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ABSTRACT
High resolution confocal imaging enables the study of structure-
function correlations linking molecular features of neurons
to their functional output. However, current analysis and
processing tools still require a very significant manual in-
tervention, making it impractical or impossible to conduct
the large-scale analysis which is often needed for integrated
predictive models of single-cell and large neuronal networks
function. In this paper, we present a pilot study towards
the development of a fully scalable large-scale processing
framework enabling the automated computation of structure-
function associative measurements of neuronal proteins in
subcellular compartments from 3D confocal imagery.

1. INTRODUCTION

High resolution confocal imaging has become an indispens-
able tool in molecular neuroscience enabling to capture mor-
phological features of neurons and to track the sub-cellular
distribution and dynamics of neuronal proteins at nanoscale
level in both cultured preparations and in vivo. Yet, while
these state-of-art methodologies have opened new avenues
towards the understanding of structure-function correlations
linking molecular features of neurons to their functional out-
put, the lack of rapid and accurate methods for image analy-
sis has hampered the use of confocal imaging for large-scale
studies. Current image analysis and processing software, in-
deed, still require a significant manual intervention, which is a
critical limiting factor for the extraction of accurate measure-
ments from complex and voluminous data that are essential
for establishing reliable predictive models of the basic mech-
anisms of neuronal function.

Neurons adapt their functional output in response to stim-
uli through a dynamic remodeling of their protein content and
sub-cellular distribution, a process that is severely altered in
brain disorders [7]. A critical player in these adaptive mech-
anisms is the macromolecular complex of the voltage-gated
Na+ (Nav) channel complex and its associated proteins at the
axonal initial segment (AIS), the site of initiation of the ac-
tion potential. Emerging evidence indicates that this protein-
protein interaction complex can undergo a structural remodel-
ing that underlies plastic adaptations of neuronal excitability,

and, if aberrant, leads to neurodegenerative processes and cell
death. To facilitate the understanding of this molecular mech-
anism, it is critical to accurately estimate the spatial distribu-
tion of the Nav channel protein complex at AIS from high-
resolution imaging.

In this paper, we introduce a multistep strategy aiming
at providing an automated computational platform for large-
scale analysis of the spatial distribution of specific ion chan-
nel complexes in sub-cellular compartments from confocal
images. Our approach will combine state-of-the-art image
processing tools, including data denoising, segmentation and
centerline tracing, together with a novel routine specifically
designed for the extraction of associative measures relative to
fluorescently-labeled proteins of interest (analytes). We en-
vision that, once fully completed, this platform will enable a
multimodal integration of data from confocal imaging, elec-
trophysiological measurements and other functional assays in
simulation environments (such as NEURON [2] or GENESIS
[1]) towards an integrated predictive model of single-cell and
large neuronal networks function.

2. BIOLOGICAL PREPARATION

Primary neuronal cultures. Primary hippocampal neurons
were prepared from embryonic rat brains (E18) and main-
tained on coverslips in close proximity of an astrocyte glia
feeder layer for 2-3 weeks, as previously described [6].

Immunofluorescence staining. Neurons were fixed in
4% paraformaldehyde/4% sucrose and incubated with the
following combination of primary antibodies: rabbit anti-
microtubule-associated protein 2 (MAP2; 1:500, Chemi-
con), rabbit anti-PanNav subunit (1:100, Sigma), mouse anti-
FGF14 protein (1:200, NeuroMab). After washing, neurons
were stained with appropriate Alexa 563 and 647-conjugated
secondary antibodies (Invitrogen), mounted on glass cover-
slips and processed for confocal image acquisition.

Image acquisition. Confocal images were acquired with
a Zeiss 510 laser scanning microscope (Zeiss, Oberkochen,
Germany) using a 63x oil immersion objective (1.4 numeri-
cal aperture). For manual analysis, stacked images were ana-
lyzed with the open source ImageJ software using a line scan
method, by highlighting a line of 6 pixels in width and 20 µm



Fig. 1. Confocal images are preprocessed to remove degra-
dation using a thresholding scheme based on shearlets. C,D:
The denoising filter does not affect the overall pixel intensity
distribution in the image. The small inset a,b provides a better
visualization of pixel distribution. Scale bar= 5µm

in length along MAP2-negative process (AIS) and MAP2-
positive process (dendrites) on the Alexa 568 images corre-
sponding to Nav channels.

