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Abstract. Region of interest (ROI) tomography has gained increasing attention in recent years
due to its potential to reducing radiation exposure and shortening the scanning time. However,
tomographic reconstruction from ROI-focused illumination involves truncated projection data
and typically results in higher numerical instability even when the reconstruction problem has
unique solution. To address this problem, both ad hoc analytic formulas and iterative numerical
schemes have been proposed in the literature. In this paper, we introduce a novel approach for
ROI tomographic reconstruction, formulated as a convex optimization problem with a regu-
larized term based on shearlets. Our numerical implementation consists of an iterative scheme
based on the scaled gradient projection method and it is tested in the context of fan-beam CT.
Our results show that our approach is essentially insensitive to the location of the ROI and
remains very stable also when the ROI size is rather small.
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1. Introduction

Computed Tomography (CT) is a noninvasive imaging technique designed to visualize the internal struc-
ture of a body or an object without surgical intervention or destructive material testing. The impact of
CT has been enormous in different areas, including industrial nondestructive testing, security screening
and medical diagnostics.

Region of interest (ROI) tomography aims at the reconstruction of a particular area of interest within a
field of view while the rest of the image is neglected. Since this operation would require to irradiate only a
region within the field of view, it is possible in principle to speed up data collection by shortening scanning
time, and to reduce potentially harmful X-ray radiation exposure. As a result ROI tomography has
received increasing attention in recent years in applications including biomedical imaging, e.g., contrast-
enhanced cardiac imaging and positioning of intracranial stents, and industrial testing.
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CT reconstruction consists in recovering the unknown density function of an object by collecting
projections from multiple views, i.e., by measuring the attenuation of X-rays propagated through the
object. This problem is mathematically ill-posed in general, and the ill-posedness is more severe when
projections are truncated [31], as in the case of ROI-focused irradiation. It is known that the direct
application of classical reconstruction algorithms such as the Filtered Back-Projection (FBP) or the
FDK algorithms [32] with ROI-truncated projections and the missing projection data set to zero can
produce serious visual artifacts and numerical instability. These undesirable effects become worse as the
size of the ROI decreases.

During the last decade, a number of analytic and algebraic methods have been proposed to address
the problem of ROI reconstruction from truncated projections [8]. While this problem is not guaranteed
to have unique solution in general [31], it was shown that it is possible to derive analytic ROI reconstruc-
tion formulas from truncated data under restrictive assumptions on the location of the ROI or a priori
information [9,34,43]. For example, the Differentiated Back-Projection (DBP) method [10,35,41] can be
applied if there exists at least one projection view in which the complete (i.e., non-truncated) projection
data are available. Algebraic or iterative methods, on the other hand, are generally more flexible, since
they can be applied to essentially any type of acquisition mode. They are usually computationally more
demanding, even if advances in high-performance computing make algebraic methods more and more
competitive [3,22]. Some common iterative algorithms, which have been adapted to ROI tomography, are
the simultaneous iterative reconstruction technique (SIRT) [26], the maximum likelihood expectation-
maximization algorithm (MLEM) [36] and the least-squares Conjugate Gradient (LSCG) method [27].
The performance of such reconstruction methods is usually rather sensitive to the ROI size and the
presence of noise. Other contributions includes a Bayesian multiresolution method for local tomography
reconstruction in dental X-ray imaging [33], where the authors use a wavelet basis for the representation
of the dental structures, with high resolution inside the ROI and coarser resolution outside the ROI.
This approach is closely related to the one more recently proposed in [28]. A wavelet-based regular-
ization algorithm based on iterative reconstruction-reprojection is proposed in [1], where a smoothing
convolution operator for the re-projecting phase is included. In all these approaches some form of prior
knowledge on the object attenuation function, or a regularization term, is used to ensure a stable ROI
reconstruction. Other regularization-based approaches, which do not rely on multiscale methods, can be
found in [24,40,42].

In this paper, we address the ROI CT reconstruction problem using an iterative algorithm formulated
as a convex optimization problem with a regularized functional based on shearlets, a multiscale methods
that is especially designed to sparsely approximate images with edges [13] and, thus, is expected to provide
an efficient representation for the images found in common CT applications. We recall that shearlet-based
approaches for CT reconstruction were recently proposed in [16,37], for the non-truncated case.

The regularized approach we consider in this paper is inspired by the reconstruction recently proposed
in [17] that combines a data fidelity constraint to ensure that reconstructed projections match the observed
data inside the ROI and a data consistency condition to enforce that solutions are consistent with the
tomographic reconstruction problem. We adopt the same setting and propose two new formulations of
the regularized reconstruction problem that we call implicit and explicit formulations. In addition to
using a shearlet-based regularization, another novelty of this paper is that our numerical implementation
is based on the scaled gradient projection method (SGP) [4] — an accelerated first-order descent method
for convex and non-convex objective functions. This method is particularly effective when the feasible
region is given by “simple” constraints, as it is in our case where the projection onto a feasible region has
a simple implementation. The numerical tests reported in this paper show that our algorithm produces
accurate ROI reconstructions for any ROI location and also for ROI sizes that are small with respect to
the field of view.

