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Abstract Since shearlets provide nearly optimally sparse representations for a large
class of functions that are useful to model natural images, many image processing
methods benefit from their use. In particular, the error rates of data estimation from
noise are highly dependent on the sparsity properties of the representation, so that
many successful applications of shearlets center around restoration tasks such as de-
noising and inverse problems. Other imaging problems, where also the application
of the shearlet representation turns out to be very beneficial, include image enhance-
ment, image separation, edge detection, and estimation of the geometric features of
an object.
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1 Introduction

Shearlets were introduced with the expressed intent to provide a highly efficient
representation of images with edges. In fact, the elements of the shearlet repre-
sentation form a collection of well-localized waveforms, ranging at various loca-
tions, scales and orientations, and with highly anisotropic shapes. This makes the
shearlet representation particularly well adapted at representing the edges and the
other anisotropic objects which are the dominant features in typical images. These
properties have been theoretically quantified through the notion of sparse shearlet
approximations and the shearlet analysis of singularities (see Chapters 2 and 3 of
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this volume). As will be described below, these properties have direct and impor-
tant implications for the efficient encoding and processing of discrete data. This is
demonstrated by an increasing number of very competitive numerical applications
of the shearlet transform to the analysis and processing of images and other multi-
dimensional data.

In this chapter, we provide an overview of the most relevant imaging applications
of the shearlet approach. For reason of space, we will focus on the general principles
used in the development of the algorithms and their significance, rather than on
the technical details of the implementations, which can be found in the original
papers. Since this is a very active area of investigation, it is understood that improved
and newer shearlet imaging applications are currently being developed and, as a
consequence, this chapter can only provide a retrospective view on the field. In
particular, this chapter will describe the application of the shearlet representation to
problems of image denoising, image enhancement, inverse problems, edge analysis
and detection, and image separation.

2 Image denoising

The significance of sparsity for data restoration is well understood and has been
addressed in seminal papers such as [20, 27]. Indeed, consider the classical problem
of recovering a function f ∈ L2(R) from noisy data y, that is, of recovering f from
the observation

y = f +n,

where n is Gaussian white noise1 with standard deviation σ . We illustrate this prob-
lem in dimension D = 1, but it generalizes naturally to higher dimensions.

The problem of interest is to optimize the estimation f̃ of f by minimizing the
estimation error, usually measured by the L2 norm || f − f̃ ||. Hence, the risk of the
estimator f̃ is given by the Mean Square Error (MSE)

E|| f − f̃ ||2,

where the expectation is calculated with respect to the probability distribution of
the noise n. It is clear that the risk depends on f , so that the worst behaviour of the
estimator is obtained by considering the supremum over all f in a certain class F ,
that is,

sup
f∈F

E|| f − f̃ ||2.

The Minimax MSE is defined as

1 In practice, it is not always accurate to assume that the noise found in applications is Gaussian
white noise. However, this assumption is usually needed to make the theory tractable. In particular,
it is a standard assumption in the theory of wavelet thresholding and wavelets shrinkage which is
discussed below.
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inf
f̃

sup
f∈F

E|| f − f̃ ||2,

where all measurable estimation procedures are allowed in the infimum. It is a re-
markable result and an important application of the sparsity properties of wavelets
that, for uniformly regular and piecewise regular 1D signals, a nearly minimax MSE
is achieved using a very simple wavelet estimator known as wavelet thresholding
[22, 23]. The computation of the wavelet threshold estimator can be briefly de-
scribed as follows. Let {ψ j,m} be a wavelet basis for L2(R). Then the noisy function
y can be expanded as

y = ∑
j,k
⟨y,ψ j,m⟩ψ j,m,

with convergence in the L2 norm. The wavelet hard thresholding algorithm consists
in setting to zero the wavelet coefficients ⟨y,ψ j,m⟩ whose absolute values fall below
a certain threshold T . The value of T depends on the standard deviation of the noise
σ . Hence, to summarize, the wavelet hard thresholding algorithm consists of the
following steps:

1. Compute the wavelet coefficients ⟨y,ψ j,m⟩ of y.
2. Determine the threshold value T (σ), where σ is estimated from y.
3. Remove (zero out) the wavelet coefficients whose absolute values are smaller

than T (σ).
4. Compute the estimator f̃ as f̃ = ∑ j,k c j,kψ j,m, where

c j,k = ⟨y,ψ j,m⟩, if |⟨y,ψ j,m⟩|> T,

c j,k = 0, otherwise.

An alternative thresholding approach is to use a soft thresholding algorithm, where
the coefficients are modified by the shrinkage function: shr(c) = sgn(c)max(|c|−
T,0). Unlike the hard thresholding that is an ’all or nothing procedure’ (values above
the threshold are kept, values below it are deleted), the soft thresholding function
produces a smooth transitions between the original and the deleted values, where
values slightly below the threshold are not removed but attenuated. In practice, the
main challenge is to find an appropriate value of T , and several strategies have
been proposed in the literature [59]. For example, the VisuShrink algorithm [23, 24]
uses the universal threshold T = σ

√
2logM, M being the size of the data, and is

asymptotically near minimax within the class of Besov spaces. Another classical
approach, called BayesShrink [12], uses a different threshold value Tj =

σ2

σ j
for each

resolution level j, where σ j is the standard deviation of the data at the resolution
level j.

As discussed in the previous chapters, wavelets are non-optimal when dealing
with piecewise regular multivariable functions, and this implies that wavelet thresh-
olding does not provide a minimax MSE in this situation. Consider, in particu-
lar, the class of cartoon-like images E 2(R2). For f ∈ E 2(R2), define |c( f )W |(N)

to be the N-th largest entry in the sequence of wavelet coefficients of f given by
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{|c( f )Wµ | : c( f )Wµ = ⟨ f ,ψµ)⟩} where {ψµ} is a 2D wavelet basis. Since

sup
f∈E 2(R2)

|c( f )W |(N) ≤C N−1,

it follows that the N-term wavelet estimator f̃N satisfies

|| f − f̃N ||2 ≤ ∑
m>N

|c( f )W |2(N) ≤C N−1.

This implies that the Mean Square Error (MSE) of the wavelet thresholding estima-
tor satisfies

sup
f∈E

E|| f − f̃ ||2 ≍ σ , as σ → 0,

where σ is the noise level, as indicated above. By contrast, let |c( f )S|(N) be the
N-th largest entry in the sequence of shearlet coefficients of f given by {|c( f )S

µ | :
c( f )Wµ = ⟨ f ,sµ⟩} where {sµ} is a Parseval frame of shearlets. Then a basic result
from [43] shows that

sup
f∈E

|c( f )S|(N) ≤C N−3/2 (logN)3/2.

Ignoring the log factor, this gives that the N-term shearlet estimator f̃N satisfies

|| f − f̃N ||2 ≤ ∑
m>N

|c( f )S|2(N) ≤C N−2.

This implies that a denoising strategy based on the thresholding of the shearlet co-
efficients yields an estimator f̃ of f whose Mean Square Error (MSE) satisfies (es-
sentially) the minimax MSE

sup
f∈E

E|| f − f̃ ||2 ≍ σ4/3, as σ → 0,

This shows that a denosing estimator based on shearlet thresholding has the ability
to achieve a minimax MSE for images with edges. Notice that the same type of
theoretical behaviour is achieved using curvelets [77, 6].

In the following, we will show some numerical demonstrations to illustrate that
indeed a denosing algorithm based on shearlet thresholding outperforms a similar
wavelet-based approach. Before presenting these results, let us briefly recall the
construction of the Discrete Shearlet Transform, originally introduced in [32].
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2.1 Discrete Shearlet Transform

We start by re-writing the cone-based shearlet system, defined in Chapter 1 of this
volume, in a form more suitable to its digital implementation. As usual, it is more
convenient to work in the Fourier domain. For additional emphasis, in the following
we will use the notation R̂2 when referring to the plane in the Fourier domain, while
we will use the standard symbol R2 to denote the plane in the space domain.

