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Abstract. Recent advances in applied mathematics and signal pro-
cessing have shown that, in order to obtain sparse representations of
multi-dimensional functions and signals, one has to use representa-
tion elements distributed not only at various scales and locations –
as in classical wavelet theory – but also at various directions. In this
paper, we show that we obtain a construction having exactly these
properties by using the framework of affine systems. The representa-
tion elements that we obtain are generated by translations, dilations,
and shear transformations of a single mother function, and are called
shearlets. The shearlets provide optimally sparse representations for
2-D functions that are smooth away from discontinuities along curves.
Another benefit of this approach is that, thanks to their mathemati-
cal structure, these systems provide a Multiresolution analysis similar
to the one associated with classical wavelets, which is very useful for
the development of fast algorithmic implementations.

§1. Introduction

One of the most important features of wavelets is their ability to effi-
ciently represent smooth functions with pointwise discontinuities. Indeed,
if f is a one-variable function that is smooth away from point disconti-
nuities, the rate of convergence of the best n-term wavelet approximation
is optimal, hence, in particular, it is significantly better than the corre-
sponding Fourier approximation [17]. On the other hand, it is well-known
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that wavelets do not perform as well in dimensions larger than one. This
situation is illustrated, for example, by the problem of approximating a
function of two variables containing a discontinuity along a curve. Because
the discontinuity is spatially distributed, it interacts extensively with the
elements of the wavelet basis, and, as a consequence, the wavelet repre-
sentation is not sparse, that is, “many” wavelet coefficients are needed to
accurately represent the discontinuous function.

This limitation has stimulated an active research both in the mathe-
matical and the engineering literature. The problem of representing edges
is of basic importance in image processing, and several variations of the
wavelet scheme have been proposed to address this issue, including the di-
rectional filter banks [2], the directional wavelets [1], the complex wavelets
[13], and the contourlets [8]. In the mathematical literature, this problem
has been extensively examined by Candès and Donoho, who introduced the
ridgelets [4] and then the curvelets [5] in order to overcome the limitations
of traditional wavelets. The curvelets, in particular, are able to achieve an
(almost) optimal approximation property for 2-D smooth functions with
discontinuities along C2-curves [5].

In a number of recent papers, the authors of the present paper and their
collaborators have developed an alternative approach to the construction
of an efficient representation of multivariable functions [10, 11, 16]. The
elements of this representation, which we call discrete shearlets, are ob-
tained by applying dilations, shear transformations, and translations to
an appropriate mother function. For example, in dimension 2, the system
of discrete shearlets is of the form

{ψi,j,k = |det A|i/2 ψ(SjAix− k) : i, j ∈ Z, k ∈ Z2}, (1)

where A is the anisotropic expanding matrix
(

2 0
0
√

2

)
, S is the shear ma-

trix ( 1 1
0 1 ), and ψ is an appropriate band-limited function in L2(R2). As

a result, the shearlets form a Parseval frame of well-localized oscillatory
waveforms which have many scales, shapes, and directions, and are in-
creasingly elongated at finer scales. From this point of view, the shearlets
have many similarities to the curvelets, but with the additional advan-
tage of a simplified mathematical structure. In fact, the shearlets are an
affine-like system of the form (1), while the curvelets, whose construction
involves translation, rotation, and dilation operators, are not generated
by the action of these operators on a single function. Another impor-
tant feature of the shearlets and their generalizations, is the existence of
a Multiresolution analysis (MRA) associated with these systems. This is
very important for the development of fast algorithmic implementations
of these systems, as we will discuss further in Section 3.4. Finally, it is
interesting to notice that the recent digital implementation of curvelets [3]
uses shear transformation rather than the rotations that are employed in
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the definition of the continuous curvelet transform and its discretization
[6, 7].