The paper is organized as follows: in Section 2, we introduce the problem formulation in both the
continuous and the discrete settings, and derive two possible formulations of the objective function. We
also recall some background about shearlets and the SGP algorithm. In Section 3 we recall the distance-
driven method [12] that we use to simulate acquisition. Numerical experiments and results are given
in Section 4. Concluding remarks are in Section 5. A preliminary version of our results was recently
presented in a conference paper [5].
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2. A SGP-shearlet approach for ROI tomography

The framework we introduce below applies to different projection geometries, including parallel and fan-
beam, and extends to higher dimensions. However, for brevity, we only consider here the 2D case. The
higher dimensional case is similar.

2.1. The Radon transform and the ROI solution problem

The CT reconstruction problem consists in reconstructing a density function from a set of projections,
obtained by measuring the attenuation of X-rays over straight lines. Mathematically, it can be for-
mulated as a “line-integral model” through the Radon transform. Given a function f € L'(R?), the
Radon transform of f at (6,7) is the line integral of f over the lines (or rays) ¢(6,7) perpendicular to

ep = (cos(), sin(@))T € St with (signed) distance 7 € R from the origin:

’Rf(@,T):/ f(x)dx = 5(r—x-eg) f(x)dx,

£(0,7) R2

where £(0,7) = {x € R? : x - eg = 7}. Therefore, the Radon transform maps f into the set of its linear
projections defined on the tangent space T = {(0,7) : € [0,27), 7 € R}. In what follows, we will refer
to the Radon projections as the full sinogram and we shall denote it by:

y(0,7) =Rf(0,7), 6€][0,2n), TR (2.1)

We will refer to the domain of (2.1) as the projection domain and to the domain of the density function
as the image domain.

In the ROI tomographic problem, projections are only collected for those rays meeting a region-of-
interest inside the field of view. The goal is to recover the density function inside the ROI, while the rest
of the function is essentially ignored. Denoting the ROI as S C R2, the set of ROI-truncated projections
is identified as the set

P(S)={(6,7) € T 6(6,7) NS #0} C T.

Thus, the ROI reconstruction problem can be formulated as the problem of reconstructing the function
f restricted to the ROI S from the truncated Radon projections:

yo(0,7) = M0, 7)Rf(0,7), M(0,7) = 1ps)(0,7) (2.2)

where M is a mask function selecting only the rays passing through the ROI, and 14 is the indicator
function of the set A. We will refer to yy as the truncated sinogram. In the following, we will assume that
the ROl is a disk S C R? with center pror € R? and radius Rror € R. Thus, P(S) = |T—pror1-es| < Rror-
This is not a restrictive assumption as more general ROIs can be handled by finding the minimal enclosing

disk for this ROIs.
A standard approach for obtaining a reconstruction of f from equation (2.2) is by computing the least

squares solution fA
F = argmin | MRS~y (2.3)

However, the minimizer of this problem is not unique in general. In fact, it is known that the solution of
the ROI problem is not guaranteed to be unique in general [31]. Even when the uniqueness is ensured, the
inversion of the Radon transform is an ill-posed problem, and the ill-posedness may be more severe when
the projections are truncated, as in the case of the ROI CT problem. A classical approach to achieve
uniqueness is by using Tikhonov regularization, which imposes an additional norm condition by searching
for the minimum-norm solution. This norm condition can be applied in the image or in the projection
domain, leading to possibly different solutions.

To derive a stable formulation of the ROI reconstruction problem we combine a Tikhonov-like regu-
larization with the following observation from [17]. Notice that

y=yo+(1-M)y, (2.4)
2
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showing that the ROI reconstruction problem can be viewed as an extrapolation problem on yq. Clearly,
we cannot choose any extrapolated function y outside P(S) but a global constraint is needed to ensure
that y belongs to the range of the Radon transform of the density function f € L'(R) N L?(R):

Rf=uy. (2.5)

By applying M and 1 — M to the left-hand and right-hand sides of (2.5), respectively, we hence obtain
(cf. [17]):

MRf=My=uy (data fidelity) (2.6)
1-MRf=(1-M)y. (data consistency) (2.7)

Equation (2.6) defines a counstraint inside the ROI, forcing fidelity to the truncated sinogram, while
equation (2.7) imposes a constraint on the extrapolation scheme, asking for consistency with the (hypo-
thetical) full sinogram. In Section 2.2 we show how to combine these equations with regularization to
obtain a computationally suitable algorithm for the ROI CT problem.

2.2. Explicit and implicit discrete formulations of the objective function

To derive a discrete formulation for the ROI CT reconstruction problem, we start by discretizing equations
(2.6) and (2.7). We shall denote by K the number of projection angles and by P the number of detector
cells (i.e., the samples along the detector array); N is both the width and the height in pixels of the object
to reconstruct. Equation (2.1) can be understood as a Fredholm integral equation of the first kind, where
the kernel §(7 — x - ep) describes how to map the image domain into the projection domain (namely, the
projection geometry) can be discretized by means of a matrix W which has dimensions K P x N2. The
mask identifying the ROI is the diagonal matrix M of dimensions K P x K P whose entries are either 0
or 1. The unknown discrete density function f to be reconstructed is represented as a vector f of length
N? in which the entries are stacked column by column. Similarly, the full sinogram y and the truncated
sinogram ) are represented as vectors y and yg, respectively, of length K P, obtained by stacking the
entries column-wise. We recall that y and y( are related to each other by the data fidelity equation

yo = My = MWT, (2.8)
and the data consistency equation, that sets the extrapolation scheme outside the ROI, reads as
(Ixp —M)Wf = (Ixkp — M)y, (2.9)

where Ixp is the KP x K P identity matrix. As indicated above, data fidelity and data consistency
equations need to be coupled with a regularization term to yield a unique solution.