3. A MULTISTEP PROCESSING PLATFORM

We present a computational platform for the automated com-
putation of the spatial distribution of macromolecular com-
plexes of interest in specific subcellular regions of confocal
images of neurons. This platform is organized into the fol-
lowing sequence of processing stages.

1. Data preprocessing. Images acquired through con-
focal microscopy are affected by several sources of degra-
dation and need to be restored in order to facilitate the
segmentation stage which is needed for extracting the cen-
terlines of processes of interest and computing the asso-
ciative measures. Such degradation includes the blurring
due to the convolution of the original signal intensities with
the point spread function of the imaging system and the
noise introduced by the stochastic nature of the photon-
counting process at the detector, which can be modeled
as a Poisson-distributed random process. To address that,
we use a denoising algorithm based on shearlets and adap-
tive thresholding, previously developed by one of the au-
thor and his collaborators [3, 8]. This approach is espe-
cially suitable to this type of data, since shearlets are espe-

Fig. 2. Neurons are segmented and traced using Neuroman-
tic. Image A shows the overlay confocal image of cultured
hippocampal neurons immunolabeled for the Nav channel α
subunits (red) and the microtubule-associated protein, MAP2
(blue), used as a marker of the somato-dendritic compart-
ment. Note that the red fluorescence signal is concentrated
in thin neuronal processes representing the AIS, while is dim-
mer in the somato-dendritic compartment visualized through
the blue channel. Segmented data and centerline are shown in
B, where structures from blue and red channels are segmented
and traced separately. Scale bar= 5µm

cially designed to represent anisotropic objects efficiently
[3] (www.math.uh.edu/∼dlabate/software.html). A
demonstration of the denoising algorithm is shown in Figure 1
showing that the algorithm does not degrade the curvilinear
features of the data. Denoised data are used in the successive
stage of segmentation and centerline extraction.

2. Segmentation and centerline extraction. Centerline
tracing of neurites from confocal images is an essential tool
for the construction of the geometrical representation of neu-
rons. It consists, essentially, in generating a graph of points
(i.e., the tracing) through the midlines of the dendrites and
axons of 3D confocal images of neurons. In our framework,
centerline tracing provides the necessary spatial reference
system for the computation of the associative measures of
neurons which are the objective of the next processing stage.

Despite the significant advances in recent years (consider,
for example, the methods proposed to address the DIADEM
challenge [9]), automated centerline tracing in neurons is still
a major bottleneck [4] and we found that none of the avail-
able software was completely satisfactory for the type of date
we considered. The main limitations we found are not only
significant inaccuracies in the form of false positive and neg-
ative reconstructions, but also that the current software does
not allow to automatically and reliably identify specific sub-
cellular regions such as the AIS, in the way it was needed
for the successive computation of associative measures. As a
result, in order to focus on the automated computation of as-
sociative measures, in this paper we have used Neuromantic
(reading.ac.uk/neuromantic/) to manually segment a number



Fig. 3. A typical trace (the dotted line in the figure) is
parametrized as a functions of the arc length variable s,
0 ≤ s ≤ 1 and the local average intensity is evaluated by
computing the average intensity value over cylindrical regions
centered at coordinate points C(si) sampled along the trace
curve.

of representative confocal images of neurons and extract and
label their centerline traces (one typical example is given in
Figure 2). In Section 4, we discuss in more detail the chal-
lenges in developing a fully automated centerline tracing al-
gorithm integrated into the framework presented in this paper
and how we plan to address it in the future.

3. Computation of associative measures. The goal of this
processing stage is to automatically compute functions of the
fluorescent intensity associated with specific subcellular com-
partments of neurons. In the following, we illustrate the com-
putation of the local average fluorescent intensity, measured
along the AIS or the proximal section of a dendrites. This
algorithm can be easily adapted to other functions.

