Deep Learning and Neural Networks
Course overview

Demetrio Labate

December 13, 2023
What is this course about?

This will be an application-oriented course introducing students to the notion of deep neural networks, their implementation and applications.

The topics of this area of research lie at the intersection of Applied Mathematics, Statistics, Computer Science and Electrical Engineering.

Emphasis will be given to the implementation and application side.
What is this course about?

While classical and modern signal analysis was mostly concerned with 1-D (time-series), 2-D (images) and 3-D (videos) signals, emerging applications from medical imaging, electronic surveillance, social networks, etc., often involve data which are **high-dimensional** and often **non-Euclidean** (e.g., graphs, surfaces).

The paradigm shift occurring with the current notion of *data science* is the emphasis on the high-dimensionality of data.

This paradigm shifts has led to a new class of algorithms for efficient data representation, dimensionality reduction and statistical inference.
What is data science?

Machine learning is a discipline that uses computer algorithms and analytics to build predictive models.

Deep learning is a subset of machine learning that deals with artificial neural networks, a class of algorithms inspired by the structure and function of the human brain.

Artificial intelligence aims to imitate the human brain and create machines that can perform and process tasks intelligently and independently.

Data science is an inter-disciplinary field that uses scientific methods and algorithms to extract knowledge and insights from structured and unstructured data.
What is machine learning?

Machine Learning

Clustering

Semi-supervised learning (few labels)

Clustering/Classification

Supervised Learning (data and labels)

Regression

Classification

Reinforcement Learning

Dimension reduction

Unsupervised Learning (no labels)

Representation learning

Data generation

Finding a set of unlabelled data, segment the set into clusters of 'similar' data points.

Find intrinsic low-dimensional structure of a data set presented in a high-dimensional space.

Given unlabelled data, find a good way to extract similarity and difference which can be used in downstream tasks.

Given a data set, find a way to create realistic data samples (e.g. pictures of faces).

Given a dataset \(\{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R} : i \in N\} \), find a function that can predict \(y \) from \(x \) reliably at new points.

Uncertainty quantification: Produce a prediction and a confidence interval around it or similar.

Like regression, but the output can only be one of finitely many labels ("classes").

Try to maximize expected gain in the future (e.g. AI for strategy games). See Markov decision processes.

(Image by Stephan Wojtowytsch)
What is deep learning?
1943: The neurophysiologist Warren McCulloch and the mathematician Walter Pitts publish the paper "A logical calculus of the ideas immanent in nervous activity" proposing the first mathematical model of an artificial neuron with a simple input-output relationship. Given inputs x_1, \ldots, x_n, the inhibitory input z and a threshold T, the output is

$$y = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} x_n > T \text{ and } z = 0 \\
0 & \text{otherwise}
\end{cases}$$

1949: Donald Hebb published "The Organization of Behaviour", proposing a model of synaptic plasticity where (biological) neural pathways strengthen (=adapt/learn) over each successive use.
1958: The psychologist Frank Rosenblatt, inspired by the Hebbian theory of synaptic plasticity, proposed the perceptron (originally meant to be a machine rather than a program), a major improvement of the McCulloch-Pitts artificial neuron.

With respect to the McCulloch-Pitts model, the synaptic weights \(w_i \) need not be unitary or positive. In addition, the neuron takes an extra constant input, a weight \(b \) (the bias). An algorithm enables the perceptron to learn the synaptic weights from examples to carry out binary classification.

\[
y = \sigma(w^t x + b) = \begin{cases}
1 & \text{if } w^t x + b \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]
Some historical notes

1959: Bernard Widrow and Marcian Hoff at Stanford U developed the first neural networks, called ADALINE and MADALINE, applied to real data problems (to remove echoes from a phone line), with the latter one consisting of 3 layers.

Some historical notes

- 1965: Ivakhnenko and Lapa proposed the first **Multilayer Perceptron**, with polynomial activation functions. In each layer, they selected the best features through statistical methods and forwarded them to the next layer. They did not use backpropagation to train their network end-to-end but used layer-by-layer least squares fitting where previous layers were independently fitted from successive layers.
Some historical notes

The authors implied (erroneously) that, since a single perceptron is incapable of implementing functions such as the XOR logical function, larger networks would have similar limitations.

The impact of this publication was so powerful that it dried up funding to an extent that, for the next 10–12 years (the so-called AI winter), virtually no research institutions would take on any project about neural networks.
Some historical notes

- 1980: Fukushima introduced the *neocognitron*, a multilayer neural network containing *convolutional layers* and downsampling layers, for tasks of pattern recognition.

This architecture was inspired by the work of Hubel and Wiesel on the visual cortex ("Receptive fields of single neurons in the cat's striate corte", 1959).

Some historical notes

1986: Paul Smolensky invented the **restricted Boltzmann machine** (RBM), initially called "harmonium". This is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

In the mid-2000, RBMs rose to prominence after Hinton and collaborators invented fast learning algorithms for them with applications in dimensionality reduction, classification, collaborative filtering and feature learning.
Some historical notes

- 1989: LeCun et al. proposed a 5-layer **Convolutional Neural Network (CNN)**, called LeNet, trained using backpropagation, for handwriting digit recognition. It was the first CNN architecture that used back-propagation to practical applications.

- 1998: LeCun et al. introduced the (now famous) MNIST dataset and demonstrated that CNNs outperformed all competing models for the task of handwriting digit recognition.
Some historical notes

- 2004: Oh and Jung show that standard neural networks can be greatly accelerated on GPUs (20 times faster than CPUs).
- 2006: Hinton, Osindero and Teh introduced **deep belief network** - special multilayer neural networks that can be viewed as a composition of unsupervised networks such as RBMs, where each sub-network’s hidden layer serves as the visible layer for the next.

This seminal paper popularized with the notion of **deep learning**.
Some historical notes

2012: AlexNet (a CNN) won the ImageNet Large Scale Visual Recognition Challenge, consisting of recognizing about 10,000 object categories from a set of over 10,000,000 images.

In the same year, CNNs were reported to significantly improve on the best performance for multiple image databases.
Topics of the course

The topics covered in this course include:

- Neural Networks
 - Expressive power
 - Deep Neural Networks
 - Multilayer perceptron
- Autoencoders
 - Properties and implementation
 - Applications
- Convolutional Neural Networks
 - Properties and implementation
 - Applications
- Generative models
 - Botzman machines
 - Generative adversarial networks
- Advances applications
 - Algorithms for Object Detection
 - YOLO
Student evaluation

Student evaluation is based on:

1. **Homework**: Every week, I will assign projects involving the implementation and application of neural networks.

2. **Final project**: It requires the implementation of a deep network architecture to solve an applied problem. I will select the project in coordination with the students. I will set up several deadlines during the semester to verify the completion of a number of intermediate objectives finalized to the preparation of a written report and a 15-to-20-min in-class presentation.
Here is a tentative list of topics for the final project.

- Automated cell detection
- Automated anomaly detection