Set D0 = {(ξ1,ξ2) ∈ R̂2 : |ξ1| ≥ 1
8 , |

ξ2
ξ1
| ≤ 1} and D1 = {(ξ1,ξ2) ∈ R̂2 : |ξ2| ≥

1
8 , |

ξ1
ξ2
| ≤ 1}. Given a smooth function ψ̂2, with support in [−1,1], we define

W (0)
j,ℓ (ξ ) =


ψ̂2(2 j ξ2

ξ1
− ℓ)χD0(ξ )+ ψ̂2(2 j ξ1

ξ2
− ℓ+1)χD1(ξ ) if ℓ=−2 j

ψ̂2(2 j ξ2
ξ1
− ℓ)χD0(ξ )+ ψ̂2(2 j ξ1

ξ2
− ℓ−1)χD1(ξ ) if ℓ= 2 j −1

ψ̂2(2 j ξ2
ξ1
− ℓ) otherwise

and

W (1)
j,ℓ (ξ ) =


ψ̂2(2 j ξ2

ξ1
− ℓ+1)χD0(ξ )+ ψ̂2(2 j ξ1

ξ2
− ℓ)χD1(ξ ) if ℓ=−2 j

ψ̂2(2 j ξ2
ξ1
− ℓ−1)χD0(ξ )+ ψ̂2(2 j ξ1

ξ2
− ℓ)χD1(ξ ) if ℓ= 2 j −1

ψ̂2(2 j ξ1
ξ2
− ℓ) otherwise,

for ξ = (ξ1,ξ2) ∈ R̂2, j ≥ 0, and ℓ = −2 j, . . . ,2 j − 1. This notation allows us to
write the elements of the cone-based shearlet system, in the Fourier domain, as

ψ̂(d)
j,ℓ,m(ξ ) = 2

3 j
2 V (2−2 j ξ )W (d)

j,ℓ (ξ ) e−2πiξ A− j
d B−ℓ

d m,

where d ∈ {0,1}, V (ξ1,ξ2) = ψ̂1(ξ1)χD0(ξ1,ξ2)+ ψ̂1(ξ2)χD1(ξ1,ξ2) and ψ1 is the
Meyer-type wavelet associated with the classical shearlet. Hence, the shearlet trans-
form of f ∈ L2(R2) can be expressed as

⟨ f ,ψ(d)
j,ℓ,m⟩= 2

3 j
2

∫
R2

f̂ (ξ )V (2−2 j ξ )W (d)
j,ℓ (ξ ) e2πiξ A− j

d B−ℓ
d m dξ . (1)

To formulate the implementation in the finite domain setting, we consider ℓ2(Z2
N)

as the discrete analogue of L2(R2). Given an image f ∈ ℓ2(Z2
N), the Discrete Fourier

Transform (DFT) is defined as

f̂ (k1,k2) =
1
N

N−1

∑
n1,n2=0

f (n1,n2)e−2πi(
n1
N k1+

n1
N k2), −N

2 ≤ k1,k2 <
N
2 .

The product f̂ (ξ1,ξ2)V (2−2 jξ1,2−2 jξ2) is found analogously in the DFT domain
as the product of the DFT of f with the discretization of the filter functions V (2 j ·),
j ≥ 0. Notice that these functions are associated to specific regions of the frequency
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plane, roughly near |ξ1| ≈ 22 j or |ξ2| ≈ 22 j. In the space domain, this produces a
decomposition of f , at various scales j, in terms of elements of the form f j(n1,n2)=

f ∗ v j(n1,n2), where v j corresponds to the function V (2 j·) in the Fourier domain.
This can be implemented using the Laplacian pyramid filter [5].

In order to obtain the directional localization, f̂ j is resampled onto a pseudo-
polar grid, and a one-dimensional band-pass filter is applied. The pseudo-polar grid
is parametrized by lines going through the origin and their slopes. Specifically, the
pseudo-polar coordinates (u, p) ∈ R2 match the following assignments:

(u, p) = (ξ1,
ξ2
ξ1
) if (ξ1,ξ2) ∈ D0

(u, p) = (ξ2,
ξ1
ξ2
) if (ξ1,ξ2) ∈ D1

The resampled f̂ j is denoted as Fj, so that

f̂ (ξ1,ξ2)V (2−2 jξ1,2−2 jξ2)W (d)
j,ℓ (ξ1,ξ2) = Fj(u, p)W (d)(2 j p− ℓ). (2)

This resampling in the DFT can be done by direct re-assignment or by using the
Pseudo-polar DFT [2].

Given the one-dimensional DFT defined as

F1(q)(k1) =
1√
N

N/2−1

∑
n1=−N/2

q(n1)e
−2πik1n1

N ,

we denote {w(d)
j,ℓ (n) : n ∈ ZN} to be the sequence of values such that F1

(
w(d)

j,ℓ (n) =

W (d)(2 jn− ℓ). For a fixed n1 ∈ ZN , we then have

F1

(
F−1

1

(
Fj(n1,n2)

)
∗w(d)

j,ℓ (n2)

)
= Fj(n1,n2)F1

(
w(d)

j,ℓ (n2)

)
, (3)

where ∗ denotes the one-dimensional convolution along the n2 axis. Equation (3)
summarizes the algorithmic implementation for computing the discrete samples of
Fj(u, p)W (d)(2 j p− ℓ).

The shearlet coefficients ⟨ f ,ψ(d)
j,ℓ,m⟩, given by (1), are now formally obtained

by inverting the Pseudo-polar Fourier transform of expression (2). This can be
either implemented by computing the inverse Pseudo-polar DFT or by directly
re-assembling the Cartesian sampled values of (3) and apply the inverse two-
dimensional DFT. Using the Fast Fourier Transform (FFT) to implement the DFT,
the discrete shearlet transform algorithm runs in O(N2 logN) operations. Note that
the direct conversion between the Cartesian to pseudo-polar can be pre-conditioned
so the operation has a condition number of 1 as explained in [32] and the operation
will be L2 norm preserving (cf. [16] for details). Since no performance improvement
was noticed with this adjustment, this pre-conditioning was avoided at the expense
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of having a faster inversion, which is just a summation, since it was observed to
have many advantages for this formulation.

An illustration of the shearlet decomposition produced by this implementation
is given in Figure 1, which shows a 2-level subband decomposition, that is, a de-
composition where the scale parameter j is ranging over j = 0,1. Recall that, in
the language of image processing, a subband decomposition is a decomposition of
an image into components associated with different regions of the frequency plane
R̂2. As the figures shows, there are 4 subband terms corresponding to j = 0 and 8
subband terms corresponding to j = 1, consistent with the fact that the directional
parameter ℓ takes values in {−2 j, . . . ,2 j −1} for each of the cone regions d = 0 and
d = 1. This corresponds precisely to the illustration of the shearlet decomposition
into directional subbands given in Chapter 1 of this volume. A Matlab toolbox for
this numerical implementation of the Discrete Shearlet Transform is available from
http://www.math.uh.edu/∼dlabate.

An alternative technique to implement the discrete shearlet transform as an ap-
plication of M filters was presented in [33]. In this case, filters v j and w(d)

j,ℓ are found

so that ⟨ f ,ψ(d)
j,ℓ,m⟩ can be computed as

f ∗ (v j ∗w(d)
j,ℓ )(m), f ∗g(d)j,ℓ [m],

where g(d)j,ℓ = v j ∗w(d)
j,ℓ are the directionally-oriented filters. When the filters g j,ℓ are

chosen to have significantly smaller support sizes than N as explained in [32], the
filter bank implementation is even faster than O(N2 logN). It is also a formulation
that is easily parallelizable, in the sense that the different directional components of
the image can be processed in parallel.

Besides these implementations, it is useful to recall that a reduced–redundancy
implementation of the discrete shearlet transform was presented in [42] and a criti-
cally sampled version of the discrete shearlet transform was presented [30]. Finally,
a compactly supported version of the discrete shearlet transform is discussed in [55].
We refer to Chapter 7 of this volume for additional detail about the digital imple-
mentations of the discrete shearlet transform.

To simplify the notation, in the applications which will be presented below, the
superscript (d) will be suppressed and the distinction between d = 0 and d = 1 will
be absorbed by re-indexing the parameter ℓ so that the cardinality is doubled.

2.2 Shearlet Thresholding

In this section, we present the first application of the discrete shearlet transform to
the problem of image denoising. This approach can be viewed as a direct adaptation
of the classical wavelet thresholding described above.

Suppose that an image f is corrupted by white Gaussian noise with standard
deviation σ . Using the discrete shearlet transform, an estimator f̃ of f can be com-
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Fig. 1 An illustration of the subband decomposition obtained using the discrete shearlet transform.
The top image is the original Barbara image. The image below the top image is of the coarse-scale
reconstruction. Images of the subband reconstructions for levels j = 0 and j = 1 are given below
with an inverted grayscale for presentation purposes. As explained in the text, there are 4 directional
subbands corresponding to j = 0 and 8 directional subbands corresponding to j = 1.

puted by using a thresholding procedure which follows essentially the same ideas of
the wavelet thresholding algorithm described in Sec. 2. In particular, for the choice
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Fig. 2 Image denoising results of a piece of the Elaine. From top left, clockwise: Original im-
age, noisy image (SNR= 10.46 dB), shearlet transform (SNR=16.47 dB), and wavelet transform
(SNR= 14.00 dB)

of the threshold parameter it was founds in [32] that an excellent performance is
achieved by adapting the BayesShrink algorithm. That is, the threshold is chosen to

be Tj,ℓ =
σ2

j,ℓ
σ j,ℓ,m

, where σ j,ℓ is the standard deviation of the noise for the subband in-
dexed by the scaling parameter j and the directional parameter ℓ, and σ j,ℓ,m denotes
the standard deviation of the m-th coefficient of the image at scale j and direction ℓ.

