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Abstract. “Classical” wavelets are obtained by the action of a particular
countable subset of operators associated with the affine group on a func-
tion 1 € L?(IR). More precisely, this set is the collection {Dy; T : j, k €
72}, where Ty, is the translation by the integer k£ and D,; is the (unitary)
dilation by 2/. We thus obtain the discrete wavelet system. Ron and
Shen [4] have shown that by interchanging and renormalizing “half” of
the operators in this set one obtains an important collection of systems
that can be considered “equivalent” to this affine system. In this paper
we show that, in a precise sense, the choice of Ron and Shen is optimal.

1. Introduction

We begin with some observations about the “classical” discrete wavelets. These
are those functions ¢ € L?(IR") for which the system {¢; ()} = {279/2 (2 V2~
k)}, j,k € 7ZZ, is an orthonormal basis for L?(IR).

In order to understand these and related systems, it is useful to consider the
affine group associated with IR, which is the group generated by the dilations
xr — ax, a > 0, and the translations x — x+0b, b € R. We can also consider this
group as the collection of operators (say, on L?(IR)) generated by the dilation
operators D,, a > 0, and the translation operators Tj, b € R, where (D, f)(z) =
a'’? f(ax) and (T, f)(x) = f(z+b). All these operators are unitary. The discrete
wavelets introduced above are obtained by the action on the functions v of a
very special subset of this affine group, the elements of the form Dy—; T_p,
J,k € ZL. That is, ¥j = Dy-; T_j ¢; observe that the translations by k € ZZ
are applied first to ¢ and, then, the dilations Dy-; are applied to T . This
set of operators {Do—; Ty, : j,k € 7ZZ} is not a subgroup of the affine group.

If ||¢]l2 > 1, the fact that {¢;}, j,k € ZZ, is an orthonormal basis is
equivalent to the reproducing formula, valid for all f € L*(IR),

f = Z Z<f7¢j,k>wj,kv (11)

JEZ ke

with convergence in L?(IR). Moreover, (1.1) is equivalent to

103 = D0 > 1 wiml, (1.2)

JEXL kETL
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for all f € L?(R). If either (1.1) or (1.2) hold and ||¢||2 > 1, then, clearly, we
must have ||[¢||2 = 1; if 0 < ||#||2 < 1, then either of these two equalities assert
that the system {t; 1} is a normalized tight frame (a tight frame with constant
1). See Chapter 7 of [2] for proofs of these claims and related questions.

It is natural to ask if other subsets of the affine group can be used to obtain
similar normalized tight frames (or, more generally, frames) for L2(R). A sig-
nificant discovery in this direction was made by A.Ron and Z.Shen [4]. They
showed that, if the system {Dy—; T_p ¢ : j,k € 7L} is changed so that, for
j >0, Doy T_1 0 is replaced by 279/2T_; Dy—; for all k € 7ZZ, we do obtain
a normalized tight frame whenever the original system has this property (and
vice versa). In fact, this equivalence is true more broadly in the sense that one
of these systems is a frame for L?(IR) if and only if the same is true for the
other. One of the goals of this paper is to gain a better understanding of this
and related matters.

Most of what we consider applies to more general situations: higher dimen-
sions, “multi-systems” that are obtained by applying these translations and
dilations to a finite family ¥ = {s!, ... T} C L2(IR"™), and “dual” systems in
which one family, ¥ = {3!,... %}, is used to “analyze” a function and an-
other, ® = {¢!,..., ¢"}, to “synthesize”, or reproduce, the given function from
the data obtained from the “analysis”. That is, (1.1) is extended to equalities

of the form .
F=200 3 (vl dhu (1.3)

(=1 jET keZ™

In order to focus on the properties of appropriate subsets of the affine group
and the systems they generate in the manner described above, however, we will
restrict our attention to the 1—dimensional case and to systems obtained from a
single function. We break this resolve, however, in the following few paragraphs
devoted to the description of continuous wavelets. It is our opinion that the
more general setting will present a better perspective of the questions we are
addressing.

