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Abstract. We set up a new general coorbit space theory for reproducing representa-
tions of a locally compact second countable group G that are not necessarily irreducible
nor integrable. Our basic assumption is that the kernel associated with the voice trans-
form belongs to a Fréchet space T of functions on G, which generalizes the classical
choice T “ L1

wpGq. Our basic example is T “
Ş

pPp1,`8q L
ppGq, or a weighted versions

of it. By means of this choice it is possible to treat, for instance, Paley-Wiener spaces
and coorbit spaces related to Shannon wavelets and Schrödingerlets.

1. Introduction

One of the central problems in applied mathematics is the analysis of signals. Usually
signals are modelled by functions in suitable functions spaces (e.g., L2 or Sobolev spaces)
and they might be given explicitly or implicitly as the solution of an operator equation. In
most applications, the signal is transformed via a mapping into a suitable parameter space
where it is easier to extract the information of interest. By discretization, one obtains
suitable building blocks that give rise to a discrete representation of the signal and can
be used to decompose, compress and process the signal. Over the years, many different
transforms have been derived in response to particular problems, including the wavelet and
Gabor transforms. Representation theory, however, gives a general approach to construct
continuous transforms for L2-functions, and coorbit space theory allows both to extend
these transforms to more general function spaces and to provide discrete systems. Indeed,
it was shown that virtually all well-known transforms used in signal analysis can be derived
from this general setting. In this sense, coorbit space theory serves as a common thread in
the jungle of all possible signal transformations. Nevertheless, as will be explained below,
the classical coorbit space setting relies on specific assumptions that might be hard to
verify in practice. The purpose of this paper is to investigate how to weaken these basic
assumptions with the goal of extending the applicability of this framework to a much
larger class of problems.

Coorbit space theory was originally introduced by H. Feichtinger and K. Gröchenig in
a series of papers in 1988-89 [1, 2, 3, 4]. By means of this theory, given a square integrable
representation, it is possible to construct in an efficient and systematic way a full scale of
smoothness spaces where the smoothness of a function is measured by the decay of the so-
called voice transform. For any unitary representation π of a locally compact topological
group G on a Hilbert space H and a fixed u P H, the voice transform V is the map
assigning to v P H the corresponding transform x ÞÑ V vpxq “ xv, πpxquy as x ranges in G.
Evidently, V v is a function on the group. Since H is often a Hilbert space of functions,
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the voice transform connects two function spaces, that is, it maps signals to functions on
the group.

Coorbit space theory has been very successful in many ways and has given rise to a
wealth of results, enabling to derive a very large family of smoothness spaces as coorbit
spaces, including both classical functions spaces and new ones. In particular, the classical
Besov spaces are derived as coorbit spaces where smoothness is measured by the decay
of the wavelet transform, i.e., the voice transform associated with the affine group. Simi-
larly, the well-established class of modulation spaces corresponds to the family of coorbit
spaces where smoothness is measured by the decay of the Gabor transform, i.e., the voice
transform associated with the Weyl-Heisenberg group (cf. [1, 2, 3, 5, 6]). As another
example, let us mentions the α–modulation spaces [7] which can be interpreted as coorbit
spaces related to group representations modulo quotients [8]. Another advantage of coor-
bit space theory is to provide atomic decompositions and Banach frames for the coorbit
spaces, through a procedure which generates discrete function systems by discretization
of the group representation. This is important since it provides a way to understand
the properties of discrete signal representations through the group theoretic properties of
their corresponding continuous voice transforms.

In recent years, a new generation of multiscale transforms has emerged in applied har-
monic analysis, such as the shearlet and curvelet transforms, which were introduced to
overcome the limitations of the traditional multiscale framework in multi-dimensional set-
ting with high efficiency [9, 10]. Recent results have shown that the continuous shearlet
transform, in particular, stems from a square integrable group representation of the so-
called full shearlet group [11, 12, 13]. By applying the coorbit space theory to this setup,
it is possible to define some useful anisotropic smoothness spaces via the decay properties
of the shearlet transform and to relate these spaces to other well-known function spaces
[14, 15, 16, 17]. This has stimulated the investigation of a larger class of group repre-
sentations, primarily those arising from the restriction of the metaplectic representation
to a class of triangular subgroups of the symplectic group [18]. This class includes many
known cases of interest in signal analysis and gives rise to several new examples, such as
the Schrödingerlets that we discuss in this paper. Yet another potential extension of this
framework is the general context of the so-called mock metaplectic representations, intro-
duced in [19]. However, the classical coorbit space theory appears to be too restrictive
to deal with this more general class of group representations and the corresponding voice
transforms and function spaces.

Let us recall that the classical coorbit space theory à la Feichtinger-Gröchenig makes
the following two assumptions:
(FG1) The kernel K “ V u, that is, the voice transform of the admissible vector itself, is
an absolutely integrable function on the group1.
(FG2) The representation is assumed to be irreducible.
A major part of this paper is concerned with replacing (FG1) by some weaker condition.
The fundamental concepts will be presented in Sections 2 and 3. First of all, let us mention
that the problem of removing the integrability condition has already been addressed by
J. Christensen and G. Ólafsson in [20, 21]. Classically, the reservoir of test functions
is obtained by taking the functions whose voice transform is in L1pGq, hence it is a
Banach space in a natural way. In the papers [20, 21], the reservoir is a fixed Fréchet
space S densely embedded into H. The basic example is the set of C8 vectors for the

1For simplicity, in this introduction we use unweighted versions of LppGq.
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representation. The approach that we consider in this paper is indeed similar to [21], but
features an important new datum that we call the target space T . This is a Fréchet space
of functions on G and plays the role of L1pGq in the classical setup. In our theory, the
reservoir S is the set of functions whose voice transform is in T . In Section 4, we provide
a new model for the target space, namely

(1) T “
č

pą1

LppGq.

For this choice we are able to produce concrete cases arising from triangular subgroups of
Spp2,Rq, notably the case of the so-called Schrödingerlets, discussed in Section 4.3. As a
toy example, in Section 4.2 we also consider the case of the band-limited functions2.

As for assumption (FG2), most of the classical coorbit space theory can be carried
out also in the reducible case. In the irreducible case, it is possible to show that the
construction of the coorbit spaces is independent of the choice of the admissible vector.
Exactly this property is lost in the reducible case, as showed by an important example in
[22]. Neither in [21] nor in our setting irreducibility is needed. In Section 3.3 we give a
reasonable description of admissible vectors leading to the same coorbit spaces. Finally,
in Section 5 we present a detailed account of the extent to which the classical L1 theory
can be developed without the assumption of irreducibility.

Let us briefly describe in some detail the main features of our approach. The starting
ingredients are a unitary reproducing representation π of a locally compact second count-
able group G on a separable Hilbert space H and an admissible vector u P H. Next, the
Fréchet spaces S and T come into play, and their roles in the theory can be described by
the following very basic conceptual picture

S iÝÝÝÑ H
§

§

đ
V

T jÝÝÝÑ L0pGq
where L0pGq denotes the space of measurable functions on G. Thus, S and T are Fréchet
spaces that embed into H and L0pGq, respectively, and should therefore be thought of as
signals and functions on the group, respectively. The space T is a free choice, as long as
one can embed it continuously into L0pGq in such a way that some basic properties are
satisfied (Assumptions 1 and 2). The space S will serve as the reservoir of test functions
and it is defined as the subset of H consisting of those vectors whose voice transform
belongs to jpT q. Test functions are modeled in terms of their voice transforms and the
latter ones constitute the true degree of freedom in the construction, the target space T .

Once the basic structures are laid out, one then follows the lines of coorbit space theory
and defines first the distributions S 1 and then coorbits associated to Banach spaces of
functions.

Technically speaking, our theory is determined by the data set pG,H, π, u, T , Y q, where:

‚ G is a locally compact second countable topological group;
‚ H is a separable Hilbert space;
‚ π is a continuous unitary reproducing representation of G on H;
‚ u P H is an admissible vector;
‚ T is a Fréchet space continuously embedded via j into L0pGq;

2Notice that the sinc function is in every Lp with p ą 1 but not in L1.
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‚ Y is a Banach space continuously embedded in L0pGq and left invariant.

The main ancillary objects attached to them are:

‚ the voice transform V2 : HÑ L2pGq;
‚ the reproducing kernel K “ V2u;
‚ the reproducing kernel space M “ tf P L0pGq | f ˙K “ fu;
‚ the space of test functions S “ tv P H | V2v P jpT qu;
‚ the space of distributions S 1;
‚ the extended voice transform Ve : S 1 Ñ CpGq;
‚ the coorbit space CopY q “ tT P S 1 | VeT P Y u.

These data are assumed to satisfy several assumptions that are made both for the target
space T and for the model space Y . Assumption 1 asks that the kernel K is in T ,
which substitutes the classical integrability condition K P L1pGq, and that Kf P L1pGq
whenever f P T . This second requirement has a twin version for Y , namely Assumption 5,
and it is trivially satisfied in the case T “ L1pGq because K is bounded. Assumption 2
and Assumption 6 ask that the product of any voice transform and any “good” function
in T XM (or in Y XM) is in L1pGq.

Assumption 3 ensures that the extended voice transform is injective. This is a necessary
condition to reconstruct a distribution from its voice transform. Finally, Assumption 4
requires that the reproducing formula extends to all distributions. In particular, we prove
in Proposition 3.3 that Assumption 4 holds true if T is reflexive and VeS 1 Ă T 1.

Our theory is succesful in the sense that: it provides a workable substitute for the
classical integrability condition K P L1pGq; it contains the classical coorbit space theory
even for non irreducible representations; it applies to several interesting examples; it is
consistent with the recent theory developed in [20, 23].

2. Fréchet spaces of functions

In this section, we recall some properties of the Fréchet spaces that are relevant to the
main objects of our theory, namely the target space T and the space S of test signals that
will be defined in the next section. We introduce abstract spaces E and F . The space E
must be interpreted as modeling a subspace of the Hilbert space H, hence of signals, but
possibly with a different topology. Its properties will be used primarily for the test space
S, but also for H itself. Similarly, the space F should be thought of as an abstract model
of a Fréchet space of functions on the group. The results proved for F will be primarily
applied to the target space T , which in many examples is a genuine Fréchet space but
not a Banach space, but will also be useful for F “ L1pGq, F “ L2pGq and, most notably,
for F “ Y , the space of functions used to define coorbit spaces. From this point of view,
our theory indicates that it is possible to develop a useful coorbit space theory assuming
that Y is a Fréchet space rather than the more common choice of a Banach space. This
further extension, however, is beyond the scope of this article, and we content ourselves
with the classical case in which Y is Banach space.

2.1. Background. We now introduce the basic notation and recall some elementary
properties. Further technical results are recalled in Section 6.1.

Throughout this paper, G, denotes a fixed locally compact second countable group
with a left Haar measure β and ∆ is its modular function. We write

ş

G
fpxqdx instead of

ş

G
fpxq dβpxq and denote the classical spaces of complex functions on G as follows:
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L0pGq β-measurable functions,
LppGq p-integrable functions with respect to β, p P r1,`8q,
L8pGq β-essentially bounded functions,
L1

locpGq locally β-integrable functions,
CpGq continuous functions,
C0pGq continuous functions going to zero at infinity,
CcpGq compactly supported continuous functions.

The space L0pGq is a metrizable complete topological vector space with respect to the
topology of convergence in measure (see Section 6.1). The norm of f P LppGq and the
scalar product between f, g P L2pGq are denoted by ‖f‖p and xf, gy2, respectively. The
space L1

locpGq is a Fréchet space with respect to the topology defined by the family of
semi-norms

f ÞÑ
ż

K
|fpxq|dx,

where K runs over the compact subsets of G (see Section 6.1).
We denote by λ and ρ the left and right regular representations of G on L0pGq, namely

λpxqf pyq “ fpx´1yq
ρpxqf pyq “ fpyxq

for all x P G, all f P L0pGq and almost all y P G. Both λ and ρ leave L1
locpGq and

each LppGq invariant, and λ is equicontinuous both on L1
locpGq and on each LppGq. In

Section 6.2 we recall the main properties of the representations acting on Fréchet spaces.
For general background on representations the reader is referred to [24].

For all f P L0pGq we denote by f̌ the element in L0pGq given by

f̌pxq “ fpx´1q
for almost all x P G (see Section 6.1). Given two functions f, g P L0pGq, we say that the
convolution f ˙ g exists if for almost all x P G the function fλpxqqg is in L1pGq. We write

f ˙ gpxq “
ż

G

fpyqλpxqqgpyq dy “
ż

G

fpyqgpy´1xq dy a.e. x P G

and we have that f ˙ g P L0pGq (see Section 6.3).

2.2. Voice transform. In what follows, π denotes a fixed strongly continuous unitary
representation of G acting on the separable Hilbert space H and u a fixed vector in H.
We stress that π is not assumed to be irreducible, nor, at this stage, reproducing. As it
is customary, the voice transform associated to the these data is the map

V : HÑ L8pGq X CpGq, V vpxq “ xv, πpxquyH.
It intertwines π and λ, that is

(2) V πpxq “ λpxqV
for all x P G. The corresponding kernel is given by

(3) K : GÑ C, Kpxq “ V upxq “ xu, πpxquyH.
It enjoys the basic symmetry property

(4) K “ qK.
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For all f P L1pGq the Fourier transform πpfq is the bounded operator on H defined by

xπpfqw, vyH “
ż

G

fpxqxπpxqw, vyH dx

for all w, v P H. Note that, with the choice w “ u, we get

(5) xπpfqu, vyH “
ż

G

fpxqV vpxq dx.

2.3. Functions on the group. In this section, we consider a space F of functions on G
and we study the properties of the convolution operator f ÞÑ f ˙K from F into CpGq.
In particular, we introduce the subspace MF of those functions which are left fixed by
the convolution operator. In the theory of reproducing representations, F is the Hilbert
space L2pGq; in the theory developed by H. Feichtinger and K. Gröchenig it is a weighted
version of L1pGq; in our setting it is the target space T .

We assume that F is a Fréchet space with a continuous embedding j : F Ñ L0pGq.
With slight abuse of notation, given f P F , we denote by fp¨q a β-measurable function
such that for almost every x P G, fpxq “ jpfqpxq. Further, we assume that there exist

i) a continuous involution f ÞÑ f on F such that jpfq “ jpfq (so that fpxq “ fpxq);
ii) a continuous representation ` of G acting on F for which

jp`pxqfq “ λpxqjpfq f P F, x P G,
so that p`pxqfqpyq “ fpx´1yq and `pxqf “ `pxqf .

Standard examples of spaces satisfying the above assumptions are the Lp-spaces or their
weighted versions. Other important examples are the space of C8 functions, if G is a Lie
group, or the space of rapidly decreasing functions, whenever this notion makes sense.

The space jpF q is a subspace of L0pGq, stable under complex conjugation and λ-
invariant. Clearly, we could identify F with jpF q avoiding the cumbersome map j.
However, we want to stress that F has its own topology, which is not necessarily the
topology of jpF q, that is, the relative topology as a topological subspace of L0pGq. In
order to clarify the role of the two topologies, we shall not identify F with jpF q.

Since j is continuous from F into L0pGq, for any sequence pfnq converging to an element
f in F , there exists a subsequence pfnkqk such that pfnkpxqqk converges to fpxq for almost
all x P G (see (72) for details).

We denote by F 1 the topological dual of F . For each T P F 1, the map f ÞÑ T pfq defines a
continuous anti-linear function on F , which we denote by xT, ¨yF . The map T ÞÑ xT, ¨yF is
a linear isomorphism of F 1 onto the anti-dual F^, the space of anti-linear continuous forms
on F . In what follows, we identify F^ with F 1. Observe that the map pT, fq ÞÑ xT, fyF
is a sequilinear form on F 1 ˆ F , linear in the first entry and anti-linear in the second.

The Köthe dual of F is defined by

F# “ tg P L0pGq | gjpfq P L1pGq, for all f P F u.
It is closed under complex conjugation and its elements can be regarded as anti-linear
forms on F , as shown by the next lemma. Here and below, we fix a countable fundamental
system tqiui of saturated3 semi-norms in F .

3A family is saturated if the maximum of any finite subset is in the family.
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Lemma 2.1. Given g P F#, the map

(6) F Q f ÞÑ xg, fyF “
ż

G

gpxqfpxq dx P C
is a continuous anti-linear form, that is, an element of F 1, which we denote again by g.
The representation λ leaves F# invariant and for all x P G
(7) xλpxqg, fyF “ xg, `px´1qfyF .
Finally, there exist a constant C ą 0 and a semi-norm qk in the fundamental saturated
family tqiui such that for all f P F
(8)

ż

G

|fpxq||gpxq| dx ď Cqkpfq.