A numerical demonstration of this shearlet-based denoising approach is given
in Figure 2, where this method is compared against a similar scheme based on a
nonsubsampled wavelet transform. To assess the performance of the algorithm, we
have used the standard signal-to-noise ratio to measure how much noise is present
before and after the estimate is made. Recall that the signal-to-noise ratio (SNR) is
given by

SNR( f , fest) = 10log10

[
var( f )

mean( f − f̃ )

]
,

where var( f ) is the variance of the image, and is measured in decibels.
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We refer to [32] for additional numerical tests and details about this version of
the shearlet thresholding algorithm.

2.3 Denoising using Shearlet-based Total Variation Regularization

An alternative approach for the application of shearlets to problems of image de-
noising consists in combining the ideas of wavelet thresholding described above
with other classical methods for denoising.

Indeed, there is another very successful philosophy to image denoising which
is based on the theory of the partial differential equations and variational methods,
such as diffusion equations and total variation (TV) minimization (cf. [10, 73, 88]).
Intuitively, the idea of diffusion equations is to model a noisy image as a function f̃
on Ω ⊂ R2 and to computed its denoised version as the solution of a suitable diffu-
sion process (isotropic and anisotropic) with f̃ as initial condition. It is clear that this
produces an image which is more “regular” than the original one. Alternatively, one
can produce a similar regularization process by minimizing an energy functional of
the form

E( f ;λ , f̃ ) =
λ
2

∫
Ω
( f − f̃ )2 dxdy+P( f ),

where the first term, called fidelity term, encourages the similarity between f̃ and its
denoised version f , and the second term P( f ,∇ f ), called penalty term, controls the
regularity of the solution. Indeed, it is known that there is a strong relations between
regularisation methods and diffusion filters [74].

In particular, let us consider a classical version of a regularization method based
on Total Variation (TV) regularization, which consists in minimizing the functional∫

Ω
ϕ(∥∇ f∥)dxdy+

λ
2

∫
Ω
( f − f̃ )2 dxdy,

where ϕ ∈C2(R) is an even regularization function (cf. [4]). In the above expression,
the penalty term involves the total variation of f , which, for a function f ∈W 1,1(Ω),
is defined as

TV ( f ) =
∫

Ω
∥∇ f∥dA,

where ∇ f =
(

∂u
∂x1

, ∂u
∂x2

)
and ∥ ∥ is the standard Euclidean norm. That is, the penalty

term ensures that the solution of the regularization method minimizes the total vari-
ation of f (cf. [62] for a discussion of the role of TV in imaging applications). The
minimizer can be found by solving the equation solution of

∂ f
∂ t

= ∇ ·
(

ϕ ′(∥∇ f∥)
∥∇ f∥

∇ f
)
−λ ( f − f0),
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subjected to the von Neumann boundary condition. In the case when λ = 0 and
lim
x→∞

ϕ ′(x)/x = 0, this equation is considered a special case of the Perona and Malik
diffusion equation (cf. [71]):

∂ f
∂ t

= ∇ · (ρ(∥∇ f∥)∇ f ) ,

where ρ(x) = ϕ ′(x)/x. There are several other aspects of these problems which go
beyond the space limitations of this chapter, and we refer the interested reader to the
references mentioned at the beginning of this section.

The regularization methods described above can be very effective in image de-
noising, and generally provide superior denoising performance especially when ap-
plied to images with negligible texture and fine-scale features. Yet a drawback is
that they can result in estimates that are reminiscent of oil-paintings, with loss of
important detail when applied to images that contain complex textures and shad-
ing. To improve upon these methods, combinations of such techniques with sparse
representations have recently been proposed (e.g. [7, 15, 28, 58, 80, 89]). A similar
combination has been proposed using shearlets in [31].

The idea of the shearlet-based Total Variation (TV) Regularization approach is
rather simple yet very effective. Assuming a denoised estimate is found by thresh-
olding a shearlet representation (using the method from Sec. 2.2), let PS be the
projection operator that retains the non-threshold shearlet coefficients of f . The
shearlet-based TV method is then described as essentially solving

∂ f
∂ t

= ∇ ·
(

ϕ ′(∥∇PS( f )∥)
∥∇PS( f )∥ ∇PS( f )

)
−λx,y( f − f̃ )

with the boundary condition ∂ f
∂n = 0 on ∂Ω and the initial condition f (x,y,0) =

f̃ (x,y) for x,y ∈ Ω . Note that the fidelity parameter λx,y is spatially varying. It is
based on a measure of local variances that is updated after a number of iterations L
or progressions of artificial time steps (see [40] for more details).

Another diffusion variant based on shearlets has been to solve

∂ f
∂ t

= ∇ · (ρ(∥∇PS f∥)∇PS f )

with the Neumann boundary condition ∂ f
∂n = 0 on ∂Ω and the initial condition

f (x,y,0) = f0(x,y) for x,y ∈ Ω .
Ilustrations of these techniques, including a comparison with standard TV, are

done using an image of flowers. Close-ups of the results are shown in Figure 3.
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Fig. 3 Detail images of experimental results. From the top, clockwise: Original image, noisy image
(SNR=11.11 dB), diffusion based estimate using 53 iterations (SNR=14.78 dB), shearlet based
diffusion estimate using 6 iterations (SNR=16.15 dB), shearlet based TV estimate using 2 iterations
(L = 7, SNR=16.29 dB), TV based estimate using 113 iterations (SNR=14.52 dB).
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2.4 Complex-Valued Denoising

Another variant of the shearlet denosing algorithm was developed to deal with the
problem of reducing complex-valued noise [67]. This problem arises in synthetic
aperture radar (SAR) interferometry where interferometric phase noise reduction is
a main challenge.

Recall that an SAR image is a complex-valued two-dimensional array and is
often displayed in terms of its magnitude without any phase information. Interfer-
ograms are obtained by multiplying a SAR image by the complex conjugate of a
second SAR image obtained from a slightly different location. These interferograms
contain information about topographic height and are used to produce digital eleva-
tion maps (DEM). A typical problem is that the complex-valued noise in these phase
estimates cause errors with the phase unwrapping needed for the height information
to be formed.

The n-looks complex image is defined as

f =
1
n

n

∑
k=1

f1(k) f ∗2 (k) = | f |e jψ , (4)

where f1 and f2 are a pair of 1-look complex SAR images. The phase quality de-
pends on the amplitude of the correlation coefficient and is given as

ρ =
E [ f1 f ∗2 ]√

E [| f1|2]E [| f1|2]
= |ρ|e jθ , (5)

where |ρ| is the coherence and θ is the phase of the complex correlation coefficient.
By using an appropriate phase noise model, a shearlet coefficient shrinkage method
can be derived which adapts the one presented in Sec. 2.2. Figure 2.4 gives an illus-
tration of this method and compares it to a wavelet-based method. In this example
a single look image is given. The difference between the ideal phase image and the
estimate is given by counting the number of residues.

Fig. 4 Noisy interferometric phase filtering methods. From left to right: Noisy interferogram with
coherence |ρ|= 0.5 (number of residues is 14119), wavelet-based estimate (number of residues is
80), shearlet-based estimate (number of residues is 20).
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2.5 Other Shearlet-based Denoising Techniques

Additional methods of image denoising based on shearlets were recently presented
in the literature [9, 13, 14, 18, 46, 82, 84, 92, 93] but discussing those in detail
would go beyond the scope of this chapter. Many of these methods use variants
of the shearlet shrinkage strategy described above, or they introduce some form of
adaptivity in the thresholding.

3 Inverse Problems

In many scientific and industrial applications, the objects or the features of most in-
terest cannot be observed directly, but must be inferred from other observable quan-
tities. The aim of inverse problems is to reconstruct the cause for such observed
variables. An especially important class of inverse problems, for example, concerns
the determination of the structural properties of an object from measurements of the
absorbed or scattered radiation taken at an array of sensors, which occurs in applica-
tions such as Computerized Tomography (CT) or Synthetic Aperture Radar (SAR).
Another example is the removal of image degradation due to optical distortion or
motion blur.

In most of these problems, the relationship between the observed data y and the
feature of interest f is approximately linear, and can be modeled mathematically as

y = K f + z, (6)

where K is a linear operator and z is Gaussian noise [3]. Since the operator K is typ-
ically not invertible (i.e., K−1 is unbounded), some “regularization” is needed to in-
vert the problem. Unfortunately, traditional regularization methods (e.g., Tikhonov
regularization or truncated Singular Value Decomposition [63, 64, 85]) have the un-
desirable effect that important features to be recovered are lost, as evident in imaging
applications where the regularized reconstructions are blurred versions of the orig-
inal. This phenomenon is of particular concern since, in many situations, the most
relevant information to be recovered is indeed contained in edges or other sharp tran-
sitions. To address this issue, a number of different methods have been proposed,
including hidden Markov models, Total Variation regularization and Anisotropic
Diffusion [38, 72, 83, 87]. However, while these methods produce visually appeal-
ing results, their rationale is essentially heuristic and they offer no sound theoretical
framework to assess the ultimate method performance.