Let D be a closed subgroup of GL(z,R), the general linear group acting on
IR"™. Let us form the semi-direct product

G=DxR"={g=(a,b):acD,becR"}
and endow this set with the product
g1 ©gs = (a17b1) o (a27b2) = (a1a2,a51b1 + bg) (14)

This operation corresponds to the action (a,b)(z) = a(x + b) on the points of
R"™. A simple calculation shows that d\(a,b) = du(a) db is a left Haar measure
on D. Moreover, we have (a,b)™' = (a~!, —ab), so that the action, T, of G on
functions v € L?(IR") defined by

(Ty¥)(w) = |deta| ™/ 9p(g7" (2)) = | deta| /> p(a™ " — b),
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g = (a,b) € G, produces a “continuous” system that is a natural analog to the
discrete system {1 1} we introduced in the first paragraph of this section. We
write

Yo p(z) = |det a|_1/2 Y(a™ e — D), (1.5)

for (a,b) € G, in order to complete this analogy.
It is natural to find a condition on v that guarantees the reproducing prop-
erty

11 = [ v dren = [ ([ (0P d)iua)  (10)

for all f € L%(IR"), which is clearly an analog of (1.2). The following extension
of the “Calder6n condition” provides us with a characterization of those v for
which (1.6) is true.

Theorem 1. Equality (1.6) is valid for all f € L?>(R") if and only if for a.e.
¢eR

Ay(6) = /D [(€a) 2 dpu(a) = 1. (L.7)

In [6] one can find a rather complete discussion of equality (1.7) and its
relation to the original Calderén condition; in particular, a proof of this theorem
is presented in the cited article (see Theorem (2.1)). We shall refer to the
functions v satisfying (1.7) (or, equivalently, (1.6)) as the continuous wavelet
on R"™ associated with the dilation group D. Let us examine, in view of the result
of Ron and Shen that involved the interchange of the order in which translations
and dilations are applied to ¢, what happens in the case of continuous wavelets
when this order is interchanged.

Perhaps a good way of seeing the effect of such interchange is to endow the
set {(a,b) : a € D,b € R™} with the product

(al,bl) o (az,bz) = (alaz,bl + albz) (18)

that corresponds to the action (a,b)(x) = ax + b on the points of R". Let
us denote the group having this operation by G*. We distinguish G and G*
by calling G the affine group and G* the co-affine group (associated with the
dilation group D). The system {5} will be referred to as the affine system
and

V(@) = | detal ™ Y(a™ z ~ b)) (1.9)
is defined to be the corresponding (continuous) co-affine system. * We say that
Y is a (continuous) affine wavelet if (1.6) is true for all f € L2(R"); ¢ is a

'With respect to the operation (1.8), (a,b)™' = (a7!,—a™'b). Thus ¢ (z) =
| det a[~*/2%((a,b) 7 (2)).
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(continuous) co-affine wavelet provided the reproducing formula

198 = [ 1resaPaxn = [ ([ lnzara) sl @

is valid for all f € L?(R"), where \* is the left Haar measure for G*. A simple
calculation shows that d\*(a,b) = | det a|~* du(a) db.

Theorem 2. ¥ Is a continuous affine wavelet if and only if it is a continuous
co-affine wavelet. Moreover, either of these two properties is equivalent to (1.7).

Let us examine the proof of this result, so we can compare it with the
situation in the discrete case. In doing this we also provide a proof of Theorem 1.
We have

Yap () = [det a]/2 (Ea) e 280 % (€) = | detal'/? h(Ea) e 2,
(1.11)

where £a is the product of the row vector £ with the matrix a, and the Fourier
transform we are using has the form

9O = [ @) e

Using the equalities (1.11) and the Plancherel theorem, we have

et

/D/ ol g R a)emf'bdg‘ db dp(a)

/D /]Rn [detal| /]Rn f© (e

- / (20 )2 " (a, D).
G*

/G|<f7wa,b>|2d)\(a7b) 2’”5‘”’d§‘ db dy(a)

. 2 du(a
it ] Me(tcz|

This shows that each expression [, |(f, ¥a,)|* dA(a,b) and [,
is equal to

Jo el

(f, 05 )17 dX* (a,b)

(Fotan O avaua) = [ IFOF [ 1 ) ae
= [ IFOP aude

But this last expression equals || f||3 for all f € L%(IR") (see (1.6) and (1.10)) if
and only if Ay(§) =1 a.e. (see (1.7). The detailed (easy) proof of this is given
in [6](Theorem 2.1).
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This establishes Theorem 2. Consequently, in the continuous case, the affine
wavelets are the same as the co-affine wavelets. This situation is completely
different in the discrete case. This is undoubtedly the case since the countinuous
wavelets involve the systems {15} and {7 ,}, (a,0) € D x R", which, as sets,
are equal. In the discrete case, however, the sets

{Pje =272 Dy s T pip: gk €Y, {ju* =2792T y Dysip:j,k € 7}
(1.12)
are not equal. Let us call the first set the discrete affine system generated by
¢ and the second set the discrete co-affine system generated by ¢. Let X (v)
denote the discrete affine system and X*(¢) the corresponding co-affine system.
The system

X() = {j =y if § <0,k € Z; thj e =277/2 0" if j > 0,k € ZZ},
(1.13)

studied by Ron and Shen, is a sort of hybrid of these two. Ron and Shen called
this system the quasi-affine system generated by 1. In this paper we examine
the properties of these three systems, as well as other related systems. We end
this first section with a trivial observation about the difference between the
affine and co-affine systems in the discrete case.