Rather than requiring the exact equalities stated by the equations (2.8) and (2.9), we shall minimize
the L2-norm error associated to them, according to a maximum likelihood approach [39]. By exploiting
this idea, we can state two different optimization problems and objective functions. On the one hand, we
can consider the L2-norm error of the data fidelity equation only and incorporate the data consistency
information in the regularization term. In this case, the only variable we are minimizing on is the image
f to be reconstructed. This approach yields:

f= argfneﬁélf w(f)

where

1
¥(f) = 5 IMWE — yoll3 + A |®((Ixp — MYWT +y0)][3, (2.10)

where @ is a discrete filter which will be discussed in more details in Section 2.3. We will refer to (2.10)
as the implicit formulation, since the full sinogram y does not appear explicitly.

On the other hand, we can consider both the data fidelity and the data consistency L?-norm errors into
the objective function to assess if, by explicitly incorporating the extrapolation scheme in the minimization
problem, we achieve a more accurate reconstruction. In this case, the image f to be reconstructed and
the full sinogram y are both unknown. This second approach yields:

(f,?) = arg min ¥(f, )
yZOf

3
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where
1 1
¥(f,y) = 5 IMWE - yoll3 + SIIxp — M)(WE — VIE+ A 2((Ixp — M)y + yo)l3. (2.11)

In contrast with the above formulation, we will refer to (2.11) as the explicit formulation. Notice that
each term of the objective function is convex with respect to the unknowns. In both cases, A denotes the
regularization parameter and the feasible region (2 is either defined as f > 0 (nonnegativity constraint)
or — when the maximum pixel value L of the image happens to be known (for instance, in the case of
synthetic data) —as 0 < f < L (box constraint). In both cases the inequalities are meant component-wise.
Clearly, we can always assume to be in the case of box constraints, and the limit case L = 400 recovers
the nonnegativity constraint case. The case L < 400 has mostly a numerical impact, not as much for the
computational cost but rather on the sequence generated by the algorithm since we are “narrowing” the
feasible region.

We will also include a smoothed total variation (sSTV) term [38] in the objective function to control
oscillatory artifacts in the numerical solution. In conclusion, our objective functions are

1
P(f) = 5 IMWE — voll3 + A @((Ixp — MYWE + yo) |3 + p TVs(£) (2.12)
for the implicit formulation and
1 1
U(f,y) = SIIMWE —yo[[5+ Sl|(Txp = M)(WE —y)[5 + A @((Txp = M)y + yo)lI3 + p TVs(f) (2.13)

for the explicit one. Here, p is a regularization parameter and 0 is the TV smoothing parameter. sTV was
chosen since it is widely used in medical imaging. In the following, we will investigate if using the Tikhonov-
like regularization term is superior to the sTV minimization and/or to the combined minimizations (2.12)
and (2.13).

We remark that, in the absence of noise, the solution f is the same for both the implicit and the explicit
cases (up to a vector in the nullspace of W). However, in the presence of noise, the explicit formulation
should benefit from the presence of the norm |[Wf — y||3 that is in general non-zero, forcing a more
accurate reconstruction inside the ROI. Thus, in the following, we will compare the implicit and explicit
formulations, to asses which yields more accurate reconstructions.

2.3. Regularization term: discrete shearlet transform

In the Section above, the term ® was intentionally left unspecified. The filter ® is obtained from a

suitable discrete shearlet transform by getting rid of (or thresholding) the 90% of its smallest coefficients.

To better clarify, we briefly recall below the main ideas about shearlets, a multiscale method which refines

the conventional wavelet framework by combining multiscale analysis and directional sensitivity [19,29].
Let ¢ € L?(R?). A 2D affine family generated by ¢ is a collection of functions of the form:

{qu,t(x) — | det(M) |—%¢(M—1(:c f t)) c MeG,te ]R2}

where G is a subset of the group GL3(R) of invertible 2 x 2 matrices. The function ¢ is called a 2D
continuous wavelet if

g(x)z/G/W(g, Bare) dari(x) dt dN(M) V g € L*(R?),

where A(M) is an suitable measure on G. The corresponding 2D continuous wavelet transform of g is the
mapping
g = Wg(M,t) = (g, dum), M e G,t € R%

Discrete wavelet transforms are obtained by discretizing Wg(M, t) on an appropriate grid. Usually, M € G
and ¢t € R? are replaced by A7, j € Z, and k € Z?, respectively, for appropriate choices of the matrix A.
Similarly to wavelets, continuous shearlets are affine systems of the form:

{%,s,t(x) = | det(M, s) |*%¢>(M;;(:c - t)) c: Melte RQ},

4
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where ¢ € L?(R?). To construct shearlets, I" = {Ma,s = (8 S\\//aa) ca€RT,s€ R} is the subset of

GL3(R) comprising the matrices M, s obtained by multiplying an anisotropic dilation matrix A, with a

shear matrix S,:
_fasya) (a0 1s)
Ma,s = <0 \/a> = (0 \/a> <o 1) =: AaSs.