As will be described in the following, recent ideas from sparse representations
can be applied to develop a theoretical and computational framework for the regu-
larized inversion of a large class of inverse problems. Specifically, in contrast with
more traditional regularization techniques and the other methods mentioned above,
the shearlet representation provides a rigorous theoretical framework which is very
effective at dealing with a large class of inverse problems and which is especially
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effective in the recovery of information associated with edges and other singulari-
ties.

3.1 Inverting the Radon Transform

By taking advantage of the ability of the shearlet representation to represent some
important classes of operators, a novel method for the regularized inversion of the
Radon transform was introduced in [17, 29]. This is a problem of great interest since
the Radon transform is the underlying mathematical framework of Computerized
Tomography (CT), which has become an essential tool in medical diagnostics and
preventive medicine2. The Radon transform maps a Lebesgue integrable function f
on R2 into the set of its line integrals

R f (θ , t) =
∫
ℓ(θ ,t)

f (x)dx,

where ℓ(θ , t), with t ∈ R,θ ∈ S1, are the lines {x ∈ R2 : x ·θ = t}.
Since the shearlet-based approach to invert the Radon transform adapts a num-

ber of ideas from the Wavelet–Vaguelette Decomposition (WVD) introduced by
Donoho in [21], let us start by briefly recalling the main ideas of the WVD.

Suppose that the operator K in (6) maps the space L2(R2) into the Hilbert space
Y . The WVD consists in selecting a well localized orthonormal wavelet basis {ψ j,m}
of L2(R2) and an appropriate orthonormal basis U j,k of Y so that any f ∈ L2(R2)
can be expressed as

f = ∑
j,k

c j,k [K f ,U j,k]ψ j,m, (7)

where c j,k are known scalars and [·, ·] is the inner product in Y (we refer to [21]
for more detail). It follows that f can be recovered from the observed data K f and,
consequently, an estimate of f can be obtained from the decomposition (7) applied
to the noisy data K f +z using a wavelet thresholding algorithm like those described
in Section 2. The main advantage of this approach is that, unlike the classical Singu-
lar Value Decomposition (SVD), the basis functions employed in the decomposition
formula (7) do not derive entirely from the operator K, but can be chosen to capture
most efficiently the features of the object f to be recovered. Indeed this approach
turns out to outperform SVD and other standard methods. For functions f in a cer-
tain class (specifically, if f is in a certain family of Besov spaces), then the WVD
method converges to f with the optimal rate, provided that the thresholding param-
eters are properly selected [21, 54].

By adapting the WVD approach within the shearlet framework, it is shown
in [17, 29] that a function f ∈ L2(R2) is recovered from the Radon data R f using
the expansion

2 More than 72 millions of medical CT scans were performed in the USA, in 2007
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Fig. 5 From the top, clockwise: noisy Radon projections (SNR=34.11 dB); unfiltered recon-
struction (SNR=11.19 dB); shearlet-based estimate (SNR=21.68 dB); curvelet-based estimate
(SNR=21.26 dB); wavelet-based estimate (SNR=20.47 dB).
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f = ∑
j,ℓ,m

2 j [R f ,U j,ℓ,m]ψ j,ℓ,m, (8)

where {ψ j,ℓ,m} is a Parseval frame of shearlets of L2(R2), and {U j,ℓ,m} is a related
system which is obtained by applying an operator closely related to the Radon trans-
form to the shearlet system. The advantage of this representation is that the shearlet
system {ψ j,ℓ,m} is optimally suited to represent images f containing edges. Thus, if
f is a cartoon-like image and the observed Radon data R f are corrupted by additive
Gaussian noise, it is proved that the shearlet-based estimator obtained from shear-
let thresholding provides an optimal Mean Square Error for the recovery of f . In
particular, this approach outperforms the standard WVD as well as other traditional
methods, in which cases the MSE has a slower decay rate. With respect to a some-
what similar result based on the curvelet approach [6], the shearlet-based method
provides a simpler and more flexible mathematical construction which leads to a an
improved numerical implementation and performance. A typical application of the
shearlet-based regularized reconstruction algorithm is reported in Figure 5 where
the method is compared against the curvelet-based algorithm and the wavelet-based
one (corresponding to WVD). We refer to [17, 29] for additional numerical tests
and details on the algorithm.

A related method of using shearlets to control noise amplification when inverting
the Radon transform was presented in [1] in the case when the sampled data is
compressed.

3.2 Deconvolution

When image degradations include the blurring introduced by camera motion as well
as the noise introduced by the electronics of the system, the model of the degradation
can be given as a convolution operation. The process of undoing this convolution op-
eration is commonly known as deconvolution and is known to be an ill-posed inverse
problem. To regularize the ill-posed problem, the sparse representation properties of
shearlets can be utilized.

The idea of using a sparse representation to regularize deconvolution as well
as other inverse problems has been suggested before (see for example [21] and
[6]). However, unique to this shearlet approach is the ability for a multi-scale and
anisotropic regularization inversion to be done before noise shrinkage [69]. An addi-
tional benefit is the use of a cross-validation function to adaptively select the thresh-
olding values.

A digitally recorded image is a finite discrete data set, so an image deconvolution
problem can be formulated as a matrix inversion problem. Without loss of generality,
we assume the recorded images/arrays are of size N×N. Let γ denote an N×N array
of samples representing a zero mean additive white Gaussian noise with variance
σ2. Let y denote the observed image and x is assumed to represent the image to be
estimated. Then the deconvolution problem can be formulated as
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y = H f+ γ,

where y, f, and γ are N2 × 1 column vectors representing the arrays y, f , and γ
lexicographically ordered, and H is the N2×N2 matrix that models the blur operator.
When the assumption of periodic boundary is made, the problem can be described
as

y(n1,n2) = ( f ∗h)(n1,n2)+ γ(n1,n2), (9)

where 0 ≤ n1,n2 ≤ N − 1, ∗ denotes circular convolution, and h denotes the point
spread function (PSF). In the discrete Fourier transform (DFT) domain, equation (9)
reduces to

ŷ(k1,k2) = ĥ(k1,k2) f̂ (k1,k2)+ γ̂(k1,k2), (10)

where ŷ(k1,k2), ĥ(k1,k2), f̂ (k1,k2) and γ̂(k1,k2) are the discrete Fourier transforms
of y, h, f , and γ , respectively, for −N/2 ≤ k1,k2 ≤ N/2−1. In this formulation, it is
evident that if there exist indices (k1,k2) where |ĥ(k1,k2)| contains values at or near
zero, then the system will be ill-conditioned.

Using the regularized inverse operator

H
′
α(k1,k2) =

ĥ(k1,k2)

|ĥ(k1,k2)|2 +α

for some regularizing parameter α ∈ R+, an estimate in the DFT domain is given
by

f̂α(k1,k2) = ŷ(k1,k2)H
′
α(k1,k2),

for N/2 ≤ k1,k2 ≤ N/2− 1. Applying the multi-channel implementation of shear-
lets, we can adaptively control the regularization parameter to be the best suited for
each frequency supported trapezoidal region. Let g j,ℓ denote the shearlet filter that
will correspond to a given scale j and direction ℓ. The shearlet coefficients of an es-
timate for a given regularization parameter α can be computed in the DFT domain
as

ĉ( fα)
S
j,ℓ(k1,k2) = ŷ(k1,k2) ĝ j,ℓ(k1,k2)H

′
α(k1,k2),

for N/2 ≤ k1,k2 ≤ N/2−1.
The regularization parameters {α} will act to suppress a noise amplification, yet

it is desirable to allow a noise amplification as long as the remaining noise level can
be adequately controlled by shearlet shrinkage methods.

Shearlet threshold values can be adaptively found by using a generalize cross val-
idation (GCV) as follows: Let y, f, and γ denote the observed noisy image, original
image, and the colored noise so that y = f+ γ . The noise is assumed to be second
order stationary (i.e. the mean is constant and the correlation between two points
depends only on the distance between them).

The soft thresholding function Tτ(c) is defined to be equal to c−τsign(c) if |c|>
τ and zero otherwise for a given threshold parameter τ. Assuming the noise process
γ is stationary and that ⟨γ,ψ j,ℓ,m⟩ represents a shearlet coefficient of a random vector
γ at scale j, direction ℓ, and location m, the following lemma is obtained.
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(a) (b)

(c) (d)

Fig. 6 Details of the image deconvolution experiment with a Peppers image. (a) Original image.
(b) Noisy blurred image, BSNR=30 dB. (c) ForWaRD estimate, ISNR=4.29 dB. (d) shearlet-based
estimate, ISNR=5.42 dB.