In this paper, our main goal is to show that, using a framework very
close to the classical theory of affine systems, one can construct a rep-
resentation system of elements distributed not only across various scales
and locations (as the classical wavelets) but also across various orienta-
tions. Our point of view is to start from a special class of continuous affine
systems associated with a 2-parameter dilation group, and then to derive
a Parseval frame of discrete shearlets by sampling the continuous system
appropriately.

The paper is organized as follows. In Section 2 we introduce the con-
tinuous shearlet transform and we show that, unlike traditional continuous
”isotropic” wavelets, this transform is able to identify both the location
and the direction of discontinuities along curves. In Section 3, we obtain
Parseval frames of discrete shearlets by sampling the corresponding contin-
uous shearlet transform, and we show that these systems provide a multi-
scale, directional representation that is efficient in handling 2-dimensional
functions with discontinuities along curves.

§2. Continuous Shearlets

A continuous affine system in L2(Rn) is a collection of functions of
the form

{Tt DM ψ : t ∈ Rn, M ∈ G}, (2)

where ψ ∈ L2(Rn), Tt are the translations, defined by Tt f(x) = f(x−t),
DM are the dilations, defined by DM f(x) = | detM |−1/2 f(M−1x), and
G is a subset of GLn(R). We are interested in the special case where n = 2
and G is the 2-parameter dilation group

G = {Mas =
(

a
√

a s
0

√
a

)
: (a, s) ∈ R+ × R}. (3)

Observe that Mas = Ss Aa is the composition of the anisotropic dilation

Aa =
(

a 0
0

√
a

)
and the shear transformation Ss =

(
1 s
0 1

)
.

In addition, for any ξ = (ξ1, ξ2) ∈ R2, ξ1 6= 0, we assume that ψ is
given by

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2

(ξ2

ξ1

)
, (4)

where ψ1 satisfies
∫ ∞

0

|ψ̂1(aω)|2 da

a
= 1 for a.e. ω ∈ R, (5)
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and ‖ψ2‖2 = 1. Observe that (5) is the standard admissibility condition
satisfied by real-valued continuous wavelets [19]. We will show that, under
these assumptions, the affine system

{ψast(x) = a−3/4 ψ(M−1
as (x− t)) : a ∈ R+, s ∈ R, t ∈ R2} (6)

is in fact a reproducing system for L2(R2), that is,

‖f‖2 =
∫

R2

∫

R

∫ ∞

0

|〈f, ψast〉|2 da

a3
ds dt for all f ∈ L2(R2). (7)

In addition, we choose ψ1 such that ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊂ [−2,− 1
2 ]

∪[ 12 , 2], and ψ2 such that ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1], cf. [11]. We refer
to the systems (6) satisfying these assumptions as continuous shearlets,
and define the continuous shearlet transform of f ∈ L2(R) as the
function

Cf (a, s, t) = 〈f, ψast〉, a ∈ R+, s ∈ R, t ∈ R2.

(a)

¡
¡µ

a = 1, s = 0

HHj
a = 1, s = 3

©©*
a = 1

6 , s = 0

(b)

©©*
a = 1, θ = 0

HHj
a = 1, θ = 3

©©*
a = 1

6 , θ = 0

Fig. 1. (a) Support of the shearlets ψ̂ast (in the frequency domain) for different
values of a and s. (b) Support of the curvelets γ̂abθ (in the frequency domain)
for different values of a and θ.

The geometrical properties of the continuous shearlets are more evident
in the frequency domain. Using (4), a direct calculation shows that

ψ̂ast(ξ) =
(
Tt DMasψ

)∧
(ξ) = a

3
4 e−2πiξt ψ̂(MT

asξ)

= a
3
4 e−2πiξt ψ̂1(a ξ1) ψ̂2(a−1/2(s + ξ2

ξ1
)).

