1 + η2), 2−j(`2η1 + η3))
)
L−N1

(
e2πiη·(k−α)

)
dη.
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It follows that∑
‖`‖≤2j+

1
2

∑
k2∈Z

∑
k3∈Z

∑
k1∈Kk2,k3,`

|〈ψj,`1,`2,k, φj,k′〉|

≤ C 2−j
∑

‖`‖≤2j+
1
2

∑
k2∈Z

∑
k3∈Z

∑
k1∈Kk2,k3,`

(1 + (k1 − α1)2)−N (1 + (k2 − α2)2)−N (1 + (k3 − α3)2)−N

≤ C 2−j
∑

‖`‖≤2j+
1
2

∑
k2∈Z

∑
k3∈Z

∑
k1∈Kk2,k3,`

(1 + (k1 − k′1 − 2−j`1k
′
2 − 2−j`2k

′
3)2)−N

×(1 + (k2 − 2−jk′2)2)−N (1 + (k3 − 2−jk′3)2)−N .

As in Lemma 3.5, we consider the sets

Qk,k′ = {` = (`1, `2) : ‖1

2
(1 + `1)2 +

1

2
(1 + `2)2 + k2 + k3 + α1| ≤ 2

1
2 j}

= {` = (`1, `2) : ‖1

2
(1 + `1)2 +

1

2
(1 + `2)2 + k2 + k3 + k′1 + 2−j`1k

′
2 + 2−j`2k

′
3| ≤ 2

1
2 j}

By Lemma 3.5, we have that there is a constant C independent of k and k′ such that #(Qk,k′) ≤ C 2
1
2 j . It

follows that∑
`∈Qk,k′

∑
k2∈Z

∑
k3∈Z

∑
k1∈Kk2,k3,`

|〈ψj,`1,`2,k, φj,k′〉|

≤ CN
∑
k2∈Z

∑
k3∈Z

∑
`∈Qk2,k3,α1

∑
k1∈Kk2,k3,`

[1 + (k1 − α1)2]−N [1 + (k2 − α2)2]−N [1 + (k3 − α3)2]−N

≤ CN
∑

`∈Qk,k′

∑
k2∈Z

∑
k3∈Z

(∑
k1∈Z

(1 + (k1 − k′1 − 2−j`1k
′
2 − 2−j`2k

′
3)2)−N

)
(1 + (k2 − 2−jk′2)2)−N

×(1 + (k3 − 2−jk′3)2)−N

≤ CN2
1
2 j .

For ` ∈ Qck,k′ , we have | 12 (1 + `1)2 + 1
2 (1 + `2)2 + k2 + k3 + α1| ≥ 2

1
2 j . Since k1 satisfies the inequality

|k1 + 1
2 (1 + `1)2 + 1

2 (1 + `2)2 + k2 + k3| ≤ 2
1
4 j , for all j ≥ 4, we have

|k1 − α1| = |k1 +
1

2
(1 + `1)2 +

1

2
(1 + `2)2 + k2 + k3 − (

1

2
(1 + `1)2 +

1

2
(1 + `2)2 + k2 + k3 + α1)|

≥ 2
1
2 j − 2

1
4 j

≥ 1

2
2

1
2 j .

It follows that∑
`∈Qc

k,k′

∑
k2∈Z

∑
k3∈Z

∑
k1∈Kk2,k3,`

|〈ψj,`1,`2,k, φj,k′〉|

≤ CN
∑

`∈Qc
k,k′

∑
k2∈Z

∑
k3∈Z

∑
k1∈Kk2,k3,`

[1 + (k1 − α1)2]−N [1 + (k2 − α2)2]−N [1 + (k3 − α3)2]−N

≤ CN
∑

|`|≤2j+
1
2

∑
k2∈Z

∑
k3∈Z

∑
|k1−α1|≥ 1

2 2
1
2
j

[1 + (k1 − α1)2]−N [1 + (k2 − α2)2]−N [1 + (k3 − α3)2]−N

≤ CN 22j2−(2N−1) 1
2 j

≤ C 2−
1
2 j ,
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where, in the last inequality, we took N = 3. 2

Combining the above estimates, we have proved

µc(S2,j ,Ψ; Φ)→ 0 as j →∞.

This completes the proof of Theorem 2.1. 2
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