Lemma 1 ([69]). E
[
|⟨γ,ψ j,ℓ,m⟩|2

]
depends only on the scale j and direction ℓ.

This means the shearlet transform of stationary correlated noise is stationary
within each scale and directional component. Let y j,ℓ denote the vector of shearlet
coefficients of y at scale j and direction ℓ. L j,ℓ is the number of shearlet coefficients
on scale j and direction ℓ, and L is the total number of shearlet coefficients. Given

R j,ℓ(τ j,ℓ) =
1

L j,ℓ
∥Tτ j,ℓ(y j,ℓ)− f j,ℓ∥2, (11)

the total risk is
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R(τ) = ∑
j
∑
ℓ

L j,ℓ

L
R j,ℓ(τ j,ℓ). (12)

This means the minimizing the mean squared error or risk function R can be
achieved by minimizing R j,ℓ(τ j,ℓ) for all j and ℓ. Assuming L j,ℓ,0 is the total number
of shearlet coefficients that were replaced by zero after threshold, we now have the
following:

(a) (b)

(c) (d)

Fig. 7 Details of the image deconvolution experiment with a Zebra image. (a) Original image. (b)
Noisy blurred image, BSNR=30 dB. (c) ForWaRD estimate, ISNR=5.53 dB. (d) shearlet-based
estimate, ISNR=6.03 dB.

Theorem 1 ([69]). The minimizer of
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GCVj,ℓ(τ j,ℓ) =

1
L j,ℓ

∥ Tτ(y j,ℓ)−y j,ℓ ∥2[
L j,ℓ,0
L j,ℓ

]2 , (13)

is asymptotically optimal for the minimum risk threshold R j,ℓ(τ j,ℓ) for scale j and
directional component ℓ.

This means finding the values τ j,ℓ that minimize the cross validation function
GCVj,ℓ for each j and ℓ, leads to a shearlet-based estimate that will likely be close
to the ideal noise-free image.

Define ĉ(y)S
j,ℓ(k1,k2) as ŷ(k1,k2)ĝ j,ℓ(k1,k2) for −N/2 ≤ k1,k2 ≤ N/2− 1, and

c̃( fα)
S
j,ℓ to be the estimate of c( fα)

S
j,ℓ after thresholding the coefficients by using

the GCV formula given in (13). That is, for a given α , set c̃( fα)
S
j,ℓ = Tτ ′j,ℓ

(c( fα)
S
j,ℓ)

for τ ′
j,ℓ = argminτ j,ℓ GCVj,ℓ(τ j,ℓ). Then one option for finding the optimal α for each

thresholded set of shearlet coefficients c̃( fα)
S
j,ℓ can be found by minimizing the cost

function

∑
k1

∑
k2

|ĥ(k1,k2)|
|ĥ(k1,k2)|2+η

∣∣∣ĥ(k1,k1)̂̃c( fα)
S
j,ℓ(k1,k2)− ĉ(y)S

j,ℓ(k1,k2)
∣∣∣2 ,

where η = N2σ2/∥c(y)S
j,ℓ−µ(c(y)S

j,ℓ)∥2
2, µ(y) denotes the mean of y, and σ is the

estimated standard deviation of the noisy blurred image. For other variances and
options on finding α , we refer to [69].

We use the improvement in signal-to-noise-ratio (ISNR) to measure the success
of the routines and the blurred signal-to-noise ratio (BSNR) to give in understanding
of the problem setup. The ISNR is given as

ISNR = 10log10

(
∥ f − y∥2

2

∥ f − f̃∥2
2

)
,

and the BSNR is given as

BSNR = 10log10

(
∥( f ∗h)−µ( f ∗h)∥2

2
N2σ2

)
,

for an N ×N image. Notice that both are measured in decibels.
Applications of the shearlet-based deconvolution algorithm are shown in Fig-

ures 6 and 7, where it is compared against the highly competitive wavelet-based de-
convolution algorithm known as Fourier-Wavelet Regularized Deconvolution (For-
WaRD) [65]. Figures 6 and 7 display close-ups of some experiments results where
the blur was a 9×9 boxcar blur [65].
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3.3 Inverse-Halftoning

Halftoning is a process of rendering an image into a binary (black-and-white) im-
age. Halftoning techniques include error diffusion methods such as those by Floyd-
Steinburg and Jarvis at el. [86, 47, 36, 48]. At times these halftoned images may
need resizing, enhancement, or removal of aliasing artifacts. There may also be a
need for these images to be restored to their original gray-scale images for other
reasons such as compression or for digital achieving of old newspapers and articles.

Given the Floyd-Steinberg filter

hFS =
1
16

[
0 • 7
3 5 1

]
,

or the Jarvis error filter

hJ =
1
48

0 0 • 7 5
3 5 7 5 3
1 3 5 3 1

 ,

the quantization error at • is diffused over a causal neighbourhood according to the
matrix values. Specifically, each pixel is identified in a raster-scan indexing scheme
and the pixel’s gray-scale value is made into a binary number by thresholding (1, if
the value is greater than or equal to 1/2, and 0 otherwise). The quantization error is
then diffused on neighbouring pixels using the weights from hFS or hJ . Let p and q
denote the impulse responses determined by the error diffusion model. The relation
between the original N ×N gray-scale image f and the resultant halftone y image
can be approximately modeled as:

y(n1,n2) = (p∗ f )(n1,n2)+(q∗υ)(n1,n2) (14)

where 0 ≤ n1,n2 ≤ N−1 and υ is considered an additive white Gaussian noise even
though the process does not involve randomness. In the DFT domain, equation (14)
can be written as

ŷ(k1,k2) = p̂(k1,k2) f̂ (k1,k2)+ q̂(k1,k2)v̂(k1,k2),

for −N/2 ≤ k1,k2 ≤ N/2−1. Assuming ĥ denotes the DFT of the diffusion filters
hFS or hJ , the transfer functions p̂ and q̂ are given by

p̂(k1,k2) =
C

1+(C−1)ĥ(k1,k2)

and

q̂(k1,k2) =
1− ĥ(k1,k2)

1+(C−1)ĥ(k1,k2)
.

where the constant C = 2.03 when h = hFS or C = 4.45 when h = hJ [48].
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(a) (b)

(c) (d)

(e)Fig. 8 Close-ups of inverse halftoning experiment with the Barbara image. (a) Original image.
(b) Floyd-Steinberg halftone. (c) Wavelet-based estimate (SNR =19.30 dB). (d) LPA-ICI-based
estimate (SNR = 19.25 dB).(e) Shearlet-based estimate (SNR = 22.02 dB).

To approximately invert the halftoning process, we use the regularized inverse
operator

P
′
α(k1,k2) =

p̂(k1,k2)

|p̂(k1,k2)|2 +α2|q̂(k1,k2)|2
(15)

for some regularizing parameter α ∈R+. This gives an image estimate in the Fourier
domain as

f̂α(k1,k2) = ŷ(k1,k2)P
′
α(k1,k2),

for −N/2 ≤ k1,k2 ≤ N/2−1.
This regularization process can be separated into a shearlet domain as done pre-

viously. Assuming g j,ℓ denotes the shearlet filter for scale j and direction ℓ, the
shearlet coefficients of an estimate of the image for a given regularization parameter
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α can be computed in the DFT domain as

ĉ( fα)
S
j,ℓ(k1,k2) = ŷ(k1,k2) ĝ j,ℓ(k1,k2)P

′
α(k1,k2)

for −N/2 ≤ k1,k2 ≤ N/2−1.
The remaining aspect of this problem is transformed into a form of a denoising

problem which can be dealt with by thresholding the estimated shearlet coefficients
using the GCV formulation determined previously.

We illustrate the performance of the shearlet inverse halftoning algorithm (see
[34] for more details) by using the Barbara image. The image was halftoned using
the Floyd-Steinberg algorithm and comparisons were done with a wavelet-based
method as well as a LPA-ICI-based method [66],[37]. Close-ups of the results are
shown in Figure 8.

4 Image Enhancement

Image enhancement is a term describing an improvement of the visual properties
of an image for the purpose of interpretation or perception either for human or
computer vision systems. Mathematically, given an image whose pixel values are
described as the array y(k1,k1), it produces an altered image ye(k1,k2) by an ap-
plication of an enhancement transformation En. That is ye(k1,k2) = En(y(k1,k2))
for −N/2 ≤ k1,k2 ≤ N/2− 1. If we assume that y is a grayscaled image whose
pixels are integers ranging from 0 to 255, then a fairly simple enhancement map is
En(t) = 255− t, which was used in Fig. 1 to improve the contrast in the images
of the shearlet coefficients. Other simple enhancement transforms are based on log-
arithm, exponential, or piece-wise linear functions. Another powerful and widely
used enhancement technique is histogram equalization which produces a transfor-
mation En such that the histogram of the its pixel values of the enhanced image ye is
evenly distributed. More recently, several image enhancement techniques have been
introduced which are based on ideas from multiscale analysis [52, 53, 56, 79].