Here the variables a € RT, s € R and t € R? denote the scale, orientation and the spatial location,
respectively. Thus, continuous shearlets are formed by (anisotropically) dilating, shearing and translating
an appropriate mother shearlet function ¢ € L2(R?) [21], while continuous wavelets are obtained by
(isotropically) dilating and translating. Roughly speaking, shearlets are well localized waveforms whose
orientation is controlled by the shear parameter s and that become increasingly elongated at fine scales
(as a — 0). The continuous shearlet transform of g is the map

g = SHgla,s,t) = (g, Past), a€RT s eR,t R

Discrete shearlets are formally defined by sampling continuous shearlets on an appropriate discrete
set. In particular, we choose

{(bj,k,m(fﬂ) = 2%j¢(SkA2j$ — m) c . k€Zme Zz}
(2.14)
with 5.t F(@)(w) = F(é1)(wr) F(éa) <Z—j) |

where w = (w1,ws), F(¢1) is the Fourier transform of a wavelet function with compact support away
from the origin and F(¢2) is a compactly supported bump function with supp(F(¢2)) C [—1,1]. Such
mother shearlet ¢ is called classical mother shearlet. Notice that there exist several choices for ¢; and
¢- satisfying the classical mother shearlet definition. One possible choice is to set ¢; to be a Lemarie—
Meyer wavelet and ¢2 to be a spline bump function. Starting from a classical mother shearlet, and under
other suitable assumptions (see [20]), one can obtain a tight frame for L?(R?), and hence an invertible
decomposition.

Summarizing, shearlets exhibit very appealing mathematical properties: they are well localized, namely
they are compactly supported in the frequency domain and have fast decay in the spatial domain; the
parabolic scaling facilitates the handling of anisotropic structures; highly directional sensitivity is provided
by the shearing parameter. Thanks to these properties, shearlets provide optimally sparse approximations
with images containing C?-edges, outperforming conventional wavelets [19]. This is potentially relevant
in CT-like applications, since point-like structures in the image domain map onto sine-shaped curvilinear
structures in the projection domain.

In the following, after constructing the band-limited shearlet system above, we will threshold the 90%
of the smallest (in absolute value) shearlet coefficients {(f, ¢j k,m)}jkm- The ratio for this is that the
smallest coefficients are usually connected to noise, while the largest are associated to edges. By getting
rid of the smallest ones, we are able to separate the structural components of the object from the noise.
Hence, ® is the filter resulting from the combination of the thresholding operation and the shearlet
transform.

2.4. Scaled gradient projection method

In this Section, we describe our algorithm for the solution of the optimization problems (2.12)-(2.13).
A step-by-step description is given in Algorithm 1, for the case of the implicit formulation. A similar
step-by-step description can be derived for the explicit case, as discussed at the end of this Section.

The proposed method, called scaled gradient projection (SGP) method [4], is an iterative approach
that belongs to a family of first-order descent methods and is defined for convex (and non-convex),
differentiable and constrained problems with “simple” feasible regions. This is indeed our case since the
feasible region (2 is usually either a box or a non-negativity constraint and, as indicated above, our
functionals are convex and differentiable.

When the objective function reads as in (2.12), the (k + 1)-th iteration is given by

£+ — (1 = M) £R) 4 A, P, (f(’“) - akaV\Il(f(k))) k=0,1,2,..., (2.15)

5
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where )\, oy are suitable step lengths, Dy, is an appropriate scaling matrix, and Py, is the projection
onto the feasible region. The main feature of this method consists in the combination of non-expensive
diagonally scaled gradient directions with step length selection rules specially designed for these directions.
In details, it is allowed any choice of the step length «y, in a closed interval [min, ¥max] C Rt and of the
scaling matrix Dy among the set of the symmetric and positive definite scaling matrix such that all its

eigenvalues are contained in an interval[%k, Lk} where L, > 1 and Y- (L? — 1) < co. Such a degree of

freedom is very important from a practical point of view because it makes the updating rules problem-
related and performance-aware. Additionally, global convergence properties are ensured by exploiting a
nonmonotone line search strategy along the feasible direction [11,18]. Indeed, the nonmonotone line search
strategy, as implemented in step 5 of Algoritm 1, ensures that ¥ (f(-+1) (B (D y(E+D) respectively)
is lower than the maximum of the objective function on the last u iterations by successive reductions of
Ag; of course, if u = 1 then the strategy reduces to the standard monotone Armijo rule.