Proof. By definition, for each f P F the function g jpfq is in L1pGq. We claim that the
linear map

L : F Ñ L1pGq, Lf “ g jpfq
is continuous. Since both F and L1pGq are separable metrizable vector spaces, by the
closed graph theorem (Corollary 5 of Chapter I.3.3 of [25]) it is enough to show that the
graph of L is sequentially closed in F ˆ L1pGq. Take a sequence pfnqn in F converging
to f in F and such that pLfnqn converges to ϕ in L1pGq. Since both F and L1pGq are
continuously embedded in L0pGq, possibly passing to a subsequence, we can assume that
both pfnpxqqn and pLfnpxqqn converge to fpxq and ϕpxq, respectively, for almost every x.
Hence for almost all x P G

Lf pxq “ gpxqfpxq “ lim
nÑ`8 gpxqfnpxq “ lim

nÑ`8Lfnpxq “ ϕpxq,
that is, Lf “ ϕ in L1pGq. Hence L is continuous, as well as the anti-linear form

f ÞÑ
ż

G

Lfpxqdx “
ż

G

gpxqfpxq dx “ xg, fyF .
We now prove that λ leaves F# invariant. Indeed, given x P G and f P F
ż

G

|λpxqg pyqfpyq|dy “
ż

G

|gpx´1yqfpyq|dy “
ż

G

|gpyqfpxyq|dy “
ż

G

|gpyq`px´1qf pyq|dy ă `8,
where the last integral is finite since `px´1qf P F . Hence λpxqg P F#. The same string of
equalities gives (7). Finally, the last formula follows directly from the continuity of L. �

In general, F# is a proper subset of F 1 as the following example clarifies. Take F “
LppGq with p P r1,`8s. Then LppGq# “ Lp

1pGq, where p1 is the dual exponent of p, so
that LppGq# “ LppGq1 for all p ă `8, but of course L8pGq# “ L1pGq Ĺ L8pGq1.

The next proposition shows that, if the kernel K belongs to the Köthe dual of F , then
for all f P F the convolution jpfq ˙ K exists. Furthermore, we introduce the subspace
MF Ă F whose elements are those reproduced by convolution with K on the right. In
the following statement CpGq is endowed with the topology of the compact4 convergence.

Proposition 2.2. Assume that K P F#. Then:

a) for all f P F , jpfq˙K exists everywhere, it is a continuous function and, for all x P G,

(9) jpfq˙Kpxq “ xλpxqǨ, fyF “ xǨ, `px´1qfyF ;

b) the map f ÞÑ jpfq˙K is continuous from F to CpGq;
4Short for: uniform convergence on compact sets.
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c) the set

(10) MF “ tf P F | jpfq˙K “ jpfqu
is an `-invariant closed subspace of F , and therefore it is a Fréchet space respect to the
relative topology.

Proof. Notice that, in view of (4), K P F# if and only if Ǩ P F#. Since λ leaves F#

invariant (Lemma 2.1), for all x P G we have λpxqǨ P F# and, for all f P F ,

xλpxqǨ, fyF “
ż

G

fpyqλpxqǨ pyq dy “
ż

G

fpyqKpy´1xq dy “ jpfq˙K pxq.
Hence jpfq˙Kpxq exists and the first equality of (9) holds true. The change of variables
y ÞÑ xy proves the second equality of (9). Since the involution and x ÞÑ `px´1qf are
continuous, (9) implies that jpfq˙K is a continuous function.

To prove b), fix a compact subset K Ă G. By (9), since Ǩ P F# Ă F 1, there exist two
semi-norms qj, qk in the fundamental saturated system tqiui and constants C and C 1 such
that

sup
xPK

|jpfq˙K pxq| ď C sup
xPK´1

qjp`pxqfq ď Cqkpfq,
where the last inequality follows from the fact that `pK´1q is equicontinuous since K´1 is
compact (see Section 6.2).

As for c), since F is a metrizable vector space, it is sufficient to prove that MF is
sequentially closed. Take a sequence pfnqn in MF converging to f P F . Possibly passing
to a subsequence, we can assume that there exists a negligible set N such that for all
x R N pfnpxqqn converges to fpxq. Furthermore, possibly changing N , we can also assume
that, for all n P N and x R N , jpfnq˙K pxq “ fnpxq. Hence, given x R N , by b) we have

jpfq˙K pxq “ lim
n
jpfnq˙K pxq “ lim

n
fnpxq “ fpxq.

Hence jpfq ˙ K “ jpfq in L0pGq, that is f P MF . Finally, given x P G and f P MF ,
by (77b) in the appendix

jp`pxqfq “ λpxqjpfq “ λpxqpjpfq˙Kq “ λpxqjpfq˙K “ jp`pxqfq˙K,

that is `pxqf PMF . �

In what follows, for each f PMF , we choose the continuous everywhere defined function
jpfq˙K as representative of f , so that for all x P G
(11) jpfq˙K pxq “ fpxq.
2.4. Extension of the voice transform and Fourier transform. We are interested
in extending the voice transform V from H to some bigger space, namely the dual of a
Fréchet space E which is continuously embedded into H, in such a way that the duality
relation (5) still holds true. In the classical coorbit space theory and in our setting, E
is the space of test functions S, which in [21] is the basic object on which the theory is
developed.

We fix a Fréchet space E together with a continuous representation τ of G acting on E
and a continuous embedding i : E Ñ H intertwining τ and π. As above, we identify the
dual E 1 and the anti-dual E^. We are interested in the transpose ti : HÑ E 1, defined as
usual by

x tipwq, vyE “ xw, ipvqyH.
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We assume that u P ipEq and, with slight abuse of notation, we regard u as an element
both in E and in H. Hence, we define the extended voice transform by

(12) Ve : E 1 Ñ CpGq, VeT “ xT, τp¨quyE,
which intertwines the contragredient representation tτ with the left regular representation
λ.

Hereafter we establish some useful properties of the abstract space E, that will be
applied to the space S of test functions in Section 3.1.

A basic requirement on Ve is that it must be injective. In the next lemma some standard
equivalent conditions are established.

Lemma 2.3. The following facts are equivalent:

i) the map Ve is injective;
ii) the set τpGqu is total in E;

iii) the set τpGqu is total in5 Eweak.

Proof. Define D as the closure in E of the linear span of τpGqu . Since the linear span
of τpGqu is convex, D is convex (Proposition 14 Chapter II.2.6 of [25]). Then D is a
closed convex subset, and so it is also weakly closed (Proposition 1 Chapter IV.1.1 of
[25]). Therefore D is also the closure in Eweak of the linear span of τpGqu. This proves
the equivalence between ii) and iii).

Next, assume ii), that is D “ E. If T P E 1 is such that VeT “ 0, then xT, vyE “ 0 for
all v P D “ E, hence T “ 0. Therefore ii) implies i). Finally, suppose D Ĺ E. Then, as a
consequence of the Hahn–Banach theorem ([26], Proposition 2, p.180), there exist T P E 1
and v0 P EzD such that xT, vyE “ 0 for all v P D and xT, v0yE ‰ 0, so that VeT “ 0 but
T ‰ 0. Therefore i) implies ii). �

By definition, u is a cyclic vector for the representation τ if condition ii) holds true.
Notice that the cyclicity for π does not imply the cyclicity for τ , since the topology of E
is finer than the topology of H.

The topological dual of E comes now into play and will be denoted by E 1. When topo-
logical properties are involved, E 1 is understood to have the topology of the convergence
on the bounded subsets of E. We will write E 1s to stress when E 1 is rather thought with
the topology of the simple convergence (compare Section 6.4).

The following proposition shows that, for any function f P L0pGq satisfying a suitable
integrability condition, it is possible to define an element in E 1 which plays the role
of the Fourier transform of f at u. It is useful to compare our assumption (13) with
condition (R3) in [21].

Proposition 2.4. Take f P L0pGq and assume that

(13) f V ipvq P L1pGq for all v P E.
Then there exists a unique πpfqu P E 1 such that, for all v P E,

(14) xπpfqu, vyE “
ż

G

fpxqxπpxqu, ipvqyH dx “
ż

G

fpxqV ipvqpxq dx.
For any such f , we have

(15) Veπpfqu “ f ˙K.

5Evidently, Eweak is just E endowed with the weak topology.
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Finally, assume that K ˙K exists, is equal to K and that f ˙ p|K|˙ |K|q exists. Then

(16) Veπpfqu˙K “ Veπpfqu.
Proof. Define the map Ψ : GÑ E 1s by Φpxq “ fpxq tipπpxquq. Since for all v P E

xΨpxq, vyE “ fpxqxπpxqu, ipvqyH “ fpxqV ipvqpxq,
by (13) we know that the map Ψ is scalarly β-integrable. Since E is a Fréchet space,
then it satisfies the (GDF) property. Then Theorem 6.4 applies, showing that the scalar
integral

ş

Ψpxqdx exists and belongs to E 1 (see Section 6.4). We set πpfqu “ ş

Ψpxqdx
and, by definition of scalar integral, (14) holds true for all v P E. Also, for all x P G,

Veπpfqu pxq “
ż

G

fpyqxπpyqu, ipτpxquqyH dy “
ż

G

fpyqxπpyqu, πpxquyH dy “ pf ˙Kqpxq.

Finally, under the ongoing assumptions, (77d) in the appendix implies that pf˙Kq˙K “
f ˙ pK ˙Kq “ f ˙K, so that (16) is a direct consequence of (15). �

If (13) is satisfied, we say that the Fourier transform of f at u exists in E 1 or, simply,
that πpfqu P E 1 exists. Condition (13) is actually both necessary and sufficient to define
πpfqu as an element of E 1. The next lemma ensures that the voice transform is reproduced
by convolution.

Lemma 2.5. Assume that the extended voice transform is injective and take T P E 1. The
following assertions are equivalent:

a) VeT ˙K exists and satisfies the reproducing formula

(17) VeT ˙K “ VeT ;

b) for all x P G, the map y ÞÑ xT, τpyquyExπpyqu, πpxquyH is in L1pGq and
ż

G

xT, τpyquyExπpyqu, πpxquyHdy “ xT, τpxquyE.

If the Fourier transform of VeT at u exists in E 1, i.e. the map x ÞÑ VeT pxq tipπpxquq is
scalarly integrable, then a) and b) are also equivalent to each of the following assertions:

c) πpVeT qu “ T ;
d) the reconstruction formula

(18) T “
ż

G

xT, τpxquyE tipπpxquqdx.

holds true weakly.

Proof. The equivalence between a) and b) is just the definition of Ve and K. Taking into
account that Ve is injective, the equivalence between a) and c) follows from (15) with
f “ VeT . The equivalence between c) and d) is just the definition of scalar integral. �

In the next proposition we assume that the Fourier transform πpfqu exists in E 1 for all
f P F , where F is a Fréchet space satisfying the assumptions of Section 2.3. With slight
abuse of notation, we write πpfqu instead of πpjpfqqu. We define the coorbit space

CopE 1, F q “ tT P E 1 | VeT P jpF qu.
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Proposition 2.6. Take E
i
ãÑ H, F

j
ãÑ L0pGq and Kpxq “ xu, πpxquyH as above. Assume

that for all f P F and all v P E
(19) jpfqV ipvq P L1pGq,
which may be rephrased as V pipEqq Ă F#. Then:

a) the Fourier transform of any f P F at u exists in E 1, so does the convolution jpfq˙K,
and

(20) Veπpfqu “ jpfq˙K;

b) the space MF , defined by (10), is an `-invariant closed subspace of F , CopE 1, F q is a
tτ -invariant subspace of E 1, and Ve intertwines tτ with λ;

c) the map pf, vq ÞÑ xπpfqu, vyE is continuous from F ˆ E into C;
d) if Ve is injective and the reproducing formula (17) holds for all T P CopE 1, F q, then

Ve CopE 1, F q “ jpMF q,(21a)

tπpfqu | f PMF u “ CopE 1, F q,(21b)

Veπpfqu “ jpfq, f PMF ,(21c)

πpVeT qu “ T, T P CopE 1, F q.(21d)

Hence, Ve is a bijection of CopE 1, F q onto jpMF q and therefore it induces a bijection,
denoted again by Ve, from CopE 1, F q onto MF , whose inverse is the Fourier transform
at u.

Proof. Item a) is a direct consequence of Proposition 2.4. Item b) is due to Proposition 2.2.
The invariance property of CopE 1, F q is a consequence of the fact that Ve

tτpxq “ λpxqVe
for all x P G.

As for c), since F and E are Fréchet spaces it is enough to show that pf, vq ÞÑ
xπpfqu, vyE is separately continuous. Clearly, given f P F , the map v ÞÑ xπpfqu, vyE
is continuous since πpfqu P E 1. On the other hand, given v in E, the hypothesis (19)
states that V ipvq P F#. Lemma 2.1 shows that V ipvq P F 1 where the identification is
given by (6), namely

xV ipvq, fyF “
ż

G

V ipvqpxqfpxq dx “
ż

G

fpxqxπpxqu, ipvqyH dx “ xπpfqu, vyE,
so that f ÞÑ xπpfqu, vyE is continuous.

Finally, we prove d). The definition of MF and (20) imply (21c). Given T P CopE 1;F q,
by definition VeT P jpF q and, hence, the convolution VeT ˙ K exists. Furthermore, by
assumption VeT˙K “ VeT . Hence, condition a) of Lemma 2.5 is satisfied and this implies
that πpVeT qu “ T , which is (21d). To prove (21a) and (21b), observe that the reproducing
formula implies that Ve CopE 1;F q Ă jpMF q and equality (21d) that CopE 1, F q Ă tπpfqu |
f P MF u. Furthermore, since MF Ă F , implies tπpfqu | f P MF u Ă CopE 1, F q and,
hence, jpMF q Ă Ve CopE 1, F q. �

The above result is an adaptation of Theorem 2.3 of [21]. Conditions (R3) and (R4) in
[21] are replaced by (19) and the reproducing property (17), respectively.

Under all the assumptions of Proposition 2.6, in particular the conditions of item d),
the space CopE 1, F q has a natural topology that makes it a Fréchet space.

Corollary 2.7. The space CopE 1, F q is a Fréchet space with respect to any of the following
equivalent topologies:
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a) the topology induced by the family of semi-norms tqipVep¨qqui, where tqiui is any fun-
damental family of semi-norms of F ;

b) the initial topology induced from the topology of F by the restriction of the voice Ve;
c) the final topology induced from the topology of F , restricted to MF , by the Fourier

transform at u.

Proof. By Proposition 2.6, Ve is a bijection from CopE 1, F q onto MF whose inverse is
the Fourier transform at u, the initial and final topologies on CopE 1, F q coincide and
they realize CopE 1, F q as a Fréchet space (isomorphic to MF ). The equivalence between
a) and b) is a standard result (see remark before Example 4 Ch. 2.11 of [26]). The
equivalence between b) and c) follows from the fact that Ve is a bijection. Since MF

is a closed subspace of a Fréchet space, then both MF and CopE 1, F q are (isomorphic)
Fréchet spaces. �

2.5. Reproducing representations: the standard setup. In this section, we further
assume that π is a reproducing representation and that the vector u is an admissible vector
for π. This means that the voice transform V maps H into L2pGq and that for all v P H
(22) ‖v‖H “ ‖V v‖2.

To stress that the voice transform is an isometry of H into L2pGq, we write it with the
suffix 2:

V2 : HÑ L2pGq, V2vpxq “ xv, πpxquyH.
Recalling that K “ V2u and (4), we have

(23) qK “ K P L2pGq.
In the following proposition, some consequences of the assumption that π is reproducing
are drawn. The results are well known for irreducible representations [27, 28] and their
extensions to non-irreducible representations are taken for granted in many papers. We
provide a proof based on Proposition 2.6.

Proposition 2.8. Suppose that π is a reproducing representation of G on H and that
u P H is an admissible vector. Then:

a) for every f P L2pGq, the Fourier transform of f at u exists in H and for all v P H
xπpfqu, vyH “ xf, V2vy2;

b) for every f P L2pGq the convolution f ˙K exists and

(24) V2πpfqu “ f ˙K,

where both sides belong to C0pGq and, for every v P H,

(25) V2v ˙K “ V2v;

in particular, K “ K ˙K.
c) the space

M2 “ tf P L2pGq | f ˙K “ fu
is a λ-invariant closed subspace of L2pGq and

V2H “M2;(26)

V2πpfqu “ f, for all f PM2;(27)

πpV2vqu “ v, for all v P H.(28)
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Hence, the voice transform V2 is a unitary map from H onto M2 whose inverse is
given by the map f ÞÑ πpfqu.

Proof. We first prove (25). By (76c) with p “ q “ 2, the convolution V2v ˙K exists and

is in C0pGq because qK P L2pGq by (23). Furthermore, given x P G, for all y P G
V2vpyqλpxq qKpyq “ V2vpyqλpxqKpyq “ V2vpyq pV2πpxquqpyq.

Integrating with respect to y, we obtain

V2v ˙K “ xV2v, V2πpxquy2 “ xv, πpxquyH “ V2v.

To prove the remaining statements, we apply Proposition 2.6 with F “ L2pGq and E “
E 1 “ H, with the understanding that i and j are the canonical inclusions, λ “ `, π “ τ
and V “ V2. Observe that (19) is satisfied since V2H Ă L2pGq “ L2pGq# and, by (25),
the reproducing formula (17) holds for every v P H, regarded as anti-linear form on H.
Furthermore, by (76c) in the appendix with p “ q “ 2, for all f P L2pGq the function
f ˙K is in C0pGq, taking (23) into account. �

3. Main results

In this section, we assume that the representation π is reproducing and that the vector
u P H is admissible, as in Section 2.5. We will construct a coorbit space theory based on
the choice of a suitable target space T embedded in L0pGq.
3.1. The space of test functions and distributions. We choose a Fréchet space T
with

i) a continuous embedding j : T Ñ L0pGq;
ii) a continuous representation ` of G acting on T such that j`pxq “ λpxqj for all x P G;

iii) a continuous involution f ÞÑ f such that jpfq “ jpfq,
so that T enjoys all the properties of the space F in Section 2, from which we adopt the
notations. In particular, as in (10), we put

MT “ tf P T | jpfq˙K “ jpfqu.
The classical theory corresponds to the choice T “ L1pGq, or a weighted version of it.
The following assumptions are at the root of our construction and are trivially satisfied
for L1pGq.
Assumption 1. The kernel K is in jpT q and jpfqK P L1pGq for all f P T , i.e K P
jpT q X T #.