Image enhancement is frequently used in medical imaging, where it can be help-
ful to emphasize visual features which are important for medical diagnostic. For
example, the enhancement of mammography images can be very useful to improve
the visibility of small tumors for early detection. To this goal, many image process-
ing techniques based on multiscale analysis have been found effective, such as the
approach of Laine et al. [52], which investigates mammography feature analysis
using the dyadic wavelet transform, the approach by Strickland et al. [81], which
uses the undecimated wavelet transform for detecting and segmenting calcifications
in mammograms, and the enhancement method of Chang et al. [11], which is based
on overcomplete multiscale representations.

In this section, we adapt some of the ideas proposed in the literature for image
enhancement to construct an image enhancement algorithm based on the shearlet
representation. The intuitive idea behind this approach is that, since shearlet co-
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Fig. 9 Enhancement map: b = 0.35, β = 10, T 1 = 0.1, T 2 = 0.3, T 3 = 0.9

efficients are closely related to edges and other essential geometric features, it is
possible to enhance such features by controlling the magnitude of the shearlet co-
efficients. Thus, we introduce an appropriate adaptive nonlinear mapping function
on the shearlet coefficients with the goal to amplify weak edges, while keeping the
other strong edges intact. We define this nonlinear operator as follows, using the
notation sigm(t) = (1+ e−t)−1:

En(t) = 0 if |t|< T1

En(t) = sign(t)T2 + ā(sigm(β (t̄ −b))− sigm(−β (t̄ +b)))

if T2 ≤ |y| ≤ T3

En(t) = t otherwise (16)

where t ∈ [−1,1], ā= a(T3−T2), t̄ = sign(t) |t|−T2
T3−T 2 , 0≤ T1 ≤ T2 < T3 ≤ 1, b∈ (0,1),

and a, dependent on the gain factor β and b, is defined as

a =
1

sigm(β (1−b))− sigm(−β (1+b))
.

In this formulation, the parameters T1,T2, and T3 are selected threshold values,
and b and β control the threshold and rate of enhancement, respectively. The in-
terval [T2,T3] serves as a sliding window for feature selectivity. It can be adjusted
to emphasize important features within a specific range. These parameters can be
adaptively selected by using the standard deviation of the pixel values for each scale
j and direction ℓ. Using this nonlinear function, the shearlet coefficients are point-
wise modified for image enhancement by
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Fig. 10 Image enhanced of mammogram. From left to right: Original mammogram with spiculated
masses and calcifications, Image enhanced mammogram using shearlets.

⟨ye,ψ j,ℓ,m⟩= max
m

(|⟨y,ψ j,ℓ,m⟩|)En
(

⟨y,ψ j,ℓ,m⟩
maxm(|⟨y,ψ j,ℓ,m⟩|)

)
,

where maxm(|⟨y,ψ j,ℓ,m⟩|) is the maximum absolute amplitude of |⟨y,ψ j,ℓ,m⟩| as a
function of position m and ⟨ye,ψ j,ℓ,m⟩ denotes the shearlet coefficients of the en-
hanced image ye. The resultant enhanced image ye is found by simply inverting the
transform. Figure 9 shows an enhancement map curve representing the enhanced
coefficients versus the original coefficients.

Results of the shearlet-based image enhancement method were presented in [68],
where they have been applied to enhanced mammogram images. Examples of the
application of this algorithm are shown in Fig. 10 and 11, where the enhanced
mammograms obtained using shearlets are compared with those obtained using the
nonsubsampled wavelet transform (NSWT) and a standard histogram equalization
method. In the experiment Fig. 11, we created mathematical models of phantoms
to validate our enhancement methods against any false alarms arising from our en-
hancement techniques. This phantom is a good model for features such as micro-
calcifications, masses, and spicular objects which occur in real data.

In our experiments, we used 1, 8, 8, 16, 16 directions in the scales from coarser
to finer, respectively, as done in [33] for the shearlet decomposition. The standard
deviation of pixel values were used to adaptively select the values for T1, T2, and
T3. We choose b = 0.23,0.14,0.10,0.10 and β = 20,35,45,35 for the directions in
the scales from coarser to finer, respectively. In the first experiment, we enhanced
a mammogram image using shearlets as shown in Figure 10. In the second exper-
iment, we blended a normal mammogram with the phantoms and compared our
enhancement method with that of the histogram equalization and the NSWT as
shown in Figure 11. As in Figure 11, enhancement by shearlets provided a signifi-
cant improvement in contrast for each feature included in the blended mammogram;
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Fig. 11 Enhanced of mammogram with a mathematical phantom inserted. (a) Original mammo-
gram. (b) Mathematical phantom. (c) Region of interest (ROI) image. (d) Enhanced ROI image
using histogram equalization. (e) Enhanced ROI image using NSWT. (f) Enhanced ROI image
using shearlets.

whereas features such as mass (white disc) is hard to see in the enhanced ROI im-
ages obtained by the NSWT and histogram equalization methods.
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5 Edge Analysis and Detection

The detection and analysis of edges is a primary task in a variety of image pro-
cessing and computer vision applications. In fact, since edges are usually the most
prominent features in natural images and scientific data, the localization of edges is
a fundamental low level task for higher level applications such as shape recognition,
3D reconstruction, data enhancement and restoration.

Edges can be formally characterized as those points of a function u, defined on a
domain Ω ⊂ R2, for which the gradient is noticeably large, that is,

{x ∈ Ω ⊂ R2 : |∇u(x)> p},

where p is some suitable chosen threshold. It is clear that this simple characteri-
zation of edges does not translate directly into an effective edge detection scheme,
since images are usually affected by noise and the differential operator is extremely
sensitive to noise. As a consequence, in the most common edge detector schemes, to
watch out for the interference of noise, the image is first smoothed out or mollified.
For example, in the classical Canny edge detection algorithm [8] the image is first
convolved with a scalable Gaussian function as

ua = u∗Ga,

where Ga(x) = G(a−1x), a > 0, x ∈ R2 and G(x) = 1
π e−x2

. Next, the edge points
are identified as the local maxima of the gradient of ua. Notice that this approach
involves a scaling parameter a: as a decreases, the detection of the edge location
becomes more accurate; however, as a decreases, also the detector’s sensitivity to
noise increases. As a result, the performance of the edge detector depends heavily
on the scaling factor a (as well as the threshold).

There is an interesting and useful relationship between edge detection and
wavelet analysis which was first observed by Mallat, Hwang and Zhong in [60, 61]
and can be summarized as follows. Given an image u ∈ L2(R2), a simple computa-
tion shows that its continuous wavelet transform with respect to an admissible real
and even function ψ can be written as

Wψ u(a,x) =
∫
R2

u(y)Daψ(y− x)dy = u∗Daψ(x).

where Daψ(x) = a−1 ψ(a−1x). In particular, if ψ = ∇G, then

∇ua(x) = u∗∇Ga(x) = u∗Daψ(x) =Wψ u(a,x). (17)

This shows that the maxima of the magnitude of the gradient of the smoothed image
ua correspond precisely to the maxima of the magnitude of the wavelet transform
Wψ u(a,x). This observation provides a natural mathematical framework for the mul-
tiscale analysis of edges which was successfully developed in [60, 61].
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5.1 Edge Analysis using Shearlets

The main limitation of the Canny edge detector or the wavelet method described
above is that both methods are essentially isotropic and, as a result, are not very effi-
cient at dealing with the anisotropic nature of the edges. The difficulty in accurately
identifying the location of edges is particularly evident in the presence of noise and
when several edges are close together or cross each other, such as the situation of 2–
dimensional projections of 3–dimensional objects [94]. In such cases, the following
limitations of traditional edge detectors is particularly evident:

• Difficulty in distinguishing close edges. The isotropic Gaussian filtering causes
edges running close together to be blurred into a single curve.

• Poor angular accuracy. In the presence of sharp changes in curvature or crossing
curves, the isotropic Gaussian filtering leads to an inaccurate detection of the
edge orientation. This affects the detection of corners and junctions.

To better deal with the edge information, a number of methods were introduced
which replace the scalable collection of isotropic Gaussian filters Ga, a > 0, in (17)
with a family of steerable and scalable anisotropic Gaussian filters such as

Ga1,a2,θ (x1,x2) = a−1/2
1 a−1/2

2 Rθ G(a−1
1 x1,a−1

2 x2),

where a1,a2 > 0 and Rθ is the matrix of rotation by the angle θ (see [70, 87, 39]).
Unfortunately, the design and implementation of such filters is computationally in-
volved and there is no theoretical setting to decide how to design such family of
filters to best capture the edges.