Our implementation of SGP is equipped with an adaptive step length selection based on the Barzilai-
Borwein (BB) updating rules [2,14]. In practice, by means of a variable threshold, one of the two different
selection strategies

aE’Bl = arg min HB(ak) sth=1) _ C(kfl)H
ap€eR

aPB? = arg min Hs(kfl) - B(ak)flg(kfl) H
ap€eR

is selected [15], where B(ay) = (apDy)~" approximates the Hessian matrix V2®(f(*)), s(k=1) = (k) _
£~ and ¢F=D = VP (fF)) - V¥ (£f+=1), As far as the scaling matrix concerns, Dy, is chosen according

to a split-gradient idea [30] based on the decomposition of the gradient of the objective function into a
(k)

positive and a negative part. The updating rule for each entry d; is:

£
d" = min { Ly, max § —, ——— i=1,...,KP (2.16)
Ly Vi(fi( ))

where V; is the i-th component of the positive part V of the gradient decomposition. The role of Dy
is to improve the convergence rate without introducing significant computational costs. We can setup
the SGP method for the case of two unknowns, as in equation (2.13), by applying the SGP iteration
to the “enlarged” variable (f,y). This is accomplished by tacking a block-diagonal scaling matrix: the
block corresponding to the image f reads as described above, while for the block corresponding to the full
sinogram y we take Dy = Ixp for each k =0,1,2,.... That is, the (k+1)-th iteration, with k = 0,1,2, ..,

is
(f(k+1)) (1— M) (f(k)) A Po, (f(k) - OékaVf‘I’(f(k)’y(k)))

= — Ak + k
y (kD) (k) Py>0 (y(k) - OékVy‘I’(f(k)’y(k)))

The step length selection is still performed as for the implicit case, but s*=1 and ¢(*~1 are now the
following “enlarged” variables:

S(k=1) _ (f(k) _ f(kl)) C(kfl) _ (Vf\IJ(f(k)7y(k)) _ Vf\IJ(f(kl),y(kl))) -
y® —y=n ) Vy(EE,y®) = vy (EE, y )

Finally, we notice that the SGP algorithm can be also used as an iterative regularization method
applied to the un-regularized functional by means of an early stopping technique.

3. Data simulation

To demonstrate and validate our approach, we use both simulated and real data. While for the real
data, consisting of a 2D cross-section of a real 3D walnut (see Section 4), the measured data available at
www.fips.fi/dataset [23], includes also the system matrix W, for the simulated data set, consisting of
the Shepp-Logan phantom, we construct our own system matrix W by simulating the geometry of a uCT
scanner used for real measurements. In particular, we simulate a 2D fan-beam data from 182 uniformly
spaced angles over 27. The detector consists of 130 elements with a pixel pitch of 0.8mm. The distance

6
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Algorithm 1 Scaled Gradient Projection Method

Choose the starting point £(®) € (2, set the parameters 3,7 € (0,1) and 0 < @min < Gmax. Fix a positive
integer .
for k=0,1,2,... do

Step 1. Choose the parameter oy, € [oemin, amax] and the scaling matrix Dy € Dr, ;

Step 2. Projection: z*) = Pa,(f £ — DL VE(FR)).

if z(® = £*) then stop: £ is a stationary point; end if

Step 3. Descent direction: d® = z® _ k).

Step 4. Set Ax = 1 and Winax = MaXo<j<min(k,u—1) \I!(f(kﬂ));

Step 5. Backtracking loop:

if O(® 4 2,dP®) < W + AV E(EF)TA®) then

go to Step 6;
else
set A\, = T\, and go to Step 5;
end if
Step 6. Set £*+D = £F) 1 X\, d®.
end for

between the X-ray tube and the detector is set to 291.20mm and the radius of rotation is 115.84mm. The
detector is offset by 1.5 pixels. Such 2D fan-beam geometry is implemented by using a state-of-the-art
technique called distance-driven method [12]. For completeness we report in Section 3.1 a brief description
of this method.

3.1. Distance-driven method

We recall that W is the K P x N? matrix mapping the image domain onto the projection domain. Every
row of W contains weights that relate the pixel intensities in the image domain to the corresponding
sample in the projection domain. Obviously, the value of each weight depends on the chosen interpolation
scheme. The distance-driven method combines a highly sequential memory access pattern with relatively
low arithmetic complexity, without introducing interpolation artifacts in the image or projection domains.
Essentially, this approach is based on converting the projection problem into a 1D re-sampling problem.
There are two main ingredients in the distance-driven method. The first one is the kernel operation:

b, = ijcj with
J

o [min(&mt1, Vng1) —max(fm’“")]+ [z]+ = max(z,0)
J Un+1 — Un ’ T ’ |

(3.1)

which allows to compute the destination signal values {b;}, from the sample values {c;}; of a source signal,
the sample source locations {&;}; and the sample destination locations {v;};. The second element of the
method is that there is a (possibly zero) length of overlap between each image pixel and each detector
cell due to the bijection between the position on the detector and the position within an image row
(or column). Thus, every point within an image row is uniquely mapped onto a point on the detector,
and vice versa. In practice, to compute the overlap length, all pixel boundaries in an image row and
all detector cell boundaries are mapped onto a common line, e.g., a line parallel to a coordinate axis.
That is, each length of overlap is the interval length between two adjacent intersections, obtained by
connecting the boundaries midpoints of all detector cells and pixels in a image row to the X-ray source
and by computing the intercepts of these lines with the common axis. The final weights are achieved by
normalizing the overlap length by the detector cell width. This corresponds exactly to apply the kernel
operation from equation (3.1). In our case, by, is the theoretical (unblurred and noiseless) value measured
at the n-th detector cell and c; is the estimate of the j-th pixel attenuation function. For example, if the
n-th detector cell is “shadowed” by only two pixels in a row, equation (3.1) reads as:
by = Sl On L Ul “ kL
Un+1 — Un Un+1 — Un