It follows, by the properties of ψ1 and ψ2, that the function ψ̂ast has
frequency support contained in the set

{(ξ1, ξ2) ∈ R2 : ξ1 ∈ [− 2
a ,− 1

2a ] ∪ [ 1
2a , 2

a ] and |s + ξ2
ξ1
| ≤ √

a}.
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This is illustrated in Figure 1(a) for some particular values of s and a.
Thus, the shearlets are oriented waveforms, whose orientation is controlled
by the shear parameter s, and they become increasingly elongated at fine
scales (i.e., as a → 0). This observation also illustrates the role played
by the matrices Aa and Ss in their construction. The anisotropic dilation
Aa controls the ‘scale’ of the shearlets, by applying a different dilation
factor along the two axes. This ensures that the frequency support of the
shearlets becomes increasingly elongated at finer scales. The shear matrix
Ss, on the other hand, is not expansive, and determines the orientation of
the shearlets.

Some properties of the continuous shearlets are similar to the recently
introduced continuous curvelet transform of Candès and Donoho [6]. Let
us recall that the continuous curvelet transform is defined as Γf (a, θ, t) =
〈f, γaθt〉, where γaθt is obtained by applying translations by t and rotations
by θ to appropriate functions γa, a ∈ R+, where a is a scale parameter.
However, unlike the shearlets, the curvelets are not generated by an affine
transformation acting on a single function γ. Figure 1(b) shows the tiling
of the frequency plane induced by the continuous curvelets [6, 7].

We will now show that the shearlets {ψast : a ∈ R+, s ∈ R, t ∈ R2} are
a reproducing system for L2(R2).

Theorem 1. Let ψ ∈ L2(R2) be given by (4), where ψ1 is a real-valued
continuous wavelet and ψ2 ∈ L2(R). Then (7) holds for all f ∈ L2(R2).

Proof: In order to prove this theorem, we recall a well-known fact about
continuous wavelets that can be found for instance in [19, Thm.2.1]: the
equality

‖f‖2 =
∫

R2

∫

G

|〈f, Tt DMψ〉|2 dλ(M) dt,

where G ⊂ GLn(R) and λ is a measure on G, holds for all f ∈ L2(R2) if
and only if

∆(ψ)(ξ) =
∫

G

|ψ̂(MT ξ)|2 | detM | dλ(M) = 1 for a.e. ξ ∈ R2. (8)

Now we focus on the special case that G is given by (3). Then, using the
measure dλ(M) = da

a3 ds, the admissibility condition (8) is:

∆(ψ)(ξ) =
∫

R

∫ ∞

0

|ψ̂(MT
asξ)|2 a−3/2 da ds = 1 for a.e. ξ ∈ R2. (9)

Thus, it only remains to show that (9) is satisfied. Since ψ1 is a real-valued
continuous wavelet, (5) holds. Thus, using (4) and (5), a direct calculation
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shows that, for a.e. ξ = (ξ1, ξ2) ∈ R2, ξ1 6= 0, we have:
∫

R

∫ ∞

0

|ψ̂(MT
asξ)|2 a−3/2 da ds

=
∫

R

∫ ∞

0

|ψ̂1(aξ1)|2 |ψ̂2(a−1/2(s + ξ2
ξ1

))|2a−3/2 da ds

=
∫ ∞

0

|ψ̂1(aξ1)|2
∫

R
|ψ̂2(s + a−1/2 ξ2

ξ1
)|2 ds

da

a

=
∫ ∞

0

|ψ̂1(aξ1)|2 da

a
= 1.

2.1. Resolution of edges using the continuous shearlets

It is known [18] that, if ψ is a ‘nice’ continuous wavelet, then the
continuous wavelet transform Wf (a, t)〈f, ψat〉, where ψat = Tt Da ψ, is
able to localize the singularities of f in the following sense. For a → 0, the
function Wf (a, t) tends rapidly to zero, when t is outside the singularity,
and Wf (a, t) tends to zero slowly when t is on the singularity.

One major property of continuous shearlets is their ability to resolve
the discontinuities of 2-D functions by identifying not only the location,
but also the orientation of the discontinuity.