The algorithm is illustrated with the help of Figure 3. The
trace curve C of a neurite is parametrized as a function of the
arc length s ∈ [0, 1]. That is, C(0) is the spatial coordinate
of the initial point of the neurite and C(1) the spatial coor-
dinate of the terminal point of the neurite (or, of the portion
of interest of the neurite). First, C is partitioned into L (dis-
joint) sections of equal length, that is, C = ∪Li=1Ci, where
each section Ci is centered at the coordinate C(si). Then, the
average intensity value is computed on a cylindrical region
aligned with Ci, of radius ri. The value ri (which is allowed
to change in each section) is estimated from the segmentation
process of the previous stage.

The algorithm was implemented in Matlab and a typical
example of its application is illustrated in Figures 4 and 5.
Figure 4 illustrates the selection of one AIS (in yellow) and
one dendrite (in blue) from a confocal image which was pre-
viously segmented and traced. The algorithm computing the
local average fluorescent intensity along the trace of the AIS
and the dendrite was run on the red channel of confocal imag-
ing data, as a way to estimate the distribution of Nav channels.
The output of the algorithm is plotted in Figure 5 and was

Fig. 4. Preparation for the automated computation of average
fluorescent intensity values at the AIS and along a dendrite.
In A,B: an axon (yellow) and a dendrite (blue) are selected
from a previously segmented images. Scale bar=5 mm

validated against the corresponding intensity profiles com-
puted manually by experts. To remove the effect of the back-
ground on the fluorescent intensity measures, the computed
values have been corrected by subtracting the intensity level
estimated in the regions immediately adjacent the segmented
neurite. Corrected measures are reported in color in Figure 5,
while uncorrected measures are in black.

The results reported in Figure 5 are similar to several other
numerical tests which are not reported here for reasons of
space and which demonstrate that our approach for the auto-
mated computation of the local average fluorescent intensity
at specific neurites is efficient and reliable. Not only does this
approach reduce the manual effort in computing these mea-
sures, but it also ensure more accurate estimates through the
local removal of the background intensity.

4. FURTHER EXTENSIONS AND CONCLUSION

The development of a fully automated framework for the
computation of associative measures from confocal images
of neurons is still limited by the lack of an automated image
processing routine which can reliably an accurately (i) seg-
ment the neurons; (ii) label each neuron; (iii) for each neuron,
identify the compartments of interest, namely, the soma, the
AIS and the dendrites. As mentioned above, several methods
have been proposed for segmentation of neuronal structures
and centerline tracing, yet they still have serious limitations
when dealing with confocal images of neurons, due to the sig-
nificant presence of noise, the non-uniformity of the intensity
levels in the image and the complexity of the morphological
structures to recover. Furthermore, the automated labeling
of specific neuronal compartments, namely, soma, axons and
dendrites is not very reliable. In an effort to address these
challenges, we have recently introduced a novel algorithm for
segmentation and centerline extraction that is highly accurate
and very competitive against current state-of-the art methods
[5]. This approach uses of a collection of specially designed
multiscale filters for a fast and efficient binarization of neu-



Fig. 5. Local averages of the fluorescent intensity values are
automatically computed using our algorithm. Plots A-B show
the automatically computed average intensity values at the
AIS and at the dendrite of Figure 4 plotted as function of the
pixel locations of the centerline trace. The black curve rep-
resents the computed intensity without any correction. The
color curves show the intensity values after background is
subtracted. Plots C-D show the average intensity values at
the AIS and at the dendrite manually computed by experts. In
this case, the background is estimated as a uniform value for
the whole image.

rites in both 2D and 3D. Figure 6 shows the application of
this routine to the segmentation of the data of Figure 2A. The
integration of this algorithm within the multistep framework
for the automated computation of associative measures of an-
alytes in neurons will be the objective of a future endeavour.

In this work, we set the stage for developing a multistep
automated procedure for the computation of intensity pro-
files in targeted subcellular compartments of neurons. This
method includes a denoising routine to preprocess confocal
images, a segmentation and tracing step and a specifically
designed computational routine which computes fluorescent
intensity values in specific regions of interests. This work
is a pilot study for the development of a fully scalable auto-
mated large-scale processing framework enabling the compu-
tation of structure-function associative measurements at the
AIS from 3D confocal imagery. By enabling the computa-
tion of structure-function associative measurements on a large
batch of data, this framework will facilitate the understand-
ing of the molecular mechanisms transducing external stimuli
into functional neuronal outputs.
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