An efficient implementation of the distance-driven method can be achieved by using a vector-oriented
approach instead of processing one pixel at a time. Indeed, one can update an entire row of the matrix
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ROI ROI
Rel. Err. PSNR iter sec params
SH+sTV 0.16 2957 93 9.02 A=10"% p=10""
v =0.5N SH 0.17 2893 101 929 x=10"°
STV 0.16 2060 92 536 p=10""
SH+sTV 0.13 3244 107 911 X=107°2,p=1
v =0.25N SH 0.21 2794 109 940 X=10"*
STV 0.14 3141 103 639 p=1
SH+sTV 0.18 33.37 118 10.04 A=10"% p=1
7 =0.15N SH 0.48 2469 156 13.65 A=10""*
sTV 0.19 33.05 90 522 p=10""

TABLE 1. Optimal results for the Shepp-Logan phantom with the implicit formulation of
the objective function. The corresponding reconstructed images are reported in Figure 1.
SH = Shearlets; sTV = smoothed Total Variation.

(i.e., selecting one detector cell at a fixed angular view) in one shot by identifying all those pixels that
shadow that detector cell and their corresponding length of overlap. Moreover, the detector can be chosen
as the common line hence avoiding the need to calculate the projections of the detector cell boundaries.
Finally, when the common line is not the detector, an effective choice is to adaptively select the common
line by mapping onto the z-axis or y-axis, depending on the angular view.

4. Numerical experiments

In this Section, we present numerical demonstrations of our ROI CT reconstruction algorithm in the
setting of 2D fan-beam geometry. All the algorithms were implemented in Matlab 8.1.0 and all experiments
performed on a dual CPU server, equipped with two 6-cores Intel Xeon X5690 at 3.46GHz, 188 GB DDR3
central RAM memory and up to 12 TB of disk storage.

For our first set of tests we considered a modified Shepp-Logan phantom sized N x N pixels with
N = 128. We assumed it to be placed in the first quadrant of the Cartesian coordinate system with the
image lower left corner at the origin. All projections are corrupted by a white Gaussian process with
zero mean and 0.5% variance, and the truncated projections are computed by discarding the samples
outside the ROI projection P(S). We recall that this corresponds to a ROI disk in the image domain
(see Sec. 2.1). We considered concentric ROI disks with a decreasing radius v, placed off-center with
respect to the field of view. Our results include ROIs that are fully inside the object being imaged
(corresponding to the interior tomography problem). We also considered a ROI with a larger radius
exceeding the object along one coordinate axis for comparison. The matrix ® was generated by the
classical shearlet decomposition (Section 2.3, equation (2.14)), by using the shearlet software available
at www.math.uh.edu/~dlabate/software. The number of scales for the shearlet transform is 3, with 23
directions and 16 x 16 for the support size of the shearing filters.

We performed numerical tests to assess the best approach with respect to both the objective function
and the regularization parameters. Tables 1 and 2 show results for the implicit and the explicit formu-
lations, respectively, where perfomance is measured using the peak-signal-to-noise ratio (PSNR) and the
relative error. We recall that the PSNR, measured in dB, is defined as follows:

MPV?2 )

€MSE

PSNR = 101log,, <

where MPV is the maximum pixel value and epsg is the mean squared error. We stress that both PSNR
and relative error are evaluated inside the ROI S only. This is consistent with the motivation of ROI
CT that aims at recovering the image inside the ROI only. Results in Tables 1 and 2 correspond to the
reconstructions with the “best” ROI relative error and ROI PSNR, where “best” means the smallest
ROI relative error and the largest ROI PSNR, compared against the tested range. The corresponding
reconstructed images are reported in Figures 1 and 2.
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ROI ROI
Rel. Err. PSNR iter sec params

SH+sTV 0.19 28.03 131 1211 A=107% p=10""
v =0.5N SH 0.22 2662 63 660 X=10"2
STV 0.20 2760 88 562 p=10""2

SH+sTV 0.25 26,74 51 470 A=10"°,p=10"
v =0.25N SH 0.23 2713 73 630 x=10"*
sTV 0.24 26.93 103 747 p=10"72

SH+sTV 0.70 2140 54 5.09 A=107°,p=10""
7 =0.15N SH 0.68 21.67 87 840 A=10""
sTV 0.67 21.71 66 4.02 p=10"2

TABLE 2. Optimal results for the Shepp-Logan phantom with the explicit formulation of
the objective function. The corresponding reconstructed images are reported in Figure 2.
SH = Shearlets; STV = smoothed Total Variation.

Concerning the setting of SGP parameters, the step length aj was constrained in the interval
[@mins max] With amin = 107% and amax = 10°, and the initial threshold Lo for the scaling matrix
D). was set equal to 10'°. For the line search parameters we used 7 = 0.4, 8 =107%, and p = 1.