Assumption 2. For all f P MT and all v P H we have jpfqV2v P L1pGq, i.e V2H Ă
pMT q#.

Assumption 3. The linear space spanned by the orbit t`pxqK | x P Gu is dense in MT .

By Proposition 2.2, Assumption 1 implies that for all f P T the convolution jpfq˙K
exists and MT is a closed `-invariant subspace of T , so that spant`pxqK | x P Gu is a
subspace of MT . Assumption 3 is formulated with a slight abuse of notation, regarding
K as an element of T . It is a strengthening of Assumption 1 because it is equivalent to
the requirement that K is actually a cyclic vector for the representation ` restricted to
MT .

Assumptions 1 and 2 should be compared with hypotheses (R2) and (R3) of [21]. In
our approach they are needed to define the test space, as in the classical setting, whereas
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in [21] the test space is given a-priori. We are now in a position to define the space of test
signals, namely

(29) S “ tv P H | V2v P jpT qu.
We define the restricted voice transform V0 : S Ñ T as the unique map satisfying jV0 “
V2i, that is, for all v P S and x P G we put

pV0vqpxq “ xipvq, πpxquyH
where i : S Ñ H is the canonical inclusion. It is by means of V0 that we topologize S:
we endow S with the initial topology induced by V0. As it will be shown in Theorem 3.1
below, this is just an explicit description of the topology that S naturally inherits as
coorbit space, because S “ CopH, T q. Observe that Assumption 1 implies that u P S,
since K P jpT q.
Theorem 3.1. The space S is a Fréchet space isomorphic to MT via V2, and jpMT q Ă
L2pGq. The canonical embedding i : S Ñ H is continuous and has dense range. The
transpose ti : Hs Ñ S 1s is continuous, injective and has dense range. The representation
π leaves S invariant, its restriction τ to S is a continuous representation of G acting on
S and u is a cyclic vector of τ .

Proof. We first prove that S is a Fréchet space. Let E “ H and F “ T . By the properties
i), ii) and iii) stated at the beginning of this section, we are in the general setting of
Section 2.4. Observe that H1 “ H, Ve “ V2 and clearly S “ CopH, T q. Furthermore,
the fact that π is reproducing implies that V2 is injective and, by (25) in Proposition 2.8,
the reproducing formula holds true for all v P H. Hence V2v P jpMT q for all v P S, and
we actually get S “ CopH,MT q. We can apply Corollary 2.7 because the hypotheses of
Proposition 2.6 that imply it are both satisfied: (19) is just Assumption 2 and, as already
noticed, the reproducing property holds for all v P S because π is reproducing. Hence
S is a Fréchet space and V0 induces a topological linear isomorphism from S onto MT .
Since V2H Ă L2pGq, clearly jpMT q Ă L2pGq.

Since S and MT are isomorphic, in order to show that i is continuous it is enough
to prove that j is continuous from MT into L2pGq. Both are Fréchet spaces, hence it
is sufficient to show that j : MT Ñ L2pGq has sequentially closed graph. If pfnqn is
a sequence in MT converging to f in MT and pjpfnqqn converges to ϕ in L2pGq, then
possibly passing to a subsequence, we can assume that pfnpxqqn converges for almost all
x P G. Hence ϕpxq “ fpxq almost everywhere.

Item b) of Proposition 2.6 gives that π leaves S invariant. Since for all x P G and v P S
V0τpxqv “ `pxqV0v,

the restriction τ is a continuous representation on S because ` is a continuous representa-
tion on T . The fact that π is reproducing implies that spantπpxqu | x P Gu Ă S is dense
in H, so that i has dense range.

Finally, since V0τpxqu “ `pxqK for all x P G, Assumption 3 is another way of saying
that u is a cyclic vector for τ . As for the properties of ti, Corollary 3 Chapter II.6.3 of
[25] shows that i is continuous from Sweak into Hweak. Hence, Corollary of Proposition 5
Chapter II.6.4 of [25] gives that ti is continuous from Hs “ Hweak into S 1s and tptiq “ i.
Finally, Corollary 2 Chapter II.6.4 of [25] shows that since i is injective and has dense
range, ti has the same properties. �
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As shown in the above proof, all the hypotheses of Corollary 2.7 are satisfied. This
implies that, whenever a fundamental family tqiui of semi-norms of T is given, then
tqipV0p¨qqui is a fundamental family of semi-norms of S. This is yet another way to get a
direct handle on its topology when a family of seminorms of T is known.

We regard the dual S 1 of S as the space of distributions and we define the extended
voice transform on it by setting for all T P S 1
(30) Ve : S 1 Ñ CpGq, VeT “ xT, τp¨quyS .
The definition works because S is τ -invariant, u P S and τ is a continuous representa-
tion. The following theorem states the main properties of V0 and Ve. We recall that the
contragredient representations tτ and t` are continuous representations acting on S 1 and
T 1, respectively, where the dual spaces are endowed with the topology of the convergence
on compact subsets (see Proposition 3 Chapter VIII.2.3 of [29]). Furthermore, since π is
a reproducing representation, Proposition 2.8 ensures that for all f P L2pGq the Fourier
transform of f at u exists in H.

Theorem 3.2. The restricted voice transform V0 is an injective strict morphism6 from S
into T with image MT . For all f PMT , we have

πpfqu P S, V0πpfqu “ f

and, for all v P S, we have

πpV0vqu “ v.

Furthermore, V0 intertwines τ and ` and its transpose tV0 : T 1s Ñ S 1s is a surjective
continuous map, intertwining the representations t` and tτ .

The extended voice transform Ve intertwines tτ with λ, is injective and continuous from
S 1 to CpGq, where both spaces are endowed with the topology of compact convergence.
Finally, for all Φ P T # Ă T 1, we have

(31) Ve
tV0Φ “ Φ ˙K.

Proof. By Theorem 3.1, V0 induces a topological linear isomorphism from S onto MT ,
which is a closed subspace of T . Corollary 1, Chapter II.4.2 of [25] gives that tV0 is
surjective. By Corollary of Proposition 5, Chapter II.6.4 of [25], the map tV0 is continuous
when both T 1 and S 1 are equipped with the topology of the simple convergence.

Since π is reproducing and jpfq P L2pGq for all f P MT , Proposition 2.8 shows that
V2πpjpfqqu “ jpfq P jpT q. Hence, by definition of S, πpjpfqqu P S and the construction
of V0 gives that V0πpfqu “ f , where, with slight abuse of notation, πpfqu is the Fourier
transform of jpfq at u. Take now v P S. Since V0v P MT , again Proposition 2.8 yields
πpV0vqu “ v.

The intertwining property is straightforward: for any x, y P G
`

Ve
tτpxqT˘ pyq “ xT, τpx´1qτpyquyS “ VeT px´1yq.

Injectivity is due to the fact that u is cyclic for τ . To prove that Ve is continuous, fix a
compact subset Q of G. Since x ÞÑ τpxqu is continuous, the set A “ τpQqu is compact in
S, and T ÞÑ supvPA|xT, vyS | is continuous on S 1. Finally, take Φ P T #. Then for all x P G

Ve
tV0Φpxq “ xΦ, V0τpxquyT “

ż

G

Φpyqxπpxqu, πpyquyHdy “ pΦ ˙ V2uqpxq. �

6A strict morphism is a continuous linear map whose image is closed.
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We add a remark on the finer topological properties of Ve. If B is a bounded subset
of S 1 or, equivalently, of S 1s, the restriction of Ve to B, endowed with the topology of S 1s,
into CpGq, with the topology of the compact convergence, is continuous. Indeed, since S
is a Fréchet space, then it is barrelled (Corollary of Proposition 2 Chapter III.4.2 of [25]).
Hence

strongly bounded ô weakly bounded ô equicontinuous.

(Scolium and Definition 2 Chapter III.4.2 of [25]). Proposition 5 Chapter III.3.4 of [25]
implies that on B the topology of the simple convergence is equivalent to the topology
of precompact subsets. Hence, for any compact subset K of G, since x ÞÑ τpxqu is
continuous, the set A “ τpKqu is compact in S, hence precompact and, by the above
reasoning B Q T ÞÑ supvPA|xT, vyS | is continuous with respect to the topology of the
simple convergence.

The next assumption requires that the reproducing formula holds for any distribution
in S 1.
Assumption 4. For all T P S 1, K VeT P L1pGq and VeT ˙K “ VeT .

Since the representation tτ leaves S 1 invariant and Ve intertwines tτ with λ, the require-
ment K VeT P L1pGq implies that VeT ˙ K exists. Furthermore, if VeS 1 is contained in
T #, then K VeT P L1pGq holds for all T P S 1 since K P T .

In the two propositions that follow, we give sufficient conditions implying Assumption 4.

Proposition 3.3. Assume that MT is a reflexive space and K VeT P L1pGq for all T P S 1.
Then the reproducing formula VeT ˙K “ VeT holds true for all T P S 1.
Proof. Since S and MT are isomorphic (Theorem 3.1), then also S is a reflexive space.
Regard S as the dual of S 1, which has the property (GDF) by Proposition 3 Chapter 6.
Appendix No.2 of [30]. The assumption implies that the map x ÞÑ τpxquxπpyqu, uyH is
scalarly integrable from G to Ss, hence Theorem 6.4 shows that there exists vu P S such
that

xT, vuyS “
ż

G

xT, τpxquySxπpxqu, uyHdx.

By Theorem 3.1, H is dense in S 1s and by (25) vu “ u, which means that

xT, uyS “
ż

G

xT, τpxquySxπpxqu, uyHdx.

Given y P G, by applying the above equality to tτpy´1qT , we get

VeT pyq “ xT, τpyquyS “ x tτpy´1qT , uyS
“
ż

x tτpy´1qT , τpxquySxπpxqu, uyH dx

“
ż

xT, τpyxquySxπpxqu, uyH dx

“
ż

xT, τpxquySxu, πpx´1yquyH dx,

where the last line is due to the change of variable x ÞÑ y´1x and the fact that π is a
unitary representation. Hence the convolution V T ˙K exists and is equal to VeT . �
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The property K VeT P L1pGq for all T P S 1 means that the map x ÞÑ τpxquxπpyqu, uyH
is scalarly integrable from G to S, i.e., there exists a linear map ω : S 1 Ñ C such that

ωpT q “
ż

G

xT, τpxquySxπpxqu, uyHdx.
Furthermore, since H is continuously embedded in S 1 and π is a reproducing representa-
tion, for all w P H we have

ωp tipwqq “ xw, uyH.
By Theorem 3.1, the map ti has a dense image in S 1s. However, ω is continuous with
respect to the weak-˚ topology of S 1 if and only if ω P S. In the setting of reproducing
representations, the requirement that the reproducing formula holds for all distributions
is equivalent to assuming that ω P S and, in this case, ω is precisely u. The hypothesis
ω P S is precisely property (R4) in [21]. Furthermore, if S is a Banach space, as in the
classical setting, and if the map x ÞÑ τpxquxπpyqu, uyH is Bochner-integrable, then it is
scalarly integrable and, clearly, ω is always in S.

Here is another sufficient condition.

Proposition 3.4. Assume that T # “ T 1 and suppose that |K| ˙ |K| exists and belongs
to T . Then VeT ˙K “ VeT for all T P S 1.
Proof. By Theorem 3.1, tV0 is surjective, so that if T 1 “ T #, then for any T P S 1 there
exists Φ P T # such that tV0Φ “ T . Furthermore, if |K| ˙ |K| exists and belongs to T ,
then
ż

GˆG
|Φpzxqxπpxqu, πpyquyHxπpyqu, uyH|dx dy “

ż

G

|Φpzxq|
ˆ
ż

G

|Kpyq||Kpy´1xq|dy
˙

dx

“
ż

G

|λpz´1qΦpxq|p|K|˙ |K|qpxq dx
and, since |λpz´1qΦ| P T #, the last integral is finite for all z P G. By (77a) and (23),

we have that ­|K|˙ |K| “ |K| ˙ |K|, hence Fubini theorem implies that the convolution
|Φ|˙ p|K|˙ |K|q exists, and (77d) in the appendix shows

pΦ ˙Kq˙K “ Φ ˙ pK ˙Kq.
Finally, (31) and (25) give

VeT ˙K “ pΦ ˙Kq˙K “ Φ ˙ pK ˙Kq “ Φ ˙K “ VeT. �

3.2. Coorbit spaces. We now fix a Banach space Y , with norm ‖¨‖Y , continuously
embedded in L0pGq and λ-invariant. In order to be consistent with the current literature,
we do not indicate the explicit embedding as we did for the other spaces. The results in
this section hold true under the weaker assumption that Y is a Fréchet space. However,
we do not need this generality because the main example that we are interested in is the
case when Y is a weighted Lp space for a fixed value of p.

The coorbit space of Y is

(32) CopY q “ tT P S 1 | VeT P Y u
endowed with the norm

(33) ‖T‖CopY q “ ‖VeT‖Y .
Since Ve is a linear injective map, ‖¨‖CopY q is clearly a norm. We will prove below that
CopY q is in fact a Banach space.
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Just as for the target space T , the two basic assumptions for the space Y may be
formulated in terms of Köthe duals and have to do with the kernel K (compare As-
sumption 5 below with Assumption 1) and with the image of the voice transform V2H
(compare Assumption 6 below with Assumption 2). They should also be compared with
the corresponding assumptions made in [20, 23, 21]. As above, we write

MY “ tf P Y | f ˙K “ fu.
Assumption 5. For all f P Y , we have fK P L1pGq, that is, K P Y #.

Assumption 6. For all f PMY and all v P S, we have fV0v P L1pGq, i.e., V0S Ă pMY q#.

By Proposition 2.2 applied to F “ Y , Assumption 5 implies that MY is a λ-invariant
closed subspace of Y . Furthermore, by Proposition 2.4 with E “ S, Assumption 6 implies
that for all f PMY the Fourier transform of f at u exists in S 1.

In the following proposition we list the main properties of CopY q.
Proposition 3.5. The space CopY q is a Banach space invariant under the action of the
representation tτ . The extended voice transform is an isometry from CopY q onto MY

and its inverse is the Fourier transform at u. Therefore

Ve CopY q “MY ,

tπpfqu | f PMY u “ CopY q,
Veπpfqu “ f, f PMY ,

πpVeT qu “ T, T P CopY q.
Proof. The proposition is a restatement of Proposition 2.6 and Corollary 2.7 with E “ S
and F “ MT . The hypothesis (19) is Assumption 6 and the hypothesis in item d) of
Proposition 2.6 is satisfied by Assumption 3 and Assumption 4. �

As in the classical setting, we have the following canonical identification.

Corollary 3.6. The Hilbert space L2pGq satisfies Assumptions 5 and 6, and CopL2pGqq “
H.

Proof. Since π is a reproducing representation, Assumptions 5, and 6 are clearly satisfied,
and H Ă CopL2pGqq. Take now T P CopL2pGqq. By Proposition 3.5 T “ πpVeT qu.
However, since V2T P L2pGq, by Proposition 2.8 πpVeT qu P H. �

Even though T is not a Banach space, the space

CopT q “ tT P S 1 | VeT P T u
is well defined and, under Assumption 4, Corollary 3.6 and the definition of S imply that,
as in the classical setting, CopT q “ S. The above identification suggests to characterize
the space

CopT 1q “ tT P S 1 | VeT P T #u Ă S 1.
The equality CopT 1q “ S 1 is equivalent to require that jpfqVeT P L1pGq for all f P T and
T P S 1, that is, VeS 1 Ă T #, which is in general stronger than Assumption 4.

Let us compare our approach with the theory developed by J. Christensen and G. Ólafsson
in [20, 23, 21]. Assumptions 1˜6 ensure that the test space S defined by (29) satisfies
the properties (R1)˜(R4), and some of our claims can be directly deduced by the results
contained in [21] (for example, compare Theorem 2.3 of [21] with our Proposition 3.5). In
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our setting, which is somehow parallel to the classical L1 case, we first introduce the tar-
get space T , which is independent of the reproducing representation, and then we define
the test space S as the set of vectors for which the voice transform belongs to T . The
introduction of the target space T makes our construction closer to the classical approach
by H. Feichtinger and K. Gröchenig, and Assumptions 1, 2, 3 and 4 involve only the target
space T without any reference to the model space Y . Moreover, our proofs mainly rely on
the theory of weak integrals à la Dunford-Pettis, which allows us to state our hypotheses
as integrability conditions, rather than a continuity requirement as in [21].

Assumption 4 requires that the reproducing formula VeT˙K “ VeT holds for all T P S 1.
However, in the proof of Proposition 3.5, the reproducing formula is needed only for the
distributions in CopY q (compare with item d) of Proposition 2.6). The following lemma
shows some equivalent conditions, weaker than Assumption 4, under which Proposition 3.5
remains true.

Lemma 3.7. Take T and Y such that Assumptions 1, 2, 3 and Assumptions 5, 6 hold
true. Then the following facts are equivalent:

a) for all T P CopY q, VeT PMY ;
b) for all T P CopY q, VeT ˙K exists and VeT ˙K “ VeT ;

c) for all T P CopY q, the map x ÞÑ xT, τpxquySxπpxqu, uyH “ VeT pxqKpxq is in L1pGq
and

(34)

ż

G

xT, τpxquySxπpxqu, uyHdx “ xT, uyS ;

d) for all T P CopY q, the map x ÞÑ VeT pxq tipπpxquq P S 1s is scalarly integrable and its
scalar integral is T , that is

(35) T “
ż

G

xT, τpxquyS tipπpxquq dx.