Suppose 1 is an orthonormal (discrete) wavelet on IR. Then a simple calcu-
lation shows that

(Vi gs-1,-1) = (Vj0,V-1,—2k41)) =0

for all j, k € ZZ. This shows that if X (¢) is an orthonormal basis for L?(IR), then
X*(¢) cannot generate a complete system. More precisely, the closure of the
algebraic span of X*(¢)) has a non-empty orthogonal complement (containing
¥_1,-1 as well as many other elements of X (¢)). In the next section we will
show other properties of X*(¢) that show that, unlike X (¢), it cannot be easily
modified in order to obtain even a frame or a Bessel system. This will give us
further insight into the Ron and Shen system X ().

2. Frames and the three systems X (¢), X*(1), and X (¢)

As promised in the introduction, we restrict our analysis to one dimension. For
the most part of this section, we replace the dilations by powers of 2 to powers of
a (fixed) real number a > 1. When no confusion is likely, we keep the notation
we introduced when we defined these various discrete affine systems. Thus,
for example, ¢; () now denotes the function a=//2¢(a™7z — k), and 7, (x)
denotes the function a—7/2 ¢»(a~7 (x—k)). Associated with these discrete systems
are the continuous wavelets produced by the groups G and G*, associated with
the dilation group D, where D = {a’ : j € ZZ} C GL(1,IR). Then, the system
corresponding to the one defined by (1.5) is the collection of functions

Yip(@) = a2 P(aIe —b),  jEZbER.
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The reproducing property (1.6) is, then,

I =3 /]R|<f,wj,b>|2db7 (2.1)

JEZ

for all f € L?(R). If we use the group G* in this case, then the formula (1.10)
reduces to

191 = 3 [ Ihvnf db (2:2)
JEXL R
In this case, D is an abelian group (isomorphic to (ZZ, +)), and p is the counting
measure. GG and G*, however, are not unimodular and d\*(a, b) = a7 du(j) db.
Equality (1.7) has the form

bGP = 1 ae. (2.3)
JEZL
The factor a=7 in (2.2), that arises from the form of the left Haar measure \*,
could be incorporated in the definition of the co-affine system thus giving us
a re-normalization of the elements 1% ;. In fact, the quasi-affine system X (¢)
does this for “half” the system: for j > 0, we let ¢b; , = a=9/> T_}, Dy 9, while
Vi =ik if j <O0.

In order to clarify the situation, we are now going to study the discrete affine
systems X (¢) = {¢;r : j,k € ZL}, the discrete quasi-affine systems X (¢) =
{@'7,C : J,k € 72}, and the discrete co-affine systems X*(¢) = {w;,k 4k € 72},
where the dilations are integral powers of a > 1 and ¢ € L?(R). The following
observations will present further evidence for the discovery of Ron and Shen to
be of importance.

We showed, at the end of the first section, that X *(¢) cannot be an orthonor-
mal basis for L?(IR) when this is the case for X (¢). In view of the “equivalence”
between the systems X (¢) and )Z'(@b), and the fact that )Z'(z/J) consists of a spe-
cific renormalization of “half” the system X*(¢), it is reasonable to inquire if
there are renormalizations of X * (1) that provide a frame (or even a Bessel sys-
tem). More precisely, does there exist a real sequence {c;}, j € ZZ, such that
{¢j ¢;’k}7 j,k € 7Z, is a frame for L?>(IR)? That is, are there constants A, B such
that 0 < A < B < oo, for which

ANFE < DD e 50l < B (2.4)
JEX kET
for all f € L2(R)?
Let us suppose that such a function ¢ and sequence {c;} exist. Let f =
Cjo Vj, ko~ Lhen, using the second inequality in (2.4), we have

il 1011 = e 1195, aollz < D2 D eio ¥y ks €5 a1

EX ke
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< Blejo? 105, k1 = Blejo * 1013

It follows that
lcjo|> < BIvlI37, (2.5)

for all jo € ZZ.
Let N be the functional on L?(IR) defined by

= > D el

JEZ kEX

and let w(z) = N?(T, f) for x € R. Then w is clearly a 1-periodic function 2
since (T f,c; ¥F ) = (f,¢j T—z—k Dy-i ) and, thus,