We investigated the performance of the algorithm with respect to the regularization parameter A\ = 10¢,
¢ = —4,-3,...,1. For the sTV parameter p, we sampled the values 1072, 107! and 1. We considered
both the explicit and the implicit formulations of the objective function by designing different versions of
the SGP method. For the Tikhonov-like regularization term, we also considered a two-level undecimated
Daubechies 4 wavelet transform in place of classical shearlets. In all the experiments we found the latter
to outperform the former on a visual basis, even if the figures of merit are comparable. As an example,
we compare in Figure 4 a shearlet-regularized implicit-based reconstruction versus a wavelet-regularized
one. Especially for v = 0.15V, it is evident that shearlets outperform wavelets in the ROI reconstruction:
notice, for instance, that the cupping artifact is more noticeable in the wavelet-based reconstruction
(panel (f)).

Figures 1 and 2 show the reconstructed images obtained for the implicit and the explicit formulations,
respectively, and for decreasing radii. In both figures, every row contains the reconstruction obtained with
a different approach. In the first and second rows of Figure 1, the objective function reads as in (2.12)
and (2.10), respectively. In the third row, the objective function is obtained by dropping the Tikhonov-
like regularization term of (2.12). The same holds true for Figure 2, where the referring equation for
the first two rows are (2.13) and (2.11), respectively. Finally, in both figures, every column contains the
reconstructions computed for different radii: v = 0.5N in the first column, v = 0.25N in the second one
and 7 = 0.15N in the final one. In all pictures, the ROI is identified with a dashed white circle.

Figure 3 shows the reconstructed sinograms computed for the explicit formulation corresponding to
the reconstructions in Figure 2. The circular ROI in the image domain corresponds to two sinusoidal
dashed white lines in the projection domain.

In Figure 1, we observe that, when the radius is as large as half the number of pixels of the image edge
(panel (a), (d) and (g)), all the reconstructions are good enough to recover even the finest details, but a
mild checkerboard effect is still noticeable. The best approach for the objective function is the one based
solely on sTV (panel (g)) obtained by dropping the shearlet-based term from formulation (2.12), even
if the error rate has the same magnitude for all possible approaches and the reconstructions are almost
identical. Notice that, for all possible formulations, the values for the parameters A and p are quite small:
they are always among the smallest ones of the investigated ranges. For smaller radii (panels (b), (e) and
(h) with v = 0.25N), we notice that the fundamental structures are detected by all the approaches, even
if the sTV-free approaches exhibits some checkerboard effects. The best reconstruction, with respect to
both the figures of merit, is obtained by combining shearlets and sTV (formulation (2.12)) and by setting
to the largest value (in our investigated range) the sTV regularization parameter p. Notice that the
pure sTV-based approaches (panels (b) and (h)) outperform the shearlet-based one (panel (e)) by almost
one order of magnitude for both figures of merit. Similar considerations hold for the last case. Indeed,
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when the radius decreases (panels (¢), (f) and (i) with v = 0.15N), the fundamental structures are still
detected rather well in all reported images, but also the checkerboard effect remains noticeable in the
sTV-free reconstructions. For this smaller radius, the optimal reconstruction is achieved for the purely
sTV formulation of the objective function and for similar small value of the regularization parameter
as the larger radius v = 0.25N. The relative error has the same magnitude as in the case v = 0.25V,
outperforming the purely shearlet-based method by almost one order of magnitude.

In Figure 2, we observe that the fundamental structures are consistently well detected in all recon-
structions. The checkerboard effect persists in the sTV-free reconstructions (second row), and for all
formulations of the objective function in the case of the largest radius (panels (a), (d) and (g)). The cor-
responding sinogram reconstructions reported in Figure 3 are accurate inside the ROI and therein they
show no artifacts. This is consistent with the accurate reconstruction of the corresponding images. The
best approach for all radii, with respect to the figures of merit, is obtained by exploiting the sTV-based
approaches. However, for all ROI radii the error rate (the PSNR, respectively) has the same magnitude
for all possible approaches, namely the purely shearlets approach performs only slightly worse than the
sTV-based ones. Notice that, even if panels (c), (f) and (i) exhibit a rather large relative error (70%), on
a visual basis the reconstruction is acceptable or even good. Such a large relative error is probably due
to the checkerboard effect (sub- or under-estimation of the pixel intensity).

Finally, for baseline comparison, we considered two state-of-the-art methods: an iterative approach,
namely the least-squares Conjugate Gradient (LSCG) method, and an analytic approach, i.e., the Filtered
Back-Projection (FBP). We run the LSCG experiments using the Matlab default pcg function with
different threshold levels (104, 107° and 10~7) of the residual norm for stopping the iteration, and with
both 20 and 7000 as maximum number of iterations. The best results are obtained with 20 iterations
and 10~% as threshold level for the residual norm, yielding PSNR = 25.05, 29.27, 31.51, and rel. err.
= 0.26, 0.18, 0.20, for v = 0.5V, 0.25N and 0.15N respectively. For the FBP algorithm, we used the
Matlab fbp function available in the package AIR tools [25], yielding PSNR= 17.17, 18.76, 15.45, and
rel. err. = 0.65, 0.59, 1.29, respectively. The corresponding reconstructed images are shown in Figure 5.
Here, we explicitly report the color bar to show that, even if at least LSCG seems to perform quite well
with respect to the figures of merit, it is clear from the image reconstruction that the range for the image
pixel intensity is not accurately preserved, since some “negative intensities” are found which is clearly
not physical. Concerning FBP reconstructions, the results are considerably worse than SGP as evident
from both the figure of merit as well as the reconstructed image quality.