The shearlet framework has the advantage of providing a well justified mathemat-
ical setting for efficiently representing the edge information. In fact, as discussed in
Chapters 1 and 3 of this volume, the continuous shearlet transform can be applied to
precisely characterize the geometric information associated with the edges through
its asymptotic behaviour at fine scales. The results can be summarized as follows.

Let an image u be modeled as piecewise smooth function in Ω = [0,1]2. That
is, we assume that u is smooth everywhere on Ω , except for a collection of finitely
many piecewise smooth curves, denoted by Γ , where jump discontinuities may oc-
cur. Then the asymptotic decay properties of the continuous shearlet transform SH
of u are as follows [44]:

• If p /∈ Γ , then |SH ψ u(a,s, p)| decays rapidly, as a → 0, for each s ∈ R.
• If p ∈Γ and Γ is smooth near p, then |SH ψ u(a,s, p)| decays rapidly, as a → 0,

for each s ∈ R unless s = s0 is the normal orientation to Γ at p. In this last case,
|SH ψ u(a,s0, p)| ∼ a

3
4 , as a → 0.

• If p is a corner point of Γ and s = s0, s = s1 are the normal orientations to Γ at p,
then |SH ψ u(a,s0, p)|, |SH ψ u(a,s1, p)| ∼ a

3
4 , as a → 0. For all other orienta-

tions, the asymptotic decay of |SH ψ u(a,s, p)| is faster (even if not necessarily
“rapid”).
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Here by “rapid decay”, we mean that, given any N ∈ N, there is a CN > 0 such
that |SH ψ u(a,s, p)| ≤ CaN , as a → 0. It is also useful to observe that spike-type
singularities produce a very different behaviour than jump discontinuities on the
decay of the continuous shearlet transform. Consider, for example, a Dirac delta
distribution centered at t0. In this case a simple calculation (see [49]) shows that

|SH ψ δt0(a,s, t0)| ≍ a−3/4, as a → 0,

that is, the continuous shearlet transform of δt0 , at t = t0 increases at fine scales. The
decay is rapid for t ̸= t0.

These observations show that the continuous shearlet transform precisely de-
scribes the geometric information of the edges and the other singular points of an
image. This is in contrast with the wavelet transform which cannot provide any in-
formation about the edge orientation.

Fig. 12 Results of edge detection methods. From top left, clockwise: Original image, noisy im-
age (PSNR= 25.94 dB), Prewitt result (FOM=0.31), shearlet result (FOM=0.94), wavelet result
(FOM=0.59), and Sobel result (FOM=0.32).



Image Processing using Shearlets 31

5.2 Edge Detection using Shearlets

An algorithm for edge detection based on shearlets was introduced in [90, 91], where
a discrete shearlet transform was described with properties specifically designed
for this task. In fact, the discrete shearlet transform which was presented above for
image denoising, produces large sidelobes around prominent edges3 which interfere
with the detection of the edge location. By contrast, the special discrete shearlet
transform introduced in [90, 91] is not affected by this issue since the analysis filters
are chosen to be consistent with the theoretical results in [44, 45], which require that
the shearlet generating function ψ satisfies certain specific symmetry properties in
the Fourier domain (this is also discussed in Chapter 3 of this volume).

The first step of the shearlet edge detector algorithm consists in selecting the
edge point candidates of a digital image u[m1,m2]. They are identified as those
points (m1,m2) which, at fine scales j, are local maxima of the function

M ju[m1,m2]
2 = ∑

ℓ

(SH u[ j, ℓ,m1,m2])
2.

Here SH u[ j, ℓ,m1,m2] denotes the discrete shearlet transform. According to the
properties of the continuous shearlet transform summarized above, we expect that,
if (m1,m2) is an edge point, the discrete shearlet transform of u will behave as

|SH u[ j, ℓ,m1,m2]| ∼C 2−β j,

where β ≥ 0. If, however, β < 0 (in which case the size of |SH u| increases at finer
scales), then (m1,m2) will be recognized as a spike singularity and the point will
be classified as noise. Using this procedure, edge point candidates for each of the
oriented components are found by identifying the points for which β ≥ 0. Next, a
non-maximal suppression routine is applied to these points to trace along the edge
in the edge direction and suppress any pixel value that is not considered to be an
edge. Using this routine, at each edge point candidate, the magnitude of the shearlet
transform is compared with the values of its neighbours along the gradient direction
(this is obtained from the orientation map of the shearlet decomposition). If the
magnitude is smaller, the point is discarded; if it is the largest, it is kept.

Extensive numerical experiments have shown that the shearlet edge detector is
very competitive against other classical or state-of-the-art edge detectors, and its
performance is very robust in the presence of noise. An example is displayed in
Figure 12, where the shearlet edge detector is compared against the wavelet edge
detector (which is essentially equivalent to the Canny edge detector) and the So-
bel and Prewitt edge detectors. Notice that both the Sobel and Prewitt filters are
2D discrete approximations of the gradient operator. The performance of the edge
detectors is assessed using the Pratt’s Figure of Merit, which is a fidelity function
ranging from 0 to 1, where 1 is a perfect edge detector. This is defined as

3 The same problem occurs if one uses a standard discrete wavelet or curvelet transform
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FOM =
1

max(Ne,Nd)

Nd

∑
k=1

1
1+α d(k)2 ,

where Ne is the number of actual edge points, Nd is the number of detected edge
points, d(k) is the distance from the k-th actual edge point to the detected edge
point and α is a scaling constant typically set to 1/9. The numerical test reported in
the figures show that the shearlet edge detector consistently yields the best value for
FOM.

5.3 Edge Analysis using Shearlets

As observed above, the continuous shearlet transform has the ability to precisely
characterize the geometry of the edges. These properties lead directly to a very ef-
fective algorithm for the estimation of the edge orientation, which was originally in-
troduced in [91]. Specifically, by taking advantage of the parameter associated with
the orientation variable in the shearlet transform, the edge orientations of an image
u, can be estimated by searching for the value of the shearing variable s which max-
imizes SH ψ u(a,s, p) at an edge point p, when a is sufficiently small. Discretely,
this is obtained by fixing a sufficiently fine scales (i.e., a= 2−2 j sufficiently “small”)
and computing the index ℓ̃ which maximizes the magnitude of the discrete shearlet
transform SH u[ j, ℓ,m] as

ℓ̃( j,m) = argmax
ℓ

|SH u[ j, ℓ,m]| . (18)

Once this is found, the corresponding angle of orientation θℓ̃( j,m) associated with
the index ℓ̃( j,m) can be easily computed. As illustrated in [91], this approach leads
to a very accurate and robust estimation for the local orientation of the edge curves.

Indeed, the sensitivity of the shearlet transform to the edge orientation is useful
for the extraction of landmarks, another imaging application, which is important in
problems of classification and retrieval. To illustrate the general principle, consider
the simple image in Figure 13 consisting of large smooth regions separated by piece-
wise smooth curves. The junction point A, where three edges intersect, is certainly
the most prominent object in the image, and this can be easily identified by look-
ing at values of the shearlet transform. In fact, if one examines the discrete shearlet
transform SH u[ j0, l,m0], at a fixed (fine) scale j0 and locations m0, as a function of
the shearing parameter l, the plot immediately identifies the local geometric proper-
ties of the image. Specifically, as illustrated in Figure 13(b), one can recognize the
following four classes of points inside the image. At the junction point k0 = A, the
function |SH u[ j0, ℓ,m0]| exhibits three peaks corresponding to the orientations of
the three edge segments converging into A; at the point m0 = B, located on a smooth
edge, |SH u[ j0, ℓ,m0]| has a single peak; at a point m0 = D, inside a smooth region,
|SH u[ j0, ℓ,m0]| is essentially flat; finally, at a point m0 = C “close” to an edge,
|SH u[ j0, ℓ,m0]| exhibit two peaks, but they are much smaller in amplitude than
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Fig. 13 (a) Test image and representative points A (junction), B (regular edge point), C (smooth
region), D (near edge). (b) Magnitude of the Discrete Shearlet Transform, as a function of the
orientation parameter ℓ at the locations m0 = A,B,C,D indicated in (a). Notice the different scaling
factor used in the y-axis, for the plots of points C and D.

those for the points A and B. A similar behaviour was observed, as expected, for
more general images, even in the presence of noise.

Based on these observations, a simple and effective algorithm for classifying
smooth regions, edges, corners and junction points of an image was proposed and
validated in [91].