Proof. By definition of coorbit space, VeT P Y whenever T P CopY q. Hence a) is equivalent
to b). Since CopY q is tτ -invariant, c) implies that the map y ÞÑ x tτpx´1qT , τpyquySxπpyqu, uyH
is integrable for all x P G and

VeT pxq “ xT, τpxquyS “
ż

x tτpx´1qT , τpyquySxπpyqu, uyH dy

“
ż

xT, τpyquySxπpyqu, πpxquyH dy.
Hence c) implies item b) of Lemma 2.5. The converse is also true by evaluation at
the identity. Therefore c) is equivalent to item b) of Lemma 2.5, which provides the
equivalence between b) and c) and shows that d) implies c).

Assume now that VeT P MY . Proposition 2.4 with f “ VeT gives that VeT satis-
fies (13), that πpVeT qu P S 1 exists and VeπpVeT qu “ VeT . Finally, since Ve is injective by
Theorem 3.2, we know from item d) of Lemma 2.5 that a) implies d). �

3.3. Dependency on the admissible vector. We now examine the dependence of
space S on the choice of the admisible vector u. For this reason, in this section, we write
Su instead of S, and accordingly for other choices of admissible vectors.

Proposition 3.8. Suppose that jpT q˙ jpqT q Ă jpT q and that for all g P T the map

(36) f ÞÑ f ˙ ǧ
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is continuous from T into itself, where jpf ˙ ǧq “ jpfq˙ ǰpgq. If ũ P Su Ă H is another
admissible vector satisfying Assumptions 1, 2 and 3, then the test function spaces Sũ and

Su coincide as Fréchet spaces. Furthermore, |Su “ Su for any admissible u and

Vũv “ Vuv ˙
}Vuũ.

for all v P Sũ “ Su.

Proof. Let v P Su and x P G. Since π is reproducing and u is admissible,

V2,ũv pxq “ xv, πpxqũyH
“
ż

G

xv, πpyquyHxπpxqũ, πpyquyH dy

“
ż

G

xv, πpyquyHxũ, πpx´1yquyH dy

“ V2,uv ˙
~V2,uũ pxq,

where V2,uv, V2,uũ P jpT q since v, ũ P Su. The hypothsis on T implies that V2,ũv P jpT q,
so that Su Ă Sũ. We now prove that the embedding of Su into Sũ is continuous. Fix a
semi-norm ‖¨‖i,Sũ of Sũ, i.e, fix a semi-norm ‖¨‖i,T of T such that ‖v‖i,Sũ “ ‖V2,ũv‖i,T
for all v P Sũ. By (36) with f “ V2v and g “ V0ũ, there exist a constant C ą 0 and a
semi-norm ‖¨‖j,T of T such that

‖v‖i,Sũ “ ‖V2,ũv‖i,T ď C‖V2v‖j,T “ C‖v‖j,Su
where ‖¨‖j,Su is a semi-norm of Su. Hence, the embedding is continuous. Interchanging
the roles of u and ũ, we obtain that Sũ Ă Su with a continuous embedding. Finally
by (77a) in the appendix and (23), for all v P Su,

}V0v “ ­V0v ˙K “ K ˙}V0v P T
by assumption, so that |Su Ă Su and, hence, |Su “ Su. �

In the classical framework, π is irreducible and T “ L1pG,wβq, where w is a continuous
density satisfying (60a) and (60b) in the appendix and

(37) wpxq “ wpx´1q∆px´1q.
This last condition implies that T “ qT so that the hypotheses of the above proposition
are satisfied. However, a stronger result holds true, namely

tu P H | Ku P T u “ S,
which is the content of Lemma 4.2 in [1]. Note that the irreducibility ensures that, if
Ku P T , then u is an admissible vector. However, if π is not irreducible, the above
equality does not hold as shown by a counter-example in [22].

4. A model for the target space

In this section, we illustrate some examples. They include band-limited functions (Sec-
tion 4.2), Shannon wavelets (Section 4.3) and Schrödingerlets (Section 4.4) that have
inspired our theory.
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4.1. Intersection of all LpwpGq with 1 ă p ă `8. In this section, w : G Ñ p0,`8q
will denote a continuous function, to be called weight, satisfying

wpxyq ď wpxqwpyq(38a)

wpxq “ wpx´1q(38b)

for all x, y P G. As a consequence, it also holds that

(38c) inf
xPGwpxq ě 1.

The notion of weight in [4] is based on the submultiplicative property (38a). The sym-
metry (38b) can always be satisfied by replacing w with w ` qw. This requirement is
necessary for our development (see item g) of Theorem 4.4 below). Condition (38c) is
explicitly stated in [4] and, in the classical L1pGq setting, it is necessary to ensure that
the test space is a Banach space (see Theorem 5.5 below). In the usual irreducible L1

setting, it is also assumed that the weight satisfies (37), which is actually incompatible
with (38b). However, (37) is only necessary in order to see that the space of admissible
vectors coincides with the test space (see Lemma 4.2 in [1]). In the non irreducible case,
though, this set-theoretic equality is lost anyhow, as mentioned in the introduction [22].

For all p P r1,8q define the separable Banach space

LpwpGq “ tf P L0pGq |
ż

G

|wpxqfpxq|pdx ă `8u
with norm

‖f‖pp,w “
ż

G

|wpxqfpxq|pdx,
and the obvious modifications for p “ 8. Clearly, the map Jp : LpwpGq Ñ LppGq defined
by Jppfq “ wf is a unitary operator. The following characterization of the Köthe dual
holds true.

Lemma 4.1. Fix p P r1,`8q and denote by q “ p
p´1

P p1,`8s the dual exponent. Then

LpwpGq# “ Lqw´1pGq.
For all g P Lqw´1pGq and f P LpwpGq, set

xg, fyp,w “
ż

G

gpxqfpxqdx.
Then the map g ÞÑ xg, ¨yp,w is an isomorphism from Lqw´1pGq onto LpwpGq1. Under this
identification, the transpose tJp : LqpGq Ñ Lqw´1pGq is given by

tJph “ wh.

Proof. For g P L0pGq we have g P LpwpGq# if and only if gf P L1pGq for every f P LpwpGq,
which is equivalent to pw´1gqpwfq P L1pGq for every wf P LppGq. This, in turn, happens
if and only if w´1g P LqpGq, which means that g P Lqw´1pGq. Hence Lqw´1pGq “ LpwpGq# Ă
LpwpGq1, the pairing x¨, ¨yp,w is the pairing between LpwpGq# and LpwpGq given in Lemma 2.1,
and

‖g‖LpwpGq1 “ sup
‖f‖p,wď1

|xg, fyp,w| “ sup
‖wf‖pď1

|xw´1g, wfyp| “ ‖w´1g‖q “ ‖g‖q,w´1 .

Thus the map g ÞÑ xg, ¨yp,w is an isometry from Lqw´1pGq into LpwpGq1 and it allows to
identify Lqw´1pGq with a closed subspace of LpwpGq1.
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We now compute the transpose of Jp, taking into account that LppGq1 “ LqpGq. For a
fixed h P LqpGq and all f P LpwpGq we have

x tJph, fyp,w “
ż

G

hpxqwpxqfpxqdx,
so that, since w is positive, tJph “ wh P LpwpGq# “ Lqw´1pGq. Since Jp is unitary, so is tJp
and LpwpGq1 “ Lqw´1pGq. �

Lemma 4.2. For all p P r1,`8q, the left regular representation leaves LpwpGq invariant.
The restriction ` of λ to LpwpGq is a continuous representation with ‖`pxq‖ ď wpxq for all
x P G.

Proof. Fix x P G. By (38a), for all f P LpwpGq
ż

G

|wpyqfpx´1yq|pdy “
ż

G

|wpxyqfpyq|pdy ď wpxqp
ż

G

|wpyqfpyq|pdy,
so that λpxq leaves LpwpGq invariant and the norm of the restriction `pxq is bounded by
wpxq. We now prove that ` is continuous by applying the concluding remark of Section 6.2
in the appendix. For any compact subset K of G, since w is continuous, wpKq is bounded
and, hence, `pKq is equicontinuous. Furthermore, if f P CcpGq, the map x ÞÑ `pxqf is
clearly continuous from G into LqwpGq by the dominated convergence theorem. The proof
is completed by observing that CcpGq is a dense subset of LpwpGq. �

Let I “ p1,`8q. We define the target space as the set

Tw “
č

pPI
LpwpGq

with the initial topology, which makes each inclusion ip : Tw ãÑ LpwpGq continuous, and
endow

Uw “ span
ď

qPI
Lqw´1pGq

with the final topology, which makes each inclusion ι̃q : Lqw´1pGq ãÑ Uw continuous.
Recall that by definition of initial and of final topology, for any topological space X, a

map A : X Ñ Tw is continuous if for all p P I there exists a continuous map Ap : X Ñ
LpwpGq such that ipA “ Ap, and a map B : Uw Ñ X is continuous if all q P I there exists
a continuous map Bq : Lqw´1pGq Ñ X such that Bι̃q “ Bq.

As for notation, given the nature of Tw, the inclusion j : Tw Ñ L0pGq is set-theoretically
tautological because the elements of Tw are (equivalence classes of) measurable functions.
However, we keep it to emphasize that the two spaces, Tw and L0pGq, have different
topologies.

The following theorem states the main properties of Tw and Uw.

Theorem 4.3. The space Tw is a reflexive Fréchet space, whose topology is given by the
fundamental family of semi-norms t‖¨‖p,wupPI . It is closed under complex conjugation

and f ÞÑ f is continuous. The canonical inclusion j : Tw Ñ L0pGq is continuous, the left
regular representation λ leaves Tw invariant and the restriction ` of λ to Tw is a continuous
representation of G on Tw.

The space Uw is a complete reflexive locally convex topological vector space. For each
g P Uw, the anti-linear map from Tw into C given by

f ÞÑ
ż

G

gpxqfpxq dx “ xg, fyTw
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is continuous and g ÞÑ xg, ¨yTw identifies, as topological vector spaces, the dual of Tw with
Uw. Furthermore the Köthe dual of Tw is Uw, so that

(39) T 1w “ T #
w “ Uw.

For each f P Tw, the anti-linear map from Uw to C

g ÞÑ
ż

G

fpxqgpxq dx “ xf, gyUw
is continuous and f ÞÑ xf, ¨yUw identifies, as topological vector spaces, the dual of Uw
with Tw.

Proof. The proof is based on the content of the article [31], whose main results are sum-
marized by Theorem 6.5 in the appendix, where T “ T1 and U “ U1 (in [31] it is assumed
that w “ 1).

By definition of initial topology, Tw is a locally convex topological space and t‖¨‖p,wupPI
is a fundamental family of semi-norms.

Clearly, Tw is closed under complex conjugation and is left invariant by λ. We show
that ` is a continuos representation. Given x P G, `pxq : Tw Ñ Tw is continuous because
ip`pxq “ λpxqip. Given f P Tw, the map x ÞÑ `pxqf is continuous from G to Tw since such
are the maps x ÞÑ ip`pxqf “ `pxqipf for all p P I. The proof that complex conjugation is
continuous is similar.

Define the linear map J : Tw Ñ T , Jf “ wf . Since w ą 0, J is a bijection whose inverse
is given by J´1g “ w´1g. Both maps are continuous by definition of initial topology since

ipJ “ Jpip ipJ
´1 “ J´1

p ip,

for all p. Hence J is a topological isomorphism. By Theorem 6.5, we infer that T is a
reflexive Fréchet space and, hence, Tw is a reflexive Fréchet space, too.

Define J̃ : U Ñ Uw, J̃h “ wh, which is clearly bijective and whose inverse is J̃´1g “
w´1g. By definition of final topology, both are continuos since for all q P I

J̃ ι̃q “ ι̃q
tJ q
q´1

J̃´1ι̃q “ ι̃q J
´1
q

(with slight abuse, here ι̃q denotes the inclusion of LqpGq into U). Hence J̃ is an iso-
morphism from U onto Uw. Therefore, by Theorem 6.5, Uw is a complete barelled locally
convex topological vector space since such is U .

Since J is an isomorphism between two Fréchet spaces, by Corollary 5 of Chapter IV.4.2
of [25], tJ is an isomorphism from U onto T 1w explicitly given by

x tJh, fyTw “
n
ÿ

i“1

ci

ż

G

hipxqwpxqfpxqdx “
ż

G

pJ̃hqpxqfpxqdx,

where h “ ř

cihi with c1, . . . , cn P C and h1 P Lq1pGq, . . . , hn P LqnpGq. Hence, we

can identify T 1w and Uw as topological vector spaces by means of the map J̃ tJ
´1

, and the
pairing between Uw and Tw is

xg, fyTw “
ż

G

gpxqfpxqdx. �

Observe that (38c) implies wpxq´1 ď wpxq for all x P G, so that Tw Ă Uw “ T 1w. Fur-

thermore, (38b) ensures that f̌ P Tw if and only if |wf P T .

We are now ready to state the main result of this section.
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Theorem 4.4. Take a reproducing representation π of G acting on the Hilbert space H
and a weight w satisfying (38a), (38b) and (38c). Choose an admissible vector u P H
such that

(40) Kp¨q “ xu, πp¨quyH P LpwpGq for all p P I
and set

Sw “ tv P H | xv, πp¨quyH P LpwpGq for all p P Iu,

‖v‖p,Sw “
ˆ
ż

G

|xv, πpxquyH|pwpxqpdx
˙

1
p

.

Then:

a) the space Sw is a reflexive Fréchet space with respect to the topology induced by the
family of semi-norms t‖v‖p,SwupPI , the canonical inclusion i : Sw Ñ H is continuous
and with dense range;

b) the representation π leaves Sw invariant, its restriction τ is a continuous representation
acting on Sw, and

ipτpxqvq “ πpxqipvq x P G, v P Sw;

c) if H and S 1w are endowed with the weak topology, the transpose ti : HÑ S 1w is contin-
uous, injective, with dense range and satisfies the intertwining

tτpxq tipvq “ tipπpxqvq x P G, v P H;

d) the restricted voice transform V0 : Sw Ñ Tw, given by

V0vpxq “ xipvq, πpxquyH x P G, v P Sw,
is an injective strict morphism onto the closed subspace

MTw “ tf P Tw | jpfq˙K “ jpfqu,
and it intertwines τ and `;

e) every f P Tw, has at u a Fourier transform in Sw and

jpV0πpfquq “ jpfq˙K;

furthermore, the map

Tw Q f ÞÑ πpfqu P Sw
is continuous and its restriction to MTw is the inverse of V0;

f) every Φ P Uw has at u a Fourier transform in S 1w and

VeπpΦqu “ Φ ˙K;

g) the extended voice transform given by (30) takes values in Uw, it is injective, continuous
(when both spaces are endowed with the strong topology) and intertwines tτ and λ; the
range of Ve is the closed subspace

(41) MUw “ tΦ P Uw | Φ ˙K “ Φu “ span
ď

pPI
MLpwpGq Ă L8w´1pGq

and for all T P S 1w and v P Sw
(42) xT, vySw “ xVeT , V0vyTw ;
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h) the map

MUw Q Φ ÞÑ πpΦqu P S 1w
is the inverse of Ve and coincides with the restriction of the map tV0 to MUw , namely

(43) Vep tV0Φq “ VeπpΦqu “ Φ Φ PMUw .

i) tiipSwq “ tT P S 1w | VeT P Twu “ tπpfqu | f PMTwu.
The fundamental requirement (40) states that K P Tw Ă T 1w “ T #

w “ Uw, whereas (42)
is the reconstruction formula for the distributions in S 1w, namely the fact that for any
T P S 1w the formula

(44) xT, vySw “
ż

G

xT, τpxquySwxπpxqu, ipvqyH dx

holds for all v P Sw, where the integral converges since xπp¨qu, ipvqyH is in Tw by definition
of Sw, and xT, τp¨quySw is in Uw “ T #

w since the range of Ve is contained in Uw (for arbitrary
target spaces this last property could fail).

Proof. Since K P jpTwq Ă Uw “ T #
w , Assumption 1 is satisfied. Furthermore, since

jpTwq Ă L2
wpGq Ă L2pGq by (38c), also Assumption 2 is satisfied. The topology induced

by the family of semi-norms t‖v‖p,SwupPI is the initial topology on Sw induced by the map
V0, as in the proof of Corollary 2.7.

a) By Theorem 3.1 which does not depend on Assumption 3, the space Sw is a Fréchet
space isomorphic to MTw and the canonical inclusion i : Sw Ñ H is continuous and
with dense range. Furthermore, since MTw is a closed subspace of a reflexive Fréchet
space, both MTw and Sw are reflexive.

b) Apply Theorem 3.1.
c) Apply Theorem 3.1 for the main statement; the intertwining property is easily checked.
d) Apply Theorem 3.2.
e) Fix f P Tw. By (38c) jpfq P L2pGq and by Proposition 2.8 there exists πpfqu P H

such that V2πpfqu “ jpfq ˙ K. We claim that jpfq and K are convolvable (see the
appendix for the definition) and jpfq ˙ K P jpTwq. It is enough to show that for all
r P I, |wf |˙ |wK| P LrpGq. Indeed, given x P G

wpxq
ż

G

|fpyq||Kpy´1xq| dy “
ż

G

|wpyqfpyq||wpy´1xqKpy´1xq| wpxq
wpyqwpy´1xqdy

ď |wjpfq|˙ |wK|pxq,
by (38a). Define p “ q “ 2r

1`r ą 1, so that 1
p
` 1

p
“ 1

r
` 1. Then by assumption wjpfq P

LppGq, wK P LqpGq and }wK “ wǨ P LqpGq. Hence (76b) applies, showing that
|wjpfq| and |wK| are convolvable, |wjpfq| ˙ |wK| P LrpGq and ‖|wjpfq|˙ |wK|‖r ď
C‖wf‖p, where C is a constant depending on q and K. Hence jpfq˙K P LrwpGq and

(45) ‖jpfq˙K‖r,w ď C‖jpfq‖p,w.
Therefore jpfq ˙ K P jpTwq. By definition of Sw, πpfqu P Sw and jpV0πpfquq “
jpfq ˙ K. The map f ÞÑ πpfqu is continuous by (45). By Theorem 3.2, the map
MTw Q f ÞÑ πpfqu P Sw is the inverse of V0.

f) Fix Φ P Uw. By linearity we can assume that Φ is in some Lpw´1pGq, so that Φjpfq is
in L1pGq for all f P Tw. In particular for all v P Sw we have ΦjpV0vq P L1pGq because
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V0v P Tw, and by Proposition 2.4 there exists πpΦqu P S 1w. Furthermore, recalling that
tV0 is a linear map from T 1w onto S 1w, for all v P Sw we have

x tV0Φ, vySw “ xΦ, V0vyTw “
ż

G

Φpxqxipvq, πpxquyHdx “
ż

G

Φpxqxπpxqu, ipvqyHdx.