In the numerical tests shown so far, the sTV-based regularization performs better than the shearlets-
based regularization. This performance result is expected due to the fact that the Shepp-Logan phantom
we considered in our first set of tests is a piecewise constant image.

To illustrate the performance of our algorithm under more realistic conditions, we considered a second
set of experiments using a more realistic setting. Namely, we considered the tomographic X-ray real
(and hence noisy) data of a walnut [23], available at www.fips.fi/dataset, of size 328 x 328 pixels,
for the different ROI radii v = 0.5N,0.3N,0.15N. In Figure 6 we illustrate the ROI reconstruction
images obtained using the implicit (first and second rows) and the explicit (third and fourth rows)
formulations, with a non-negativity constraint. The first and third rows of the image show our shearlet-
based reconstructions, for decreasing radii. The comparison with the result based on sTV regularization
shows that the shearlet-based approach is very effective at recovering the finer structures of the image
while the sTV-based approach (second and fourth rows) results in a over-smoothed reconstruction. We
attribute this improved reconstruction result to the localization and directional properties of shearlets. In
addition, we remark that the just-shearlet explicit approach (third row) is able to recover a more accurate
reconstruction inside the ROI with respect to the implicit one (first row), as conjectured at the end of
Section 2.2. This observation is more evident for v = 0.15N, as one can verify from the smallest white
circles (continuous line) in the first and third rows of Figure 6 (panels (c) and (i)). All our reconstructions
were obtained with only 150 iterations and correspond to A = 10~% (first and third row) and p = 1071
(second and fourth row). The shearlets-plus-sTV reconstruction are similar, on a visual basis, to the
purely sTV reconstructions.

Concerning the computing time, Tables 1 and 2 show that, as expected, a higher number of iterations
results in a more demanding running time for the sTV-based approach. However, codes were not optimized
for computational efficiency as this would go beyond the scope of this paper.
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The focus here is the assessment of a suitable objective function and an appropriate algorithm to face
the ROI CT problem, without any assumption on the location or size of the ROI.

5. Conclusions

In this paper, we presented a numerical assessment of the ROI tomographic reconstruction in the 2D
setting using a first-order iterative algorithm based on convex optimization. Our method makes no re-
stricting assumptions on the location or size of the ROI. We considered two different objective functions,
each with a variable level of regularization aiming at ensuring stable reconstruction from truncated data.
Numerical experiments have shown that our reconstruction algorithms are very satisfactory for all ver-
sions of the objective function as the main structures and the intensity levels are recovered very accurately
and with minimal ring artifacts. Using a piecewise constant phantom, the purely sTV-based approach
performs slightly better than the shearlets-plus-TV approach, at least for smaller ROI radii (i.e., when
the ROI is fully inside the field of view). By using a more realistic (and noisy) test data, we verified that
our shearlet-based regularized reconstruction outperforms the one based solely on the sTV term.

An important feature of our approach is that the performance of our ROI reconstructions algorithm
is not sensitive to the location and size of the ROI and performs consistently well also for rather small
ROI sizes, using both formulations of the objective function.

The extension of our method to the three-dimensional setting can be carried out following essentially
the same ideas presented in this paper. In future work, we plan to consider more realistic phantoms, with
different levels and types of noise, and examine a different formulation of the optimization problem that
exploits sparsity in the regularization term. Some results are available in [6,7].
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FI1GURE 4. Comparison between wavelets only and shearlets only implicit-based recon-
structions, with A = 1073 (for v = 0.5N) and A = 10~% (for v = 0.25N,0.15N), for
decreasing radii: v = 0.5N for (a) and (d), v = 0.25N for (b) and (e), v = 0.15N for (c)
and (f). First row: shearlets (second row of Figure 1). Second row: two-level undecimated
Daubechies 4 wavelet.
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FIGURE 5. Reconstructions of the Shepp-Logan phantom with state-of-the-art methods,
for decreasing radii: v = 0.5N for (a) and (d), v = 0.25N for (b) and (e), v = 0.15N for
(c) and (f). First row: least-squares Conjugated Gradient (LSCG). Second row: filtered
back-projection (FBP).
16



GE}____

“BubbaEtAl ShearletBasedRegularizedReconstructionlnROICT” — 2017/1/16 — 12:42 — page 17 — #18

T.A. Bubba, D. Labate, G. Zanghirati, S. Bonettini

Shearlet-based regularized reconstruction in ROI CT

50
100
150
200
250
300

50
100
150
200
250
300

50
100
150
200
250

300

50
100
150
200
250

300

50 50

100 100
150 150 §
200 200
250 250

300 300

100 200 300 100 200 300
50 50
100 100
150 150
200 200
250 250

300 300

50 50

100 100
150 150
200 200
250 250

300 300

100 200 300
50 50
100 100
150 150
200 200
250 250

300 300

FIGURE 6. Reconstructions of a walnut (real data) with implicit (first and second rows)
and explicit (third and fourth rows) formulation, for decreasing radii: v = 0.5N for (a),

(d), (g) and (j), v = 0.3N for (b), (e), (h) and (k), v = 0.15N for (c), (f), (i) and (1).
First and third rows: shearlets only. Second and fourth rows: smoothed TV only.
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