6 Image Separation

Blind source separation is a classical problem in signal processing whose object is
the separation of a set of signals from a set of mixed signals, with very little infor-
mation about the source signals and the mixing process. The traditional techniques
for addressing this problem rely on the assumption that the source signals are es-
sentially decorrelated, so that they can be separated into additive subcomponents
which are statistically independent. The main weakness of these techniques is that
they are very sensitive to noise. On the other hand, recent results have shown that
sparse representations such as shearlets can be applied to design extremely robust
source separation algorithms [25, 26, 78].

In the following, we describe a very effective algorithm for image separation, re-
cently proposed in [25, 26] which takes advantage of the ability of the shearlet rep-
resentation in dealing with edge curves and other elongated features. This approach
is especially tailored to deal with the situation of images, such as astronomical or
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biological images, where it is important to separate pointlike objects from curvelike
ones.

6.1 Image model

The class of the images of interest, denoted by J, are modeled as a composition of
point- and curve-like objects. That is, a point-like object is a function P which is
smooth except for finitely many point singularities and has the form

P(x) =
m

∑
i=1

|x− xi|−
3
2 .

A curve-like object is a distribution C with delta singularity along a closed curve
τ : [0,1]→ R2. Hence, an image in J will be of the form

f = P+C.

The goal of the Geometric Separation Problem is to recover P and C from the ob-
served signal f .

The basic idea is to choose a redundant dictionary containing two representations
systems Φ1, Φ2, that is

D = Φ1 +Φ2,

where each system sparsely represents only one of the different components of
f ∈ J. Specifically, Φ1 is chosen to be a Parseval frame of shearlets which, as
discussed above, provides optimally sparse approximations of functions which are
smooth apart from curve singularities; Φ2 is chosen to be a smooth wavelet or-
thonormal basis, which, as known, provides optimally sparse approximations of
functions which are smooth apart from point singularities.

6.2 Geometric Separation Algorithm

In the algorithmic approach to the image separation problem devised in [50], an
image f ∈ J is examined at various resolution levels, denoted by f j, j ∈ Z, where
f j = f ∗Fj and Fj is a bandpass filter associated with the frequency band centered
at 2 j. Hence, for each j ∈ Z,

f j = Pj +C j,

where Pj and C j are the point-like and curve-like components of f j, respectively, at
scale j. At the resolution level j, the following optimization problem is defined:

(Ŵj, Ŝ j) = argminW j ,S j
||ΦT

1 S j||1 + ||ΦT
2 Wj||1 subject to f j = S j +Wj, (19)
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Original Image Noisy Image

 

 

Curvelike component (MCALab) Pointlike component (MCALab)

Curvelike component (shearlets) Pointlike component (shearlets)

Fig. 14 Example of geometric separation on a noisy synthetic image. The shearlet-based geometric
separation algorithm is compared against MCALab.

where ΦT
1 S j and ΦT

2 Wj are the shearlet and wavelet coefficients of the signals S j
and Wj, respectively.

The following theoretical result from [26] ensures the convergence of the geo-
metric separation problem at fine scales.

Theorem 2. Let (Ŵj, Ŝ j) be the solutions to the optimization problem (20) for each
scale j. Then

lim
j→∞

||Ŵj −Pj||2 + ||Ŝ j −C j||2
||Pj||2 + ||C j||2

= 0.
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This shows that the components Pj and C j of f j are recovered with asymptotically
arbitrarily high precision at fine scales.

In practice, an image f is not purely a sum of a point-like and a curve-like com-
ponents, and contains an additional part that can be modeled as a noise term. In this
situation, one can modify the optimization problem (20) as follows

(Ŵj, Ŝ j) = argminW j ,S j
||ΦT

1 S j||1 + ||ΦT
2 Wj||1 +λ || f j −Wj −S j||2, (20)

subject to f j = S j +Wj. Notice that this type of expression is sometimes called an
infimal convolution in the image processing literature. In this modified form, the
additional noisy component in the image is characterized by the property that it can
not be represented sparsely by either one of the two representation systems and,
thus, will be allocated to the residual term ( f j −Wj −S j).

An example of the application of the shearlet-based geometric separation algo-
rithm to a noisy image is illustrated in Figure 14, where the result is compared to
the MCALab algorithm [35], another separation algorithm which employs a combi-
nation of curvelet and wavelet representations. The figure shows that the shearlet-
based approach is very effective at separating the pointlike and curvelike compo-
nents of the image, and it produces significantly less artifacts than MCALab. We
refer to [26] for a more detailed discussion.

7 Shearlets analysis of 3D Data

A number of results have recently appeared dealing with the application of shearlet-
based methods for the analysis and processing of 3D data sets. Similar to the 2D
case, the nearly optimally sparse approximation properties of 3D shearlet repre-
sentations can be exploited for data denoising and feature extraction. As expected,
dealing with 3D data sets entails more challenges in terms of memory storage so
that particular attention is required to devise numerical efficient implementations.

A 3D Discrete Shearlet Transform (3D DST) was proposed in [51] and tested
on video denoising. The algorithm follows essentially the ideas of the 2D discrete
shearlet algorithm and can be summarized as follows. First, the data in the frequency
domain are divided into three pyramidal regions, each one aligned with one of the
orthogonal axis. The directional filtering stage is based on computing the DFT in
the pseudopolar domain. In particular, in the first pyramidal region, this is defined as
(u,v,w) = (ξ1,

ξ2
ξ1
, ξ3

ξ1
). Hence, at each fixed resolution level, the 3D DST algorithm

proceeds as follows.

• The multiscale filter stage decomposes f j−1
a into a low-pass f j

a and high-pass f j
d

array.
• f̂ j

d is rearranged onto a pseudo-polar grid.
• A directional band pass filtering is applied on the pseudo-polar data.
• The pseudo-polar data is converted back to a Cartesian formulation and the in-

verse DFT is computed.
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The algorithm runs in O(N3 log(N)) operations.
A shearlet thresholding routine based on the 3D DST algorithm (3DSHEAR) was

applied to a problem of video denoising and the performance was compared against
the following state-of-the-art algorithms: the Dual Tree Wavelet Transform (DTWT)
and Surfacelets (SURF). We also compared against the 2D discrete shearlet trans-
form (2DSHEAR), which was applied frame by frame, to illustrate the benefit of
using a 3D transform, rather than a 2D transform acting on each frame. Figure 15
shows a side-by-side comparison of the denoising algorithm performance on a typ-
ical frame extracted from the video sequence Mobile. Additional comparisons and
discussion can be found in [51].

Original Noisy

3DSHEAR SURF

2DSHEAR DTWT

Fig. 15 Side by side comparison of video denoising algorithms, illustrated on a frame extracted
from a video sequence. The 3D Discrete Shearlet Tranform (3DSHEAR) is compared against
the Dual Tree Wavelet Transform (DTWT), the Surfacelet Tranform (SURF) and the 2D Siscrete
Shearlet Transform (2DSHEAR)
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A shearlet-based method of analyzing videos from multiple views to autonomously
estimate the kinematic state of an object was developed in [75]. In particular, a tar-
get’s kinematics state was parametrized as a vector

X = [s r]

whose respective corresponding elements were spatial position s = [x,y,z] and ro-
tational orientation r = [h, p,r]. Information from a Bayesian filter was merged to
stabilize 2D recognition and tracking so that observation and object were concur-
rent. In this application, the shearlet transform was used to extract image features
reliably. It particular, it was used to determine two dimensional locations in the
midst of illumination changes and discontinuities.

In an effort to improve the state estimation routine, a continuous-type of 3D
shearlet transform was developed to analyze video data. In this case, the 3D shearlet
transform was being used for detecting surface boundaries [76]. An illustration of
the power of using a 3D shearlet surface/edge detector routine over a slice by slice
detection of the 2D shearlet edge detector is given in Figure 7. In this example,
a solid spherical harmonic of order 2 and degree 7 is generated with a gradient
shading applied to each slice. The same slices are analyzed by the 2D shearlet edge
detector for comparisons. The images show the contour surface plot of this spherical
harmonic and image slices through the center aligned with the x,y, and z axis.

8 Additional Applications

Among the other areas of image processing that benefit from the use of the shear-
let representation, we also recall image fusion and inpainting. In image fusion, the
goal is to process and synthesize information provided by various sensors. A novel
image fusion algorithm based on shearlets and local energy was recently proposed
in [57], where it was shown that this approach outperforms traditional methods by
preserving more details in the source images and further improving the subjective
quality of fused image. In [19], another shearlet-based image fusion method was
developed for panchromatic high resolution images and multispectral images, and it
was shown that it provides superior performance in terms of spatial resolution and
preservation of spectral information. For the applications of inpainting, which can
be described as an interpolation or estimation problem with missing data, a shearlet-
based techique was recently presented in [41].
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Fig. 16 Illustrations of 3D edge detection of a solid spherical harmonic of order 2 and degree 7
with a 2D gradient shadding applied. The images on the left display the 3D contour surface plots
and the images on the left display the slices of sphere through the center.
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