Comparing this equation with the definition of πpΦqu we get tV0Φ “ πpΦqu and,
by (31), VeπpΦqu “ Φ ˙K.

g) Fix T P S 1w. Since tV0 is surjective, there exists Φ P Uw “ T 1w such that T “ tV0Φ “
πpΦqu, so that VeT “ Φ ˙ K. To show that VeT P Uw we prove that Φ and K are
convolvable whenever Φ P Uw, their convolution Φ˙K is in Uw and the map Φ ÞÑ Φ˙K
is continuous from Uw into Uw. By definition of Uw, it is enough to show that, given
p P I, for all Φ P Lpw´1pGq, Φ and K are convolvable, Φ ˙K P L2p

w´1pGq and the map

Φ ÞÑ Φ ˙K is continuous from Lpw´1pGq into L2p
w´1pGq. As above,

wpxq´1

ż

G

|Φpyq||Kpy´1xq| dy “ wpxq´1

ż

G

|Φpxyq||Kpy´1q| dy

“
ż

G

|w´1pxyqΦpxyq||Kpy´1q|wpxyq
wpxq dy

ď
ż

G

|w´1pxyqΦpxyq||wpy´1qKpy´1q| dy
“ |w´1Φ|˙ |wK|pxq,

where in the third line we used both (38a) and (38b). By assumption w´1Φ P LppGq,
wK P LqpGq where we set q “ 2p

2p´1
ą 1, and }wK “ wǨ P LqpGq. Since 1

p
` 1

q
“

1
2p
`1, (76b) gives that |w´1Φ| and |wK| are convolvable, |w´1Φ|˙ |wK| P L2ppGq and

‖|w´1Φ|˙ |wK|‖2p ď C‖w´1Φ‖p
where C is a constant depending on p and K. Hence Φ ˙K P L2p

w´1pGq and

‖Φ ˙K‖2p,w´1 ď C‖Φ‖p,w´1 .

This proves the claim. Note that, since Φ ÞÑ Φ ˙K is continuous, MUw is closed. We
observe en passant that Uw is not a Fréchet space, so that Proposition 2.2 does not
apply.

We now prove that VeT “ VeT ˙ K. Since |K| P Tw, reasoning as in the proof of
item e), |K| ˙ |K| P Tw. Furthermore, if g “ |K|˙ |K|, so that ǧ “ g, then as above
Φ and g are convolvable and (77d) gives that

VeT ˙K “ pΦ ˙Kq˙K “ Φ ˙ pK ˙Kq “ Φ ˙K “ VeT,

so that the range of Ve is contained in MUw . From f) we know that πpΦqu P S 1w
whenever Φ P MUw and that VeπpΦqu “ Φ ˙ K “ Φ, showing that Ve is onto MUw

and that the map

MUw Q Φ ÞÑ πpΦqu P S 1w
is the inverse of Ve, as claimed in item h).

Next, we prove (42). Fix v P Sw and define the map Ψ : GÑ Sw by

Ψpxq “ xπpxqu, ipvqyHτpxqu “ V0vpxqτpxqu.
For all T P S 1w, VeT P Uw and V0v P Tw, so that x ÞÑ xT,ΨpxqySw is in L1pGq.



COORBIT SPACES WITH VOICE IN A FRÉCHET SPACE 27

Since Sw is a reflexive Fréchet space, we can regard Sw as the dual of S 1w, which
has the property (GDF) by Proposition 3 Chapter 6. Appendix No.2 of [30]. The
fact that the map x ÞÑ xT,ΨpxqySw is in L1pGq, means that Ψ is scalarly integrable.
Theorem 6.4 shows that its (scalar) integral is in Sw, i.e. that there exists ψ P Sw such
that

xT, ψySw “
ż

G

xT, τpxquySwxπpxqu, vyHdx.

With the choice T “ tipzq, z P H, (25) gives that xz, ipψqyH “ xz, ipvqyH. Since this
last equality holds true for all z P H and i is injective, then ψ “ v and this proves
(42). Furthermore, the reproducing formula (42) implies that Ve is injective.

Finally, we prove that Ve is continuous. Fix a bounded subset B in Tw. By e) the
map f ÞÑ πpfqu is continuous from Tw into Sw. Then B1 “ πpBqu is a bounded subset
of Sw. Furthermore, given T P S 1w

sup
fPB

|xVeT , fyTw | “ sup
fPB

|
ż

G

xT, τpxquySwfpxqdx| “ sup
fPB

|xT, πpfquySw | “ sup
vPB1

|xT, vySw |.

Since B1 is a bounded subset of Sw, the map T ÞÑ supvPB1 |xT, vySw | is continuous, hence
Ve is such. The rightmost equality (41) is a consequence of the definition of Uw and
the inclusion follows from the fact that VeS 1 Ă L8w´1pGq. Indeed, for all x P G

|VeT pxq| “ |xT, τpxquy|S ď CT max
iďn ‖τpxqu‖pi,S ď C max

iďn ‖`pxqK‖pi ď C max
iďn ‖K‖pi wpxq

where C is a constant depending on T , p1, . . . , pn are suitable numbers in I also de-
pending on T , and the last bound is a consequence of Lemma 4.2.

h) See the proof of the above item.
i) Apply d) of Proposition 2.6 with F “ Tw and E “ Sw, taking into account e). �

We summarize the findings in this section in the following theorem which is one of the
main results of this paper since it shows that our analysis is indeed applicable.

Theorem 4.5. If K P Tw, then Assumptions 1˜ 4 are satisfied for Tw.

Proof. Under the hypothesis (40), Assumption 1 is satisfied, and jpTwq Ă L2
wpGq Ă L2pGq

implies Assumption 2. The reconstruction formula (44) clarifies that u is a cyclic vector for
τ , which is equivalent to Assumption 3 since V0τpxqu “ `pxqK and V0 is an injective strict
morphism from Sw onto MTw . Finally, (44) with v “ τpxqu implies that Assumption 4
holds true. �

Observe that Theorem 4.5 paves the way for a coorbit space theory with a specific
choice of target space, namely Tw. Indeed, if Y is a Banach space continuously embedded
in L0pGq and λ-invariant, and we assume that K P Y # and that MxsY is a subspace of
Uw, then Assumptions 5 and 6 are satisfied. Hence Proposition 3.5 holds true, giving rise
to a coorbit theory for Y .

We summarize the general scheme in the following picture.
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Figure 1. Spaces of functions and distributions
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4.2. Band-limited functions. As a toy example, we consider the space of band-limited
signals on the real line. Although elementary, and certainly very natural, this case can not
be handled by the classical coorbit machinery. This is somewhat unsatisfactory, because
the sinc function is one of the first examples of reproducing kernels which comes to mind.
Our theory does handle it, and the natural coorbit spaces that arise are the Paley–Wiener
p-spaces.

In this section, G is the additive group R and the Haar measure is the Lebegue measure
dx. We denote by SpRq the Fréchet space of rapidly decreasing functions and by SpRq1
the space of tempered distributions. The Fourier transform on SpRq and SpRq1 is denoted
by F . Regarding L2pRq as a subspace of SpRq1, we set pv “ Fv for any v P L2pRq.

The representation π is the regular representation restricted to the Paley–Wiener space
of functions with band in the fixed compact interval Ω Ă R, namely

H “ B2
Ω “ tv P L2pRq : suppppvq Ď Ωu.

Strictly speaking, the elements of B2
Ω are not functions, but equivalence classes of func-

tions. However, in view of the Paley–Wiener–Schwartz theorem [32], each equivalence
class in B2

Ω has a unique representative which is continuous (in fact smooth). We are thus
allowed to identify each class with its smooth representative, and we shall do so.

Since the group R acts on B2
Ω by translations:

πpbqvpxq “ vpx´ bq, v P B2
Ω,
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on the frequency side, pπ “ FπF´1 acts on FH “ L2pΩq by modulations:

pπpbqpvpξq “ e´2πibξ
pvpξq, v P B2

Ω.

This representation is not irreducible: any subset Ξ Ď Ω gives a subrepresentation on B2
Ξ.

For the reader’s convenience, we summarize in the next proposition the main facts that
are relevant to our discussion.

Proposition 4.6. The representation π is reproducing and the following facts hold true.

a) A vector u P B2
Ω is admissible if and only if |pu| “ 1 almost everywhere on Ω. In this

case, the kernel K is

K “ xu, πp¨quyH “ F´1χΩ,

where χΩ is the characteristic function on Ω.
b) Let u be an admissible vector. Then upxq “ Kpxq for every x P R if and only if the

corresponding voice transform V2 is the inclusion

V2 : B2
Ω ãÑ L2pRq.

c) If Ω “ r´ω, ωs is a symmetric interval, then the kernel is the sinc function

Kpbq “ 2ω sincp2ωπbq,
where sincx “ sinx{x.

Proof. The fact that π is reproducing follows from item a).

a) Applying the Plancherel identity, we can compute the voice transform as

(46) V2vpbq “ xv, πpbquy “ xpv, pπpbqpuy “
ż

pR
pvpξqpupξq e2πibξ dξ “ F´1ppvpuqpbq,

whose squared norm, again by Plancherel, is

‖V2v‖2 “
ż

pR
|pvpξqpupξq|2dξ.

On the other hand, Plancherel also entails

‖v‖2 “
ż

R
|vpxq|2dx “

ż

pR
|pvpξq|2dξ.

Therefore, u is admissible if and only if |pupξq| “ 1 for almost every ξ P suppppvq Ď Ω.
Since Ω is compact, vectors u P B2

Ω satisfying the above condition clearly exist and,
hence, π is reproducing. If u is admissible, using (46) we obtainK “ V2u “ F´1p|pu|2q “
F´1pχΩq.

b) Suppose that u “ K. Then, in view of item (a) we have pu “ χΩ, and equality (46) gives
V2v “ F´1ppvq “ v for every v P B2

Ω, so that V2 is the natural inclusion. Conversely, if
this is the case, then K “ V2u “ u.

c) If Ω “ r´ω, ωs, from (46) it follows

Kpbq “ V2upbq “
ż

pR
|pupξq|2 e2πibξ dξ “

ż ω

´ω
e2πibξ dξ “ 2ω sincp2ωπbq. �

From now on we set Ω “ r´ω, ωs and

u “ K “ F´1χΩ “ 2ω sincp2ωπ¨q.
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Clearly, K is not in L1pRq, but it belongs to LppRq for every p ą 1. We thus choose the
weight w “ 1 and take

T “
č

pPI
LppRq

as target space to construct coorbits (recall that I “ p1,`8q).
For p P r1,`8q, we define the Paley–Wiener p-spaces

Bp
Ω “ tf P LppRq : supppFfq Ď Ωu.

Recall that the Fourier transform maps Lp to Lp
1

for p ď 2 , while for p ą 2 we get
distributions that in general are not functions [32].

The spaces Bp
Ω are usually defined in the literature as the spaces of the entire functions

of fixed exponential type whose restriction to the real line is p-integrable [33]. This
definition is equivalent to ours since a Paley–Wiener theorem holds for all p P r1,`8q.
In particular, all these functions are indefinitely differentiable on R. Moreover, if f P Bp

Ω

with p ă `8, then fpxq Ñ 0 as xÑ ˘8, hence

Bp
Ω Ă C80 pRq, 1 ď p ă `8.

Consequently, the Paley–Wiener spaces are nested and increase with p:

Bp
Ω Ď Bq

Ω 1 ď p ď q ă `8.
We are going to identify our coorbit spaces as Paley–Wiener spaces. To show this, we
shall repeatedly make use of the following fact.

Lemma 4.7. There exists a family of functions tpgεu Ă C8c ppRq satisfying

i) lim
εÑ0

pgε “ χΩ in LqppRq for every q ě 1;

ii) χr´ω`ε,ω´εs ď pgε ď χr´ω´ε,ω`εs;
iii) ‖B pgε‖8 À ε´1.

such that for all f P LppRq, with p ě 1, in S1ppRq
(47) Fpf ˙Kq “ lim

εÑ0
Fpfqpgε.

Take f P LppRq. By Young’s inequality (76b) we know that f ˙K P Lr for some r ą 1,
so that f ˙ K P S1pRq and the left hand side is the Fourier transform of a tempered
distribution. Similarly, Fpfqpgε P S1pRq because pgε P C8c pRq, and on the right hand side
we also have Fourier transforms of tempered distributions.

Proof. Take

ph P C8c pRq, supppphq Ď r´1, 1s, ph ě 0,

ż

pR

phpξqdξ “ 1,

and then consider the corresponding approximate identity tphεu defined by the dilations

of ĥ
phεpξq “ ε´1

phpξ{εq, ε ą 0,

so that phε P C8c ppRq, and define pgε “ phε ˙ χΩ. Since both factors are L1-functions, the
convolution theorem gives that gε “ hεK. A classical result, see Corollary 3.4 of [34],
shows that pgε Ñ χΩ in LqpRq for every q ě 1 and pgε P C8c pRq. Moreover,

suppppgεq Ď supppphεq ` supppχΩq Ď r´ε, εs ` Ω “ r´ω ´ ε, ω ` εs.
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Expanding the convolution, we get

pgεpξq “ ε´1

ż

Ω

phppξ ´ τq{εqdτ “
ż

pΩ`ξq{ε
phpτqdτ

by a change of variable. Notice here that if |ξ| ď ω ´ ε, then |ξ ` ετ | ď ω whenever

|τ | ď 1, which means that pΩ` ξq{ε Ě r´1, 1s Ě supppphq. It follows that

pgεpξq “
ż

pR

phpτqdτ “ 1

for every ξ P r´ω ` ε, ω ´ εs. The derivative of pgε is Bpphε ˙ χΩq “ Bphε ˙ χΩ, and

Bphεpξq “ ε´2Bphpξ{εq. A change of variable then yields

|B pgεpξq| ď ε´1

ż

r´1,1s
|Bphpτq|dτ ď 2 supp|Bph|qε´1.

Finally, let hε “ F´1
phε. By dominated convergence, for all x P R

lim
εÑ0

hεpxq “
ż

R
ĥpξq dξ “ 1,

so that

lim
εÑ0

gεpxq “ lim
εÑ0

hεpxqKpxq “ Kpxq,
and at the same time

|hεpxqKpxq|q ď ‖h‖q8|Kpxq|q
for any q ą 1. Therefore hεK Ñ K in LqpRq, by dominated convergence. Young’s inequal-
ity implies now that f ˙ hεK Ñ f ˙K in some LrpRq, hence as tempered distributions.
Therefore

Fpf ˙Kq “ lim
εÑ0

Fpf ˙ gεq “ lim
εÑ0

FpfqFpgεq “ lim
εÑ0

Fpfqpgε
by the continuity of the Fourier transform and an application of the convolution theorem,
because f P S1pRq and gε P SpRq (see Theorem XV, Ch. VII in [35]). �

We are now ready to state the characterization of the natural coorbit spaces relative to
band limited functions.

Proposition 4.8. Let Ω “ r´ω, ωs and take u “ K “ F´1χΩ. The space of test functions
is

S “
č

pPI
Bp

Ω

and the space of distributions is

S 1 “
ď

pPI
Bp

Ω.

The extended voice transform is the inclusion

Ve : S 1 ãÑ U
and the coorbits of the Lp spaces are

CopLppRqq “Mp “ Bp
Ω.
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Proof. Since V2 is the inclusion by item b) of Proposition 4.6, we have

S “ tv P B2
Ω : v P LppRq @p ą 1u “

č

pPI
Bp

Ω.

In order to describe S 1, we first observe that
ď

pPI
Mp “ span

ď

pPI
Mp “MU .

Indeed, since w “ 1, by item (41) Mp Ă L8pGq, so that Mp ĂMq whenever p ď q. Fur-
thermore, item h) of Theorem 4.4 implies that Ve “ tV0 establishes a linear isomorphism
from MU “ Ť

pPI Mp to S 1. In particular, S 1 is the range tV0MU .

Since V0 : S ãÑ T is the inclusion, the transpose map tV0 : T 1 Ñ S 1 is simply the
restriction on the subspace S. Therefore, we can explicitly represent S 1 as the space of
anti-linear functionals

v P S ÞÝÑ
ż

R
Φpxqvpxqdx, Φ P

ď

pPI
Mp.

The two spaces are thus canonically identified and, with this identification, Ve is the
inclusion S 1 ãÑ U .

