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Loss functions and Risk

Theoretically, our expected risk is
RIFI = | L@, p0xy) dxdy
XXY

Where L(f (x),y) is the loss function and p(x, y) is the probability distribution on X X Y and our solution is
the function fy: X = R that minimizes this.

In practice, p(x, y) is not minutely known and so instead we use our data, which consists of N samples
drawn from p(x, y) and find the empirical risk

1 l
Remplf1 =7, LG,

And its minimizing argument fp.
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Loss functions and Risk

Additionally, attempting to approximatef, from a finite data set is an ill-posed problem, so we
regularize the problem by imposing smoothness constraints on the set from which f, is drawn.
That is, we use an RKHS H. We further restrict this space by using a threshold C > 0:

He = € H:|lIflln = C}

Hence, the minimizer we’re actually finding is f., which minimizes over H., not f,, which
minimizes over the space of measureable functions F for which R[f] is well-defined.
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Error!

Rlfpl = Rlfol = Rlfp]l = RIfcD + (Rfc] = RIfoD)

The second part, (R[f:] — R[fo]), is called the «approximation error» and can be minimized by choosing a
sufficiently rich hypothesis space H.

The first part, (R[fp] — R[f¢]), is called the «sample» or «estimation error».

Question: What effect does the choice of loss function have on the sample error?




Loss Functions

Part of what this paper does is explicitly require loss functions to be convex. As a result, it is able
to use the convexity and its results, Lipschitz continuity and boundedness at O, in its analysis.

Ly Lipschitz constant for M > 0

Co: bound at O

L(0,y) < C,




Loss Functions

It then compares loss functions for regression problems and loss functions for classification problems:

Regression Losses Classification Losses
Square Loss: L(x,y) = (x — y)? Square Loss: L(x,y) = (x — y)? = (1 — xy)?
Abs. Value Loss: L(x,y) = |[x — y| Hinge Loss: L(x,y) = max{1 — xy, 0}

e-insensitive Loss: L(x,y) = max{|x — y| — &, 0} Logistic Loss: L(x,y) = (In2) 1 In(1 + e™™)




Ly, - Lipschitz constant

Co: bound at O.

For regression problems
on interval [a, b] C R,

6 = max{|al, |bl}

problem | loss Ly Co
regr quad 2M + 90 52
regr abs val 1 )
regr e-insensitive | 1 )
class quad 2M + 2 1
class hinge 1 1
class logistic (In2)"'eM/(1 4+ eM) | 1




Bound on Sample Error

One of the first things this paper does is extend a result from (Cucker and Smale 2002b) to
provide a bound on the estimation error .

Lemma: Let M = ||f]||C and B = LyyM + C,. Forall € > 0,

le

P {D € (X x Y)l:]:sgP?JR[f] — Rom,[f]] < e} >1-2N (L) e(‘&TZZ)

4Ly




Bound on Sample Error

One of the first things this paper does is extend a result from (Cucker and Smale 2002b) to
provide a bound on the estimation error .

Theorem: Given 0 <nn < 1,1l € N,C > 0, then with probability at least 1 — 7
R[fD] S Remp [fD] + 5(77; l; C)
And [R[fp] — RIfcll < 2e(n,1,C)

With llime(n, [,C) = 0.




Bounds on Sample Error

Using this and the table results, they get the following convergence rates:

problem | loss L Co
Regression regr quad 2M + 9 52
c 162 regr abs val 1 )
Square: 2N (4(ZC+6)) exp (_ 8(C(x+6)+62)2) regr e-1nsensitive | 1 )
class quad 2M + 2 1
class hinge 1 1
. N : 162 class logistic (In2)~teM/(1 +eM) | 1
Abs. Value and sinsensitive: 2N (—) exp (— )
4 8(C+6)2




Bounds on Sample Error

Using this and the table results, they get the following convergence rates:

problem | loss Ly Co

Classification: regr quad IM L6 52
e 12 regr abs val 1 0
Square: 2N (4(ZC+6)) €Xp (_ 8(C(x+6)+52)2) regr c-insensitive | 1 0
. . g2 class quad 2M + 2 1
nge: 2N (Z) exp (8(C+1)2) class hinge 1 1
class logistic (In2)~teM/(1 +eM) | 1

e €\ (In2(1+e) B l?
Logistic: 2N (4) ( e ) =P ( 8(C((1n 2)‘1ec/(eC+1))+1)2>




Bounds on Sample Error
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Further Bounds on Sample Error
for Classiftication Problems

They show also that the Bayes Optimal solution f;, is equivalent to the sign of f; (sgn(fy)):

Assume that the loss function L(x,y) = L(xy) is convex and that it is decreasing in a
neighborhood of O. If f;(x) # 0, then

1 if p(1|x) > p(—1]x)
—1 if p(1]x) < p(—1|x).

sgn(fo) = fp = {




Bounds on Estimation Error for
Classification Problems

In terms of minimizing total error, for classification problems we would like to bound

Rlsgn(fp)] = R|/s]

A result from (Lin et al., 2003) shows that specifically for hinge loss, R[f;] = R[f3].

They combine this with the previously derived bounds to show that in the case of hinge loss,

for0 <n <1, C > 0, with probability at least 1 — 7

0 < R[sgn(fp)] — RIfp] = Rlfp]l — Rlfo]l < 2e(n,1,C)
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