’LU(.T + 1) = Z Z | f7 C] —z—(k+1) a*j ¢>|2
JEXL KEZ
= Z Z|<fvch*I*kDa*j 1/]>|2 = lU(JJ)
JEZ ke

We claim that

/01 dx—/ FOP S I af [d(a? &) de. (2.6)

JEZ

To see this, we use the Plancherel theorem (after a change of variables):

1
/medx - ZZ/ (25 T— (o4 Das )2 di

JEX ke
k+1

= Z|CJ|ZZ/ I(fs T—y Dy P)|* dy
JEZL keZ

= SI6P [ AT Do ) dy
JEZ

= Y el d (&) D(@e) eiev e dy
it folfy i

2

= 12 qd Frlai Y d
Tt Sl o) (y)\ y

= Slold [ ORI P de
JEZL

2This kind of periodicity is shared with the quasi-affine systems and it is at the root of the
Ron-Shen approach of reducing wavelet problems to those in shift-invariant spaces.
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and this establishes (2.6).
Since ||Ty fll2 = ||f|l2 for all z € R, it follows from (2.4) that A||f|]? <
w(z) < B||f]|3. This, together with (2.6), yields

ANFIE < /If WD lei? l [(a? §)1” dé < Bl (2.7)
JEXL

for all f € L2(IR). An easy consequence of this (obtained by making an appro-
priate choice of f) is that

A< elPd [Pl ¢))? < B (2.8)

JEZ

for a.e. £ € R. If we replace £ by a™n, for any fixed n € 7ZZ and, then, integrate
over the interval [1, a], we have

Aa—1) < /Z|c 2 ad | ()2 dn

JEZL
- / S leenl? at=" (e’ n)[ dn
VA=y/4
Qg+t
= a3 Jeenl? / (€ ? de.
(€T at

Applying (2.5) to the last expression, we obtain

+1 Z+1

w Y leal [ WOPde < Bl [ li©Pd <o B
(€T = a*
We have shown
(a—1)A < a "B for all n € ZZ. (2.9)

From this we see that there cannot exist a pair (A, B) such that 0 < A < B < o0
for which the frame property (2.4) is true. We have proved

Theorem 3. If ¥ € L?(R) and {c;},j € 7, is any numerical sequence, then
{ej Y5 i} J, k € ZZ, cannot be a frame for L*(R).

This result, and the more elementary observation made at the end of Sec-
tion 1, show that while the selection of operators that produce the affine systems
and the quasi-affine systems provide us with complete discrete systems for ana-
lyzing and reproducing functions, this is not the case for the co-affine systems.
In this connection, it is relevant that equality (2.3) is one of the two equations
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that characterize those ¢ such that X (1)) and X (¢) are normalized tight frames
for L?(R). The other equation, when a = 2, is

i D(2(E+q) =0 ae (2.10)

j=0

whenever ¢ is an odd integer (see Chapter 7 in [2]). There are good reasons to
consider (2.3) to represent the completeness of the system X (1) (or X (¢)). For
example, if ¢ satisfies (2.3) and, say, X (¢) is an orthonormal system, then it
is an orthonormal basis (see [1], [5], [3] for this and more general results). We
have just seen that this completeness fails for X *(¢).

Let us clarify a few points. The “equivalence” between the systems X ()
and )?(w) is, indeed, true when the dilation a is an integer. In this case, if X (¢)
is a normalized tight frame, then so is X (1) and vice versa. For general dilation,
if X (1) is such a frame, so is X (¢/). The converse may be false in general.

We finish this note with an observation that gives us further insight into the
affine and co-affine systems. Let XV (1)) be obtained by “cutting off” the affine
system at N > 0, N € IN. More precisely, 1/’31» =a T D,~iv if j > N,
and %,k = 1), otherwise. Then XN(zp) can be a normalized tight frame for
appropriate ¥; in this case, X (¢) is such a frame as well. There are, however,
¢ such that X (¢) is a normalized tight frame and, yet, this fails to be the case
for )Z'N(z/)). A precise result when N = 1 and a = 2 that explains this situation
is the following fact:

Theorem 4. X'(¢) is a normalized tight frame if and only if

i) STIHEOP =1 ae

JEZ
(i) > (7€) (2 D(2i(E+q) =0 ae when qis odd
j>0
(iii) Zw 20€) 2J &+ q)) = 0 a.e. when q is odd.
Jj=0
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