We next prove that Mp “ Bp
Ω for all p P I. Let f P Mp and ϕ be a smooth function

with compact support contained in Ωc. Then, by Lemma 4.7, we have

x pf, ϕy “ lim
εÑ0

ż

pfpξqpgεpξqϕpξqdξ,

for some pgε with suppppgεq Ď Ω ` r´ε, εs. Since Ω ` r´ε, εs X supppϕq “ H for ε small

enough, the limit is zero. This means that suppp pfq Ď Ω, that is f P Bp
Ω.

Conversely, let f P Bp
Ω. We shall prove that Ff “ Fpf ˙Kq, whence f “ f ˙K and

f PMp. Thanks to formula IV’ at page 111 in [33], there exists a continuous function ψ,
periodic on Ω such that

fpxq “
ż

Ω

rp1´ xqψpωq ` xψpξqs e2πixξ dξ.

Hence

fpxq “ p1´ xqψpωqF´1χΩpxq ` xF´1pψχΩqpxq,
so that, in SpRq,

Ff “ ψpωqp1´ i

2π
BqχΩ ` i

2π
BpψχΩq.

This tempered distribution acts on any function ϕ P SpRq by

xFf, ϕy “ ψpωqxχΩ, p1` i

2π
Bqpϕqy ´ xψχΩ,

i

2π
Bϕy

“
ż

Ω

„

ψpωqp1` i

2π
Bqϕpξq ´ ψpξq i

2π
Bϕpξq



dξ.(48)

On the other hand, we know from Lemma 4.7 that

Fpf ˙Kq “ lim
εÑ0

Fpfqpgε,
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where the limit is taken in S1pRq. Compute now

xFpfqpgε, ϕy “ xFf, pgεϕy
“ ψpωqxχΩ, p1` i

2π
Bqppgεϕqy ´ xψχΩ,

i

2π
Bppgεϕqy

“
ż

Ω

„

ψpωqp1` i

2π
Bqϕpξq ´ ψpξq i

2π
Bϕpξq



pgεdξ

` i

2π

ż

Ω

pψpωq ´ ψpξqqϕpξqB pgεpξqdξ.

By ii) of Lemma 4.7, pgε Ñ χΩ pointwise, then the limit of the first integral is precisely
(48). It remains to verify that the last integral tends to zero. Notice that it vanishes on
r´ω ` ε, ω ´ εs because, by Lemma 4.7, pgε “ 1, hence B pgε “ 0. The rest of the integral is
dominated by

„

sup
´ωďξď´ω`ε

|ψpωq ´ ψpξq|` sup
ω´εďξďω

|ψpωq ´ ψpξq|


‖ϕ‖8‖B pgε‖8 ε

À sup
´ωďξď´ω`ε

|ψpωq ´ ψpξq|` sup
ω´εďξďω

|ψpωq ´ ψpξq|,

thanks to iii) of Lemma 4.7. But this tends to zero as εÑ 0, because ψpωq “ ψp´ωq. We
have proven that Mp “ Bp

Ω for all p. Thus we finally obtain

S 1 “
ď

pPI
Bp

Ω and CopLppRqq “ Bp
Ω. �

4.3. Shannon wavelet. We consider now the special case of a non integrable kernel
for the wavelet representation of the affine group on L2pRq. It is well known that this
representation is reproducing and admits admissible vectors whose kernel is integrable
[36, 37, 1]. The resulting coorbit spaces are completely understood as homogeneous
Besov spaces [7, 1]. However, there are admissible vectors whose kernel is not integrable,
as for example the Shannon wavelet, which provides another example for which our theory
applies.

At first sight, this result might look surprising. Indeed, in [1], H. Feichtinger and K.
Gröchenig claim that any band limited function whose Fourier transform has compact
support bounded away from zero leads to an integrable kernel. However, a careful in-
spection of the proof reveals that the additional assumption that the Fourier transform
is continuous is implicitly needed.

Let G “ R¸R` be the connected component of the affine group with left Haar measure
db da{a2. The wavelet representation π acts on H “ L2pRq by dilations and translations:

πpb, aqvpxq “ a´1{2vppx´ bq{aq.
The (real) Shannon wavelet is defined as

pupξq “ χr1{4,1{2sp|ξ|q “ χr´1{2,1{2spξq ´ χr´1{4,1{4spξq,
that is

upxq “ sincpπxq ´ 1

2
sincpπ

2
xq “ 1

2
sincpπ

4
xq cosp3

4
πxq.



34 S. DAHLKE, F. DE MARI, E. DE VITO, D. LABATE, G. STEIDL, G. TESCHKE, AND S. VIGOGNA

It is easily seen that u R L1pRq, but u P LppRq for all p ą 1. We now prove that the
corresponding kernel has the same behavior.

Lemma 4.9. The kernel K “ V2u associated with the Shannon wavelet

upxq “ 1

2
sincpπ

4
xq cosp3

4
πxq

is in LppGq for all p ą 1, but it is not in L1pGq.
Proof. Since u is real and even, the voice transform V2 is

V2vpb, aq “
ż

vpxqa´1{2uppx´ bq{aqdx “ pv ˙ πp0, aquq pbq.
The Shannon kernel is thus

Kpb, aq “ V2upb, aq “ pu˙ πp0, aquqpbq.
Since u is admissible, K P L2pGq and, by Fubini theorem, u˙πp0, aqu P L2pRq for almost
every a ą 0. Then, by the convolution theorem for L2-functions

Fpu˙ πp0, aquqpβq “ pupβq {πp0, aqupβq “ a1{2χr1{4,1{2sXr1{4a,1{2asp|β|q.
It follows that:

a) Kp¨, aq ‰ 0 only if a P p1{2, 2q;
b) if a P p1{2, 2q the Fourier transform of Kp¨, aq is a non-zero characteristic function.

By b), for almost all a P p1{2, 2q the function u˙πp0, aqu cannot be in L1pRq, otherwise its
Fourier transform would be continuous. Hence K R L1pGq. Let us show that K P LrpGq
for all r ą 1. From a) we have

ż

R`

ż

R
|Kpb, aq|rdbda

a2
“
ż 2

1{2

ż

R
|u˙ πp0, aqupbq|rdbda

a2
“
ż 2

1{2
‖u˙ πp0, aqu‖rr

da

a2
.

Recall that u P LppRq for all p ą 1, so that the same holds for πp0, aqu . By Young’s
inequality (76b) for the unimodular group G “ R, we can estimate the inner norm and
obtain

‖K‖rr ď ‖u‖rp
ż 2

1{2

‖πp0, aqu‖rq
a2

da,

where p and q are such that 1{p ` 1{q “ 1{r ` 1. This integral is finite, because the
function a ÞÑ ‖πp0, aqu‖rq{a2 is continuous and the interval r1{2, 2s is compact. �

A Shannon wavelet coorbit theory can thus be implemented taking voices in the target
space T “ Ş

pPI L
ppGq, but not in L1pGq.

4.4. Schrödingerlets. In this section, we illustrate the example that has motivated the
search for a full coorbit theory in which one encounters reproducing kernels that do enjoy
nice integrability properties but are not necessarily in L1pGq. The main feature of this
example is that once the admissibility conditions are worked out, it is relatively easy
to exhibit kernels in

Ş

pPI L
ppGq but hard to find a kernel in L1pGq. This example has

shown up in the classification of reproducing triangular subgroups of Spp2,Rq, which was
recently achieved in [38, 18].

We shall be concerned with the three-dimensional group generated by rotations, dila-
tions and flows of two-dimensional signals, in a sense to be made precise below. The group
acts on functions via radial affine transformations, and the associated voice transform can
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thus be seen as a Fourier series of one-dimensional wavelets. This representation is highly
reducible, and reproducing.

The group G is the direct product of the (connected component of) affine group of the
line with the unit circle

G “ pR¸ R`q ˆ S1

and its elements are parametrized by pb, a, ϕq with b P R, a ą 0 and ϕ P r0, 2πq. A left
Haar measure is

dx “ db da

a2

dϕ

2π
.

Notice that G is not unimodular and has modular function ∆pb, a, ϕq “ a´1.
The representation π that we are going to define acts on L2pRˆS1q, endowed with the

tensor product of the Lebesgue measure and the normalized Haar measure on S1. The
action is

(49) πpb, a, ϕqvpx, ϑq “ a´1{2 vppx´ bq{a, ϑ´ ϕq, v P L2pRˆ S1q.
Since L2pR ˆ S1q “ L2pRq b L2pS1q, π is simply the tensor product π “ w b λ where w
is the wavelet representation of the affine group

(50) wpb, aqgpxq “ a´1{2 gppx´ bq{aq, g P L2pRq,
and λ is the left regular representation of S1 on L2pS1q, namely

(51) λpϕqhpϑq “ hpϑ´ ϕq, h P L2pS1q.
In what follows, we denote by Fx the unitary Fourier transform from L2pRq onto L2ppRq,
which is also regarded as a unitary map from L2pRˆS1q onto L2ppRqbL2pS1q. Furthermore,
we denote by Fϑ the unitary Fourier transform from L2pS1q onto `2pZq, which is also
regarded as a unitary map from L2pRˆS1q onto L2pRqb `2pZq. Explicitly, if v P C8c pRˆ
S1q, then

Fxvpρ, ϑq “
ż

R
vpx, ϑq e´2πiρx dx,(52a)

Fϑvpx, nq “
ż

R
vpx, ϑq e´inϑ

dϑ

2π
“
ż

R
vpx, ϑqenpϑqdϑ

2π
,(52b)

where enpϑq “ einϑ. The partial Fourier transform Fϑv of any v P L2pR ˆ S1q can be
identified with the sequence of functions pvnqnPZ in L2pRq, where vn “ Fϑvp¨, nq. Hence

(53) v “
ÿ

nPZ
vn b en, ‖v‖2

L2pRˆS1q “
ÿ

nPZ
‖vn‖2

L2pRq.

To simplify the computations, we restrict the representation π to the closed subspace

H “ F´1
x L2ppR`q b L2pS1q, so that the wavelet representation w acts irreducibly on

F´1
x L2ppR`q. Given a vector u P H, we denote by V the voice transform corresponding to

the representation π of G and the analyzing vector u, namely

V vpb, a, ϑq “ xv, πpb, a, ϑquyH v P H,
and by V w

n the voice transform corresponding to the representation w of the affine group
and the analyzing vector un, i.e.

V w
n gpb, aq “ xg, wpb, aqunyL2pRq.

We use the unitary operator Fx : H Ñ L2ppR`ˆS1q to obtain an intermediate equivalent

version of π, denoted Fxpπq, acting on L2ppR`ˆS1q. This is defined via the intertwining
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Fx˝πpgq “ Fxpπqpgq˝Fx for every g P G. The analytic expression of Fxpπq is immediately
computed to be

Fxpπqpb, a, ϕqvpξ, ϑq “ a1{2 e´2πibξ vpaξ, ϑ´ ϕq,
whereas from the structural point of view it may be written as

Fxpπq “ pw b λ,
where pwpb, aq “ Fx ˝ wpb, aq ˝ F´1

x .
The group G can be realized as the triangular subgroup of Spp2,Rq consisting of the

matrices
„

a´1{2R 0
ba´1{2R a1{2R



, b P R, a ą 0, R P SOp2q.
Thus, G may also be seen as the semidirect product R¸ pR`ˆSOp2qq, where the homo-
geneous factor R`ˆSOp2q acts on the normal subgroup R by isotropic dilations. We shall
not distinguish between S1 and SOp2q and write rotations as

Rϕ “
„

cosϕ ´ sinϕ
sinϕ cosϕ



, ϕ P r0, 2πq.
We show below that π is equivalent to the metaplectic representation µ as restricted to
the above group, defined in the frequency domain by

µpb, a, ϕqvpξq “ a1{2e´2πib|ξ|2vpa1{2R´ϕξq, v P L2pxR2q.
The space-domain version of this representation explains the reason of the name Schrödingerlets.
Denote by pµ the representation obtained by conjugating µ with the Fourier transform,
namely

pµpgqf “ F´1 ˝ µpgq ˝ F .
We now interpret b P R as a time parameter and look at the evolution flow of f P
L1pR2q X L2pR2q

pb, xq ÞÑ pµbfpxq “ pµpb, 1, 0qfpxq “
ż

xR2

f̂pξqe´2πib|ξ|2e2πix¨ξ dξ.

It is then straightforward to verify that the flow pµbf satisfies the Schrödinger equation
´

2πi
B
Bb `∆

¯

pµbfpxq “ 0,

where ∆ is the spacial Laplacian

∆ “ B2

Bx2
1

` B2

Bx2
2

.

It is in this sense that the group is generated by (dilations, rotations and) flows.

We now prove the equivalence. The unitary map Ψ : L2pxR2q Ñ L2ppR`ˆS1q, defined by

Ψvpξ, ϑq “ π1{2 vp
a

ξ cosϑ,
a

ξ sinϑq,
intertwines µ with Fxpπq because, for v P L2pxR2q, we have on the one hand

Ψ pµpb, a, ϕqvq pξ, ϑq “ Ψ
´

a1{2e´2πib|¨|2vpa1{2R´ϕp¨qq
¯

pξ, ϑq
“ π1{2a1{2e´2πib|p?ξ cosϑ,

?
ξ sinϑq|2v

´

a1{2R´ϕp
a

ξ cosϑ,
a

ξ sinϑq
¯

“ π1{2a1{2e´2πibξv
´?

ap
a

ξ cospϑ´ ϕq,
a

ξ sinpϑ´ ϕqq
¯
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and on the other hand

Fxpπqpb, a, ϕq pΨvq pξ, ϑq “ a1{2 e´2πibξpΨvqpaξ, ϑ´ ϕq
“ a1{2 e´2πibξ π1{2vp

a

aξ cospϑ´ ϕq,
a

aξ sinpϑ´ ϕqq,
as claimed. In conclusion, since π and Fxpπq are equivalent, so are π and µ.

We point out that Ψ is simply the change from rectangular to polar-like coordinates
p?ξ, ϑq, together with the appropriate L2-normalization.

Since the wavelet representation is irreducible, while λ completely reduces to ‘nPZe´n,
where each function en is regarded as a character of S1, then

π “à

nPZ
w b e´n,

which expresses π as a sum of irreducibles. This allows us to view the voice transform
of π as a Fourier series of one-dimensional wavelet transforms, as clarified in the next
proposition.

Proposition 4.10. Let u “ ř

nPZ un b en P H. The voice transform V associated with π
and u admits the trigonometric expansion

(54) V vpb, a, ϕq “
ÿ

nPZ
V w
n vnpb, aq einϕ,

where the series converges pointwise for all pb, a, ϕq P G and where

(55) V w
n vnpb, aq “

ż

S1

V vpb, a, ϑqe´inϑdϑ
2π
.

Proof. Since Fϑ is a unitary map, for all pb, a, ϕq P G
xv, πpb, a, ϕquyH “ xFϑv,Fϑ pwpb, aq b λpϑqquyL2pRqb`2pZq

“ xFϑv,
`

wpb, aq b FϑλpϕqF´1
ϑ

˘

FϑuyL2pRqb`2pZq

“
ÿ

nPZ
xvn, wpb, aqunyL2pRqe´npϕq

“
ÿ

nPZ
V w
n vnpb, aqeinϕ,

where the third line is due to the fact that the action of FϑλpϑqF´1
ϑ on `2pZq is the

multiplication operator by the sequence pe´npϕqqn. For fixed pb, aq P R¸R`, the function
ϑ ÞÑ V vpb, a, ϑq is continuous and, hence, integrable on S1. Therefore, by de la Vallée–
Poussin theorem, (see iii) of Theorem 11.3 in [39]), we obtain (55). �

The Fourier expansion (54) shows how to construct admissible vectors as series of
wavelets. This result has been originally obtained in [18] and in general setting in [40].
For the reader’s convenience, we give here a more direct proof.

Proposition 4.11. The representation π is reproducing and a vector u “ ř

nPZ unben P H
is admissible for π if and only if for all n P Z

(56)

ż

R`
|Fxunpξq|2dξ

ξ
“ 1.
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Furthermore, given a sequence punqnPZ with un P F´1L2ppR`q, we have

(57)
ÿ

nPZ
un b en P H ðñ

ÿ

nPZ

ż

R`
|Fxunpξq|2dξ ă `8.

If u is an admissible vector, the voice transform from H into L2pGq “ L2pR¸R`qbL2pS1q
is

(58) V2v “
ÿ

nPZ
V w
n vn b en v “

ÿ

nPZ
vn b en P H

and the series (54) converges also in L2pGq.
Proof. Admissibility of u means that ‖V v‖L2pGq “ ‖v‖H must hold for all v P H. Fix

n P Z and choose v “ vnb en with vn P F´1L2ppR`q. By (54), when computing the norm,
the integral on the circle is equal to 1, whereas the integration on R¸ R` provides the
classical admissibility condition, namely Calderón’s equations (56).

Conversely, suppose (56) true for every n P Z. Fix v P H. Given pb, aq P R ¸ R`, (55)
implies that the function V vpb, a, ¨q is in L2pS1q if and only if the sequence pV vnpa, bqqnPZ
is in `2pZq and, under this assumption, Fubini theorem yields

(59) ‖V v‖2
L2pGq “

ż

R¸R`

ÿ

nPZ
|V w
n vnpb, aq|2

dbda

a2
“

ÿ

nPZ

ż

R
|vnpxq|2dx “ ‖v‖2

H

because by (56) for each n the voice V w
n is an isometry from F´1

x L2pxR`q into L2pR ¸
R`, dbda{a2q. The last equality is due to (53). Equation (57) is a consequence of (53)
and the fact that Fx is unitary.