More precisely, let f be a 2-D function that is smooth away from a
discontinuity along a curve C. Then, for a → 0 the continuous curvelet
transform satisfies

|Cf (a, s, t)| ≤ C aN , for each N = 1, 2, . . . ,

unless t is on C and s describes the orientation perpendicular to C at t (we
refer to [14] for more details). The following example is a special case of
this general property :

Example 1. Let f = χD, where D is the unit disc in R2, then, for a → 0,

• if t ∈ ∂D and s corresponds to the direction normal to ∂D, then
|Cf (a, s, t)| ∼ a3/4;

• otherwise, for each N = 1, 2, . . . , |Cf (a, s, t)| ≤ C aN .

§3. Discrete Shearlets

In this section we present a general framework for the discretization
of the continuous shearlet transform, that leads to a variety of shearlet
frames.

We recall the following simple facts from the theory of frames. A
countable family {ej : j ∈ J } of elements in a separable Hilbert space H
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is a frame if there exist constants 0 < A ≤ B < ∞ satisfying A ‖f‖2 ≤∑
j∈J |〈f, ej〉|2 ≤ B ‖f‖2 for all f ∈ H. A frame is tight if A and B can

be chosen so that A = B, and is a Parseval frame if A = B = 1. Thus,
if {ej : j ∈ J } is a Parseval frame for H, then ‖f‖2 =

∑
j∈J |〈f, ej〉|2

for each f ∈ H. This is equivalent to the reproducing formula f =∑
j∈J 〈f, ej〉 ej for all f ∈ H, where the series converges in the norm of H.

This shows that a Parseval frame provides a basis-like representation. In
general, however, a Parseval frame need not be a basis.

3.1. General method

By sampling the continuous shearlet transform Cf (a, s, t) = 〈f, ψast〉
on an appropriate discrete set of the scaling, shear, and translation param-
eters (a, s, t) ∈ R+×R×R2, it is possible to obtain a frame or even a Parse-
val frame for L2(R2). By keeping the greatest generality, we can choose an
arbitrary set of scales {aj}j∈Z ⊂ R+; next we choose the shear parameters
{sjk}k∈Z ⊂ R dependent on j, so that the directionality of the represen-
tation is allowed to change with the scale. Finally, in order to provide a
“uniform covering”, we allow the location parameter to describe a differ-
ent grid depending on j, and hence, on k. We let tjkmSsjk

Aaj bm, m ∈ Z2,
b > 0. Thus, observing that T{Ssjk

Aaj
bm}DSsjk

Aaj
= DSsjk

Aaj
Tbm, we

obtain the discrete set

{ψjkm = DSsjk
Aaj

Tbm ψ : j, k ∈ Z, m ∈ Z2}.

In [14], we derive estimates for the frame bounds of such a general dis-
crete shearlet system, thereby providing a very general strategy to design
specially adapted discrete directional representations.

3.2. Discrete shearlets on R2

In this section, we apply the general machinery described above to con-
struct a Parseval frame of shearlets for L2(R2). For the scaling parameter
we use the dyadic sampling aj = 2j , j ∈ Z. In order to cover the frequency
plane “uniformly”, we need a larger number of directions as j is getting
smaller, and, thus, we set the shear parameter to be sjk = k

√
aj = k2

j
2 ,

k ∈ Z. Finally, the location parameter is determined by adjusting the
canonical grid Z2 to the particular scaling and shear parameter, i.e., we
choose tjkmSsjk

Aaj m, m ∈ Z2. Combining all this and observing that
T{S

k2j/2Aj
2m}DSkA2j DAj

2Sk
Tm, we obtain the discrete system

{ψjkm = DAj
2Sk

Tm ψ : j, k ∈ Z, m ∈ Z2}. (10)

It is interesting to observe that this choice of sampling points gives a spe-
cial case of the affine systems with composite dilations introduced in [11].
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We will now choose ψ ∈ L2(R2) in a way similar to the continuous
case. We define ψ ∈ L2(R2) by (4), where ψ1 ∈ L2(R) with ψ̂1 ∈ C∞(R)
and supp ψ̂1 ⊂ [− 1

2 ,− 1
4 ] ∪ [ 14 , 1

2 ] satisfying

∑

j∈Z
|ψ̂1(2jω)|2 = 1 for ω ∈ R, (11)

and ψ2 ∈ L2(R) with ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊂ [−1, 1] satisfying

∑

k∈Z
|ψ̂2(k + ω)|2 = 1 for ω ∈ R. (12)

Notice that ψ̂` ∈ C∞(R), ` = 1, 2, implies that |ψ`(x)| ≤ KN (1 + |x|)−N ,
KN > 0, for any N ≥ 0, and thus the function ψ is well-localized.

We point out that there exist several choices of functions ψ1 and ψ2

satisfying these properties. For example, we can choose ψ1 to be the
Lemariè–Meyer wavelet ψLM (see [12, Sec.1.4]), defined by ψ̂LM (ω) =
eiπω b(ω), where

b(ω) =





sin(π
2 (3|ω| − 1)) : 1

3 ≤ |ω| ≤ 2
3 ,

sin( 3π
4 ( 4

3 − |ω|)) : 2
3 < |ω| ≤ 4

3 ,

0 : otherwise.
(13)

In order to construct ψ2, let φ be a compactly supported C∞ bump func-
tion supported in [−1, 1], and define ψ2 by

ψ̂2(ω) =
φ(ω)√∑

k∈Z |φ(ω + k)|2 . (14)

We have the following result from [11].

Theorem 2. Let ψ ∈ L2(R2) be given by (4), where ψ1 and ψ2 satisfy
(11) and (12), respectively. Then the system (10) is a Parseval frame for
L2(R2).

Thus, with the choice of ψ that we described in this section, the sys-
tem (10) is a Parseval frame of well-localized waveforms, with frequency
support increasingly elongated at finer scale (j → −∞) and with the di-
rections depending on k and j. We will refer to the elements of this system
as discrete shearlets. The induced tiling of the frequency plane of the
discrete shearlets is illustrated in Figure 2(a).
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3.3. Discrete shearlets on the cone
By modifying the construction of the previous section, we can obtain a

Parseval frame for functions whose Fourier transform is supported in the
cone

C = {(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 1
4 , | ξ2

ξ1
| ≤ 1}. (15)

We sample the scaling parameter of the continuous curvelet transform
by choosing aj = 2−2j , j ≥ 0. Next we set the shear parameter to be sjk =
k
√

aj = k2−j , −2j ≤ k ≤ 2j , and the location parameter tjkmSsjk
Aaj

m,
m ∈ Z2. Hence, using a calculation similar to the previous section, we
obtain the discrete set

{ψjkm = DA−2j
2 Sk

Tm ψ : j ≥ 0,−2j ≤ k ≤ 2j , m ∈ Z2}. (16)

Again, define ψ ∈ L2(R2) by (4), where ψ1 ∈ L2(R), ψ̂1 ∈ C∞(R) and
satisfies ∑

j≥0

|ψ̂1(2−2jξ)|2 = 1 for |ξ| ≥ 1
4
, (17)

and ψ2 ∈ L2(R) is a band-limited function with supp ψ̂2 ⊂ [−1, 1], ψ̂2 ∈
C∞(R) and satisfies

|ψ̂2(ξ − 1)|2 + |ψ̂2(ξ)|2 + |ψ̂2(ξ + 1)|2 = 1 for |ξ| ≤ 1.

It follows that, for any j ≥ 0,

2j∑

k=−2j

|ψ̂2(2j ξ + k)|2 = 1 for |ξ| ≤ 1. (18)

As mentioned in the previous section, ψ̂1, ψ̂2 ∈ C∞(R) yield a well-
localized function ψ.

Let us mention that there exist an abundance of functions ψ1 and ψ2

satisfying those conditions. Let ψLM denote the Lemariè–Meyer wavelet,
and let the corresponding window function b be defined as in (13). Then
it is easy to see that

∞∑

j=−1

|b(2−jξ)|2 = 1 for |ξ| ≥ 1
4
.

Now letting |ψ̂1(ξ)|2 = |b(2ξ)|2 + |b(ξ)|2, it follows that
∞∑

j≥0

|ψ̂1(2−2jξ)|2 =
∞∑

j=−1

|b(2−jξ)|2 = 1 for |ξ| ≥ 1
4
.

The function ψ2 can be chosen as in (14).
We have the following result.
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Theorem 3. Let ψ ∈ L2(R2) be given by (4), where ψ1 and ψ2 satisfy
(17) and (18), respectively. Then the system (16) is a Parseval frame for
L2(C)∨.

Proof: Using (17) and (18) it is easy to see that, for ξ = (ξ1, ξ2) ∈ C,

∑

j≥0

2j∑

k=−2j

|ψ̂(ST
k A−2j

2 ξ)|2

=
∑

j≥0

2j∑

k=−2j

|ψ̂1(2−2j ξ1)|2 |ψ̂2(2j ξ2
ξ1

+ k)|2

=
∑

j≥0

|ψ̂1(2−2j ξ1)|2
2j∑

k=−2j

|ψ̂2(2j ξ2
ξ1

+ k)|2 = 1.

The claim follows immediately from this observation.

Similarly to the previous section, the system (16) is a Parseval frame of
well-localized oscillatory waveforms, with the number of directions increas-
ing with j, dependent on k and j, and increasingly elongated for j →∞.
We will refer to the elements of this system as discrete shearlets on C.

(a)

A
A
A
AU

Slope: k2−j = sjk

(b)

Fig. 2. (a) The tiling of the frequency domain induced by the discrete shearlets.
(b) The tiling of the frequency domain induced by the discrete shearlets on the
cone.

In order to obtain a reproducing system for the larger space L2(R2),
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we can construct in a similar way a Parseval frame for L2(C̃)∨, where

C̃ = {(ξ1, ξ2) ∈ R2 : |ξ2| > 1 and | ξ2
ξ1
| > 1};

next we can construct a Parseval frame for L2(T )∨, where

T = {(ξ1, ξ2) ∈ R2 : |ξ1|, |ξ2| ≤ 1}

by taking translates of an appropriate smooth window function. Finally,
we obtain a reproducing system for L2(R2) by appropriately combining
the three complementary Parseval systems that we have described. We
refer to the elements of this system as discrete shearlets on the cone.
Figure 2(b) illustrates the tiling of the frequency plane induced by this
system. The benefit of this construction, compared to (10), is that, for
each j, the shear parameter k ranges over a finite set. This is a clear
advantage for their numerical implementation. We observe that the tiling
of frequency plane using concentric squares also appears in [8] and [3].

3.4. Further results

The discrete shearlets provide (essentially) optimally efficient represen-
tations of 2-D objects with edges. More precisely, let f be a 2-D function
that is C2 apart from discontinuities along C2-curves. Then, denoting by
fm the approximation obtained by taking the best m terms in the discrete
shearlets expansion of f , the L2-error ‖f − fm‖2 of such approximation
decays asymptotically as O(m−2 (log m)3), as m → ∞ [9]. This result is
essentially optimal and is exactly the rate obtained using the curvelets [5].

As we mentioned before, a very important feature in the theory of
shearlets and their generalizations is the existence of a Multiresolution
analysis associated with these systems, called AB–MRA. This theory has
been developed by the authors in [10, 11], where it is shown that the
AB–MRA generalizes to a great extent the classical MRA associated with
wavelets. One of the consequences of this approach is that there is a
simple recursive algorithm for decomposing multi-dimensional functions
and signals, that generalizes the so-called cascade algorithm. As in the
classical wavelet theory, this is very useful for the development of a fast
algorithmic implementation of shearlets [16, 15].

The shearlet transform associated with the discrete shearlets on the
cone is currently being implemented. For details about numerical imple-
mentations of our results we refer to [15].
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