To prove that π is reproducing, it is enough to show there exists a sequence punqn in

F´1L2ppR`q satisfying both (56) and (57). Fix u0 P F´1L2ppR`q satisfying (56), i.e., an
admissible vector for the wavelet representation w. For all n P Z define the functions

un P F´1L2ppR`q as

unpxq “ anu0panxq, Fxunpξq “ Fxu0pa´1
n ξq,

where an ą 0 and
ř

nPZ an ă `8. Since u0 satisfies (56), so do all the functions un.
Further,

ÿ

nPZ

ż

R`
|Fxu0pξq|2dξ “

ÿ

nPZ

ż

R`
|Fxu0pa´1

n ξq|2dξ “ ‖u0‖2
ÿ

nPZ
an ă `8,

so that by (57) the vector u “ ř

un b en is in H and is admissible for π.
Finally, we prove (58). By (59) the series

ř

nPZ V
w
n vnben converges in L2pGq to V2v. �

Now we come to the integrability question. The idea is based on the very simple
observation that Calderón’s equation (56) is invariant under dilations.

Proposition 4.12. There exist admissible vectors u P H whose kernel K “ V2u belongs
to

Ş

pPI L
ppGq but not to L1pGq.

Proof. Define u as in the second part of the proof of the above proposition. Using (58)
we write K “ ř

Kn b en where Kn “ V w
n un and the series converges both in L2pGq and

pointwise. By a simple change of variable, we get that Knpb, aq “ anK0panb, aq. Therefore
for any p P I

‖K‖p ď
ÿ

nPZ
an

ˆ
ż

R¸R`
|K0panb, aq|pdbda

a2

˙1{p
“ ‖K0‖p

ÿ

nPZ
a1´1{p
n .
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In order to construct u, it is therefore sufficient to take a positive sequence for which
ř

nPZ a
α
n converges for every α P p0, 1s.

We now prove that the kernel is not in L1pGq. By contradiction, assume thatK P L1pGq.
Fubini’s theorem implies that for almost all a P R` the function Kp¨, a, ¨q is in L1pRˆS1q.
Hence, regarding Rˆ S1 as an abelian group, its Fourier transform

FKpξ, nq “
ż

RˆS1

Kpb, a, ϕqe´inϕe´2πibξdb
dϕ

2π

“
ż

R

ˆ
ż

S1

Kpb, a, ϕqe´inϕdb
˙

e´2πibξ dϕ

2π

is in C0ppRˆ Zq. By (55), it holds that

FKpξ, nq “
ż

R
anK0panb, aqe´2πibξ db

“
ż

R
K0pbqe´2πib ξ

an db “ ĝp ξ
an
q,

where ĝ is the Fourier transform of the function K0p¨, aq, which is in L1pRq by Fubini’s

theorem. Fix ξ P pR and set ξ “ anξ in the above equality. Then

ĝpξq “ lim
nÑ8FKpanξ, nq “ 0,

because FK P C0ppR ˆ Zq. Hence, by injectivity of the Fourier transform, K0pb, a0q “ 0
for almost all b P R. Since the above equality holds for almost all a P R`, we get that
K0 “ 0, which is a contradiction. �

5. L1-kernels: the non irreducible coorbit theory

In this section, we apply our machinery and show that the standard setup of coorbit
theory makes sense without assuming that the representation π is irreducible, because
it corresponds to the case arising from the classical choice T “ L1

wpGq. The fact that
irreducibility is a somewhat redundant assumption has been perhaps known to some
extent, but it is not easy to pin down precise statements in the literature. Theorem 5.1
below contains a summary of the most relevant facts.

It is perhaps worthwhile observing that the present case is structurally different from
the case discussed in Section 4.1 because L1

wpGq is not a reflexive space.
Throughout this section, we fix a continuous function w : G Ñ p0,`8q satisfying the

following assumptions (see [4]):

wpxyq ď wpxqwpyq(60a)

wpxq ě 1(60b)

for all x, y P G. We choose as target space T the Banach space L1
wpGq and denote by

j the canonical inclusion into L1
locpGq Ă L0pGq. Since j is canonical, we do not write

it explicitly, especially because it would conflict with the current literature, where no
explicit mention of the embedding is ever made.

Since Lemma 4.1 and Lemma 4.2 do not depend on Assumption (38b),

L1
wpGq# “ tΦ P L0pGq | w´1Φ P L8pGqu
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the left regular representation λ leaves L1
wpGq invariant, and the restriction ` of λ to

L1
wpGq is a continuous representation that satisflies

(61) ‖λpxq‖ ď wpxq, x P G.
We assume that there exists an admissible vector u P H whose voice transform V2u

is in L1
wpGq and construct the corresponding reservoir Sw of test functions. We are in

a position of stating the main properties of the standard setup, without the assumption
that the representation is irreducible.

Theorem 5.1. Take a reproducing representation π of G acting on the Hilbert space H
and a weight w satisfying (60a) and (60b). Choose an admissible vector u P H such that

Kp¨q “ xu, πp¨quyH P L1
wpGq

and set

Sw “ tv P H | xv, πp¨quyH P L1
wpGqu,

‖v‖Sw “
ż

G

|xv, πpxquyH|wpxqdx.
a) The space Sw is a Banach space and the canonical inclusion i : Sw Ñ H is continuous

and with dense range.
b) The representation π leaves Sw invariant, its restriction τ is a continuous representa-

tion acting on Sw, the operator norms satisfy ‖τpxq‖ ď wpxq for all x P G, and

ipτpxqvq “ πpxqipvq x P G, v P Sw.
c) Endowing H with the weak topology and S 1 with the weak-˚ topology, the transpose

mapping ti : H Ñ S 1w is continuous, injective and with dense range, and satisfies the
intertwining

tτpxq tipwq “ tipπpxqwq x P G, w P H.
d) The restricted voice transform V0 : Sw Ñ L1

wpGq is an isometry intertwining τ and λ
and its range is the closed subspace

M1 “ tf P L1
wpGq | f ˙K “ fu,

e) For all f P L1
wpGq, the Fourier transform of f at u exists in Sw and satisfies

V0πpfqu “ f ˙K.

Furthermore, the map

L1
wpGq Q f ÞÑ πpfqu P Sw

is continuous and its restriction to M1 is the inverse of V0.
f) The extended voice transform Ve : S 1w Ñ L8w´1pGq is injective, continuous (when both

spaces are endowed with the topology of the compact convergence) and intertwines tτ
and λ. The range of Ve is the closed subspace

M8 “ tΦ P L8w´1pGq | Φ ˙K “ Φu Ă CpGq.
For all T P S 1w and v P Sw

(62) xT, vySw “ xVeT , V0vyL1
wpGq.

g) For all Φ P L8w´1pGq the Fourier transform of Φ exists at u in S 1w and satisfies

VeπpΦqu “ Φ ˙K.
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h) The map
M8 Q Φ ÞÑ πpΦqu P S 1w

is the inverse of Ve and coincides with the restriction of the map tV0 to M8, namely

(63) Vep tV0Φq “ VeπpΦqu “ Φ, Φ PM8.

i) tiipSwq “ tT P S 1w | VeT P L1
wpGqu “ tπpfqu | f PM1u.

Proof. Since L1
wpGq Ă L1pGq and K,V2v P L8pGq for all v P H, Assumptions 1 and 2 are

satisfied.

a) By the first part of Theorem 3.1 which does not depend on Assumption 3. The space
S is a Banach space because M1 is such.

b) Apply Theorem 3.1. Moreover, by (61)

‖τpxqv‖Sw “ ‖V0τpxqv‖1,w “ ‖λpxqV0v‖1,w ď wpxq‖V0v‖1,w “ wpxq‖v‖Sw .
c) Apply Theorem 3.1.
d) Apply Theorem 3.2.
e) Fix f P L1

wpGq and set Ψ : G Ñ Sw, Ψpxq “ fpxqτpxqu. We show that Ψ is Bochner-
integrable with respect to β. The map Ψ is β-measurable since f P L0pGq and x ÞÑ
τpxqu is continuous from G into L1

wpGq, and, by item b),

‖Ψpxq‖Sw “ |fpxq|‖τpxqu‖Sw ď wpxq‖u‖Sw |fpxq|,
which is in L1pGq since f P L1

wpGq. Set

πpfqu “
ż

G

fpxqτpxqu dx.
Clearly, for all v P Sw

x tiiπpfqu, vySw “
ż

G

fpxqxipτpxquq, ipvqyHdx “
ż

G

fpxqxπpxqu, ipvqyHdx.
Hence tiiπpfqu satisfies (14) and we can identify πpfqu with tiiπpfqu. So Veπpfqu “
V0πpfqu. The fact that V0πpfqu “ Φ˙K follows from (20) with F “ L1

wpGq and E “
Sw. The fact that f ÞÑ πpfqu is the inverse of V0 follows from (21c) in Proposition 2.6.

f) We first prove that VeS 1w Ă L8w´1pGq. Take T P S 1w. For all x P G, by (61)

|xT, τpxquySw | ď ‖T‖S1w‖τpxqu‖Sw “ ‖T‖S1w‖λpxqV u‖1,w ď wpxq‖T‖S1w‖K‖1,w,

so that w´1VeT is bounded and continuous. We now prove the reconstruction for-
mula (62). Fix v P Sw and define the map Ψ : GÑ Sw by Ψpxq “ xπpxqu, ipvqyHτpxqu “
V0vpxqτpxqu. We show that it is Bochner-integrable with respect to β. It is continuous
since both V0v and τp¨qu are continuous, and

‖Ψpxq‖Sw “ |V0vpxq|‖τpxqu‖Sw ď wpxq|V0vpxq|‖K‖1,w,

which is in L1pGq by definition of Sw. Hence there exists wv P Sw such that

wv “
ż

G

xπpxqu, ipvqyHτpxqu dx.
For all z P H we have tipzq P S 1w and

xz, ipwvqyH “ x tipzq, wvySw “
ż

G

xπpxqu, ipvqyHx tipzq, τpxquySwdx

“
ż

G

xπpxqu, ipvqyHxz, πpxquyHdx “ xz, ipvqyH,
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that is, wv “ v. Hence

v “
ż

G

xπpxqu, ipvqyHτpxqu dx,

where the integral is a Bochner integral in Sw. Take T P S 1w. Then for all v P Sw
xT, vySw “

ż

G

xπpxqu, ipvqyHxT, τpxquySw dx,

which proves the reconstruction formula. This, in turn, implies that Ve is injective.
g) Apply item a) of Proposition 2.6 with E “ Sw and F “ L8w´1pGq.
h) Items b) and d) of Proposition 2.6 with F “ L8w´1pGq and E “ Sw show that the range

of Ve is the closed subspace M8 and that the inverse of Ve is Φ ÞÑ πpΦqu.
i) Since V0Sw Ă L1

wpGq and V0v “ Ve
tiipvq for all v P Sw, it follows that tiipSwq Ă tT P

S 1w | VeT P L1
wpGqu. Furthermore, Proposition 2.6 with F “ L1

wpGq and E “ Sw gives
that

tT P S 1w | VeT P L1
wpGqu “ tπpfqu | f PM1u.

Item d) of this theorem finally implies that tπpfqu | f PM1u “ Sw. �

As shown in the previous proof, Assumptions 1 and 2 are satisfied. The reconstruction
formula (62) makes clear that u is a cyclic vector for τ , which is equivalent to Assumption 3
because V0τpxqu “ `pxqK and V0 is an isometry from Sw onto M1. Furthermore, (44)
with v “ τpxqu implies that also Assumption 4 holds true.

From now until the end of this section we choose a Banach space Y with a continuous
embedding j : Y Ñ L1

locpGq, denoted f ÞÑ fp¨q, and with a continuous involution f ÞÑ f .
We further suppose that there are two continuous representations ` and r of G on Y
satisfying

i) for all x P G and all f P Y
(64) jp`pxqfq “ λpxqjpfq, jprpxqfq “ ρpxqjpfq;
ii) for all f P Y and almost every x P G,

(65) jpfqpxq “ jpfqpxq.
Proposition 5.2. Assume that Y is a Banach space with a continuous representation r
for which there exists a continuous embedding j : Y Ñ L1

locpGq, denoted f ÞÑ fp¨q, such
that, for all x P G, all f P Y and almost every y P G it holds that rpxqf pyq “ fpyxq.
Suppose that g P L1

locpGq is such that for all f P Y

(66)

ż

G

|gpx´1q|‖rpxqf‖Y dx ă `8.

Then jpfq and g are convolvable, there exists f ˙ g P Y satisfying jpfq˙ g “ jpf ˙ gq and

‖f ˙ g‖Y ď
ż

G

|gpx´1q|‖rpxqf‖Y dx.

Proof. The proof is closely related to the proof of Proposition 6 Chapter VIII.4.2 of [29].
Fix f P Y and g P L1

locpGq and set

Ψ : GÑ Y, Ψpxq “ gpx´1qrpxqf.
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We claim that Ψ is β-integrable in the Bochner sense. Since r is a continuous representa-
tion, the map x ÞÑ rpxqf is continuous from G to Y and hence it is β-measurable. Since
g P L1

locpGq, so is ǧ, and hence Ψ is β-measurable. Furthermore,

x ÞÑ ‖Ψpxq‖Y “ |gpx´1q|‖rpxqf‖Y
is β-integrable by assumption. Hence Ψ is β-integrable. Define

v “
ż

G

gpx´1qrpxqf dx P Y,
which clearly satisfies

(67) ‖v‖Y ď
ż

G

|gpx´1q|‖rpxqf‖Y .

Recall that CcpGq Ă Y # and take ϕ P CcpGq. Then by (8) with qipfq “ ‖f‖ (Y is normed)
ż

G

|vpyq||ϕpyq| dy “
ż

G

|gpx´1q|
ˆ
ż

G

|fpyxqϕpyq|dy
˙

dx ď C

ż

G

|gpx´1q|‖rpxqf‖Y dx,

which is finite by assumption. By Fubini theorem, the function

px, yq ÞÑ gpx´1qfpyxqϕpyq
is in L1pG ˆ Gq and, hence, there exists a negligible set Nϕ such that for all y R Nϕ the
function

x ÞÑ gpx´1qfpyxqϕpyq
is in L1pGq. Put Eϕ “ tx P G | ϕpxq ‰ 0u. By the change of variable x ÞÑ y´1x, for all
y P EϕzNϕ, the function

x ÞÑ fpxqgpx´1yq
is in L1pGq. Take a countable family tϕkukPN such that

Ť

k Eϕk “ G and set N “ Ť

kNϕk .
Then N is negligible and for all y R N the map x ÞÑ fpxqgpx´1yq is integrable. Hence,
for all ϕ P CcpGq, Fubini theorem gives

ż

G

vpyqϕpyqdy “ xv, ϕyY

“
ż

G

gpx´1qxrpxqf, ϕyY dx

“
ż

G

gpx´1q
ˆ
ż

G

fpyxqϕpyq dy
˙

dx

“
ż

G

ϕpyq
ˆ
ż

G

fpyxqgpx´1q dx
˙

dy

where x¨, ¨yY denotes the duality between Y and Y # Ă CcpGq introduced in (6). By the
change of variable x ÞÑ y´1x in the inner integral, we get

(68)

ż

G

vpyqϕpyqdy “
ż

G

ˆ
ż

G

fpxqgpx´1yqdx
˙

ϕpyqdy.

This means that jpfq and g are convolvable, jpvq “ jpfq˙ g and, by (67), the inequality
‖f ˙ g‖Y ď

ş

G
|gpx´1q|‖rpxqf‖Y holds true. �

Corollary 5.3. Take a weight w such that ‖rpxq‖ ď wpxq for all x P G. Then:
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a) For all f P Y and qg P L1
wpGq, jpfq and g are convolvable, there exists f ˙ g P Y such

that jpf ˙ gq “ jpfq˙ g, the map

Y Q f ÞÑ f ˙ g P Y
is continuous and ‖f ˙ g‖Y ď ‖f‖Y ‖g‖1,w.

b) The set
MY “ tf P Y | f ˙ g “ fu,

is a closed `-invariant subspace of Y .

Proof. Item a) follows from Proposition 5.2, observing that (67) is satisfied and
ż

G

|gpx´1q|‖rpxqf‖Y dx ď ‖f‖Y ‖ǧ‖1,w.

As for b), since Y is a metrizable topological space, it is sufficient to prove that MY is
sequentially closed. Take a sequence pfnqn in MY converging to f P Y . Possibly passing
to a subsequence, we can assume that there exists a negligible set N such that for all
x R N the sequence pfnpxqqn converges to fpxq. Furthermore, possibly changing N , we
can also assume that, for all n and x R N , jpfnq˙ g pxq “ fnpxq.

Since f ÞÑ f ˙ g and j are continuous, jpfnq ˙ g converges to jpfq ˙ g in L1
locpGq.

Hence, by Lemma 6.1 in the appendix, possibly passing again to a subsequence and again
redefining N , we can also assume that for all x R N limn jpfnq ˙ g pxq “ jpfq ˙ g pxq.
Then

jpfq˙ g pxq “ lim
n
jpfnq˙ g pxq “ lim

n
fnpxq “ fpxq,

so that jpfq ˙ g “ jpfq in L0pGq, that is f P MY . Finally, given x P G and f P MY ,
by (77b) ,

jp`pxqfq “ λpxqjpfq “ λpxqpjpfq˙ gq “ λpxqjpfq˙ g “ jp`pxqfq˙ g,

which means that `pxqf PMY . �

We apply the above corollary with the choice g “ K, which is in L1
wpGq by assump-

tion, together with qK “ K. Notice that, although Assumption 5 is not satisfied, b) of
Corollary 5.3 guarantees that MY is a closed subspace of Y . Furthermore we assume that

(69) MY Ă L8w´1pGq.
Since by construction V2v P L1

wpGq for all v P S and L8w´1pGq “ L1
wpGq#, (69) implies

Assumption 6. Hence we can define

CopY q “ tT P S 1w | VeT P Y u,
‖T‖CopY q “ ‖VeT‖Y .

The inclusion (69) is satisfied by all the classical Banach spaces considered in [2]. This
fact is shown in the proof of Proposition 4.3.

Theorem 5.4. The space CopY q is a π-invariant Banach space and the restriction of Ve
to CopY q is an isometry from CopY q onto MY . For all Φ PMY , πpΦqu exists in S 1w, it
actually belongs to CopY q and satisfies

πpVeT qu “ T, T P CopY q(70a)

VeπpΦqu “ Φ, Φ PMY .(70b)

Proof. Apply Proposition 2.6. �
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5.1. Completeness and weights bounded from below.

Take a continuous function w : G Ñ p0,`8q satisfying only (60a). Take a square-
integrable representation π acting on H and fix an admissible vector u P H such that

Kp¨q “ xu, πp¨quyH P L1
wpGq,

and set

Sw “ tv P H | xv, πp¨quyH P L1
wpGqu

‖v‖Sw “
ż

G

|xv, πpxquyH|wpxqdx.

Theorem 5.5. The space Sw is a Banach space if and only if

(71) inf
xPGwpxq ą 0.

Proof. Assume that infxPGwpxq ě c ą 0. We can always suppose that c “ 1 so that (60b)
holds true. Indeed, if c ă 1, we redefine w as w{c, so that

wpxyq
c

ď wpxqwpyq
c2

c ď wpxq
c

wpyq
c

and w{c satisfies (60a). Since L1
wpGq “ L1

w{cpGq with equivalent norms, clearly the fact

that Sw is a Banach space does not depend on the choice of c. Item a) of Theorem 5.1
states that Sw is a Banach space.

Assume that Sw is a Banach space. Define Sẘ as the vector space Sw with the norm

‖v‖˚ “ maxt‖v‖Sw , ‖v‖Hu.
We claim that Sẘ is complete. Take a Cauchy sequence pvnqn with respect to ‖¨‖˚. By
construction, it is a Cauchy sequence also with respect to both ‖¨‖Sw and ‖¨‖H. Since Sw
and H are complete, there exist v1 P Sw and v P H such that

lim
nÑ`8‖vn ´ v‖H “ 0 lim

nÑ`8‖vn ´ v
1‖Sw “ 0.

Since the voice trasform is an isometry both from H into L2pGq and from Sw into L1
wpGq,

the sequence pV vnqn converges to V v in L2pGq and to V v1 in L1
wpGq. Hence, possibly

passing to a subsequence, pV vnqn converges almost everywhere to V v and to V v1. Since
w ą 0, V v “ V v1 almost everywhere and, hence, v “ v1 by the injectivity of V , so that
v P Sẘ. Furthermore

lim
nÑ`8‖vn ´ v‖˚ “ lim

nÑ`8maxt‖vn ´ v‖Sw , ‖vn ´ v‖Hu
“ maxt lim

nÑ`8‖vn ´ v‖Sw , lim
nÑ`8‖vn ´ v‖Hu “ 0.

Hence Sẘ is complete and the natural inclusion i : Sẘ Ñ Sw is clearly continuous and
bijective. Since Sw is a Banach space, the open mapping theorem implies that the inverse
is also continuous, so that there is a constant c ą 0 such that

c‖v‖˚ ď ‖v‖Sw ď ‖v‖˚.
As usual, for all x P G and v P Sw

‖πpxqv‖Sw “ ‖λpxqV v‖L1
wpGq ď wpxq‖v‖Sw , ‖πpxqv‖H “ ‖v‖H.

Then, if v ‰ 0, for all x P G
c‖v‖H “ c‖πpxqv‖H ď c‖πpxqv‖˚ ď ‖πpxqv‖Sw ď wpxq‖v‖Sw
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taking the infimum over G, we get

0 ă c ď inf
xPGwpxq.

�

6. Appendix: some functional analysis

6.1. Notation. The set L0pGq is a metrizable complete topological vector space, and
C0pGq is dense in L0pGq (Propositions 19 and 20 Chapter IV.5.11 of [30]). Since G
is second countable, C0pGq is separable (with respect to the convergence on compact
subsets, hence with respect to the convergence in measure) and L0pGq is separable, too.
Furthermore, if pfnq is a sequence converging to f in L0pGq, then there exist a subsequence
pfnkqk and a negligible set N Ă G such that

(72) lim
kÑ`8

fnkpxq “ fpxq for all x P GzN.
(Corollary of Proposition 19 Chapter IV.5.11 of [30]).

If G is compact L1
locpGq “ L1pGq is a separable Banach space. Otherwise, a saturated

fundamental system of semi-norms is given as follows (recall that a family is saturated if
the maximum of any finite set of seminorms is in the family). Since G is second countable,

take a countable increasing family pKiqiPN of compact subsets of G such that Ki Ă 8Ki`1

and
Ť

iKi “ G. For all i P N put

(73) qipfq “
ż

Ki
|fpxq|dx.

Then, for each compact set K there exists i P N such that K Ă Ki and
ż

K
|fpxq|dx ď qipfq.

With the induced topology, L1
locpGq is complete (see Ex. 31 Chapter V.5 of [30]), hence it

is a Fréchet space.

Lemma 6.1. If pfnq is a sequence in L1
locpGq converging to f in L1

locpGq, then there exists
a subsequence pfnkqk that converges to f almost everywhere.

Proof. If G is compact, the claim is clear. If not, take the increasing sequence of compact
subsets pKiqiPN defining the fundamental family of semi-norms (73). The topology of
L1

locpGq is such that pfnqn converges to f in L1pKiq for all i P N. We procede by induction
on N. Suppose that we have found a subsequence pf

n
piq
k
qk and a negligible subset Ni Ă Ki

such that

lim
kÑ`8

f
n
piq
k
pxq “ fpxq for all x P KizNi.

Clearly pf
n
piq
k
qk converges to f in L1pKi`1q and we can further extract a subsequence

pf
n
pi`1q
k

qk for which there exists a negligible subset Ni`1 Ă Ki`1 such that

lim
kÑ`8

f
n
pi`1q
k

pxq “ fpxq for all x P Ki`1zNi`1.

Set N “ Ť

iPNNi and fnk “ f
n
pkq
k

. Given x R N , fix h such that x P Kh , so that x P KizNi

for all i ě h. Then pf
n
pkq
k
pxqqkěh is a subsequence of pf

n
phq
k
pxqqkěh which converges to

fpxq. �
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Given f P L0pGq, f̌ P L0pGq since a subset E Ă G is negligible if and only if E´1 is
negligible. Notice that

f̌ P LppGq ðñ ∆´1{pf P LppGq ðñ f P LppG,∆´1 ¨ βq(74)

‖f̌‖p “ ‖∆´1{pf‖p.(75)

Since ∆ is continuous, L1
locpGq is invariant under the map f ÞÑ f̌ .

6.2. Representations. Let E be a locally convex space with a saturated fundamental
system tqiui of semi-norms and τ a (linear) representation of G on E.

i) The representation τ is separately continuous if
a) for all x P G, τpxq is continuous from E to E;
b) for all v P E, x ÞÑ τpxqv is continuous from G into E.

ii) The representation τ is continuous if
a) if px, vq ÞÑ τpxqv is continuous from Gˆ E into E.

iii) The representation τ is equicontinuous if
a) if px, vq ÞÑ τpxqv is continuous from Gˆ E into E;
b) τpGq is equicontinuous, i.e. for every semi-norm qi there exists a semi-norm qj

and a constant C such that qipτpxqq ď Cqjpτpxqq for all x P G.

If E is a Fréchet space, then i) implies ii) (Proposition 1 Chapter VIII.2.1 of [30]).
Furthermore, τ is continuous if and only if for any compact set Q of G, τpQq is equicon-
tinuous and the map x ÞÑ τpxqv is continuous for all v P D, where D is a total set in E
(Remark 2 of Definition 1 Chapter VIII.2.1 of [30]).

6.3. Convolutions. The basic property of convolution is given by the following lemma.

Lemma 6.2. If f ˙ g exists, it is a β-measurable function whose equivalence class in
L0pGq depends only on the equivalence classes of f and g.

Proof. Without loss of generality, we can suppose that both f and g are positive. The
topological isomorphism ψ : GˆGÑ GˆG, ψpx, yq “ px, y´1xq has the property that a
set E Ă GˆG is β b β-negligible if and only if ψ´1pEq is β b β-negligible. Indeed, take
E a Borel measurable subset of GˆG, then

β b βpψ´1pEqq “
ż

G

βpψ´1pEqxqdx “
ż

G

βpxE´1
x qdx “

ż

G

βpE´1
x qdx

where Ex “ ty P G | px, yq P Eu and ψ´1pEqx “ ty P G | px, y´1xq P Eu “ xE´1
x . Hence

β b βpψ´1pEqq “ 0 if and only if βpE´1
x q “ 0 for almost all x P G, which is equivalent to

the fact that βpExq “ 0 for almost all x P G, i.e. β b βpEq “ 0. As a consequence, the
map ϕ “ pf b gqψ is β b β-measurable, and if we change f b g on a negligible set, ϕ will
change on a negligible set, too. Since G is second countable, the measure β is moderated
and Proposition 7.b) Chapter V.8.3 of [30] shows that the map x ÞÑ ş

G
ϕpx, yq dy is β-

measurable, where the integral is finite by assumption. Therefore,
ş

G
ϕpx, yqdy depends

only on the equivalence class of f and g. �

If f, g P L1
locpGq, f ˙ g exists and |f | ˙ |g| is in L1

locpGq, then we say that f and g are
convolvable. Since f, g P L1

locpGq, then µ “ f ¨ β and ν “ g ¨ β are (Radon) measures on
G. The fact that f and g are convolvable is equivalent to the fact that µ and ν admit a
convolution, i.e. for all ϕ P CcpGq the function px, yq ÞÑ ϕpxyq is µbν-integrable, namely

ż

GˆG
|ϕpxyq||fpxq||gpxq|dxdy ă `8, ϕ P CcpGq.
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The two definitions agree, since:

i) if µ and ν admit a convolution, the map ϕ ÞÑ ş

G
ϕpxyqdµpxqdνpyq defines a measure

on G whose density is precisely f ˙ g (Proposition 10 Chapter VIII.3.2 of [29] and
Proposition 10 Chapter VIII.4.5 of [29]);

ii) if |f |˙ |g| exists and is in L1
locpGq, then µ and ν admit a convolution (Proposition 9

Chapter VIII.4.5 of [29]).

We recall the following sufficient conditions.

a) Corollary 20.14 of [41]: if f P L1pGq and g P LppGq with p P r1,`8s, then f and g are
convolvable, f ˙ g belongs to LppGq and

(76a) ‖f ˙ g‖p ď ‖f‖1‖g‖p.
b) Theorem 20.18 of [41]: if f P LppGq, g P LqpGq and qg P LqpGq with 1 ă p ă `8,

1 ă q ă `8 satisfying 1
p
` 1

q
“ 1 ` 1

r
with r ą 1, then f and g are convolvable and

f ˙ g belongs to LrpGq. Furthermore, if ‖ǧ‖q “ ‖g‖q, then

(76b) ‖f ˙ g‖r ď ‖f‖p‖g‖q.
c) Theorem 20.16 of [41]: under the same assumptions on f and g as in the previous

item, if 1
p
` 1

q
“ 1 with 1 ă p ă `8, then f and g are convolvable and f ˚ g belongs

to C0pGq and

(76c) ‖f ˙ g‖8 ď ‖f‖p‖qg‖q.
d) Theorem 20.16 of [41]: if f P L1pGq and g P L8pGq (which is equivalent to qg P L8pGq)

or if f P L8pGq and qg P L1pGq, then f and g are convolvable, f ˚ g is a bounded
continuous function, and

(76d) ‖f ˙ g‖8 ď ‖f‖1‖g‖8 or ‖f ˙ g‖8 ď ‖f‖8‖qg‖1

In general, the convolution is not associative. We recall a sufficient condition as well as
some other useful relations.

Lemma 6.3. Given f, g P L0pGq,
(77a) ~f ˙ g “ ǧ ˙ f̌

and, for all x P G,

λpxqf ˙ g “ λpxqpf ˙ gq ρpxqf ˙ g “ ∆px´1qpf ˙ λpx´1qgq(77b)

f ˙ λpxq g “ ∆px´1qpρpx´1qf ˙ gq f ˙ ρpxqg “ ρpxqpf ˙ gq,(77c)

provided that one of the two sides of each equality exists.
If f, g, h P L0pGq are such that either |f |˙ |g| and p|f |˙ |g|q˙ |h| exist or |g|˙ |h| and

|f |˙ p|g|˙ |h|q exist, then

(77d) f ˙ pg ˙ hq “ pf ˙ gq˙ h

and all the convolutions exist.

Proof. To prove (77a) just compute

ǧ ˙ f̌pxq “
ż

G

f̌py´1xqǧpyqdy “
ż

G

fpx´1yqgpy´1qdy “
ż

G

fpyqgpy´1x´1qdy “ f ˙ gpx´1q.
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Next we prove (77d). Fubini theorem gives that, for all x P X
p|f |˙ |g|q˙ |h|pxq “

ż

GˆG
|fpyq||gpy´1zq||hpz´1xq|dydz

“
ż

GˆG
|fpyq||gpzq||hpz´1y´1xq|dydz “ |f |˙ p|g|˙ |h|qpxq

by the change of variable z ÞÑ yz. Hence the two assumptions implies that the map
py, zq ÞÑ fpyqgpy´1zqhpz´1xq is in L1pGˆGq. Since |f ˙ g| ď |f |˙|g|, all the convolutions
in (77d) exist and Fubini theorem implies the claimed equality. The remaining assertions
are standard. �

6.4. Scalar integration. Let E be a locally convex topological vector space, and let
X be a Hausdorff locally compact second countable topological space with a positive
measure dx, which is finite on all compact subsets. A function Ψ : X Ñ E is called
scalarly integrable if the scalar function xT,Ψp¨qyE is integrable for every T P E 1. If Ψ is
scalarly integrable, the map

T ÞÑ
ż

X

xT,ΨpxqyEdx
defines a linear functional on E 1, possibly not continuous; that is, there exists an element
in the algebraic dual E 1˚, called the scalar integral of Ψ and denoted

ż

X

Ψpxqdx P E 1˚,
such that

xT,
ż

X

ΨpxqdxyE “
ż

X

xΨpxq, T yEdx.
Usually one is interested to understand under which conditions the scalar integral lies

in E. In our paper we often look ar the case in which the argument takes its values in a
dual space (or in a space which embeds into a dual space), namely

Ψ : X ÝÑ E 1s,

where E 1s is the space E 1 endowed twith the weak*-topology, namely the topology of
simple convergence, so that pE 1sq1 “ E.

A locally convex space E is said to have the property (GDF)7 if every linear map from
E to a Banach space which has sequentially closed graph is actually continuous (that is,
the closed graph theorem holds true for Banach space-valued linear maps defined on E).
All the Fréchet spaces enjoy the property (GDF) ([25], Chapter I.3.3, Corollary 5). Also,
the dual space of any reflexive Fréchet space satisfies the property with respect to the
strong topology, namely the topology of the convergence on bounded sets ([30], Chapter
6, Appendix, n˝ 2, Proposition 3).

The key theorem for the convergence of scalar integrals with values in a dual vector
space is the following.

Theorem 6.4 (Gelfand–Dunford, [30], Theorem 1, Chapter VI.1.4). Let E be a Hausdorff
locally convex topological vector space with the property (GDF). Then, for any scalarly
integrable function Ψ : X Ñ E 1s, we have

ż

X

Ψpxqdx P E 1.
7The acronym GDF stands for “graphe dénombrablement fermé ”, namely “countably closed graph”.
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6.5. Intersections of Lp spaces. In this final section we recall, for the reader’s conve-
nience, the main results obtained in [31], specialized to our setting. Set I “ p1,`8q and
define

T “
č

pPI
Lppµq

with the initial topology, which makes each inclusion T ãÑ LppGq continuous, and

U “ span
ď

qPI
LqpGq

with the final topology, which makes each inclusion LqpGq ãÑ U continuous.

Theorem 6.5 ([31]). The space T is a reflexive Fréchet space and U is a complete reflexive
locally convex topological vector space. For each g P U , the linear map

f ÞÑ
ż

G

gpxqfpxq dx “ gpfq
is continuous and g ÞÑ gp¨q identifies, as topological vector spaces, the dual of T with U .
For each f P T , the linear map

g ÞÑ
ż

G

fpxqgpxq dx “ fpgq
is continuous and f ÞÑ fp¨q identifies, as topological vector spaces, the dual of U with T .

Proof. Here we refer to [31]. Observe that the Haar measure β is σ-finite since G is locally
compact and second countable and β is finite on compact subsets. Furthermore, denoted
by I 1 “ t p

p´1
| p P Iu, clearly I 1 “ I. Proposition 2.1 and the following remark show that

the map f ÞÑ xf, ¨yU is a topological isomorphism from T onto the strong dual of U .
Theorem 2.1 and Corollary 3.2 show that the map g ÞÑ xg, ¨yT is a topological isomor-

phism from U onto the strong dual of T .
Hence we can identify, as topological vector spaces, the dual of T with U and the dual

of U with T . So that both T and U are reflexive locally convex vector spaces. Theorem
3.1 proves that T is a Frechét space and Corollary 3.3 shows that U is complete. �

Note that, since T and U are reflexive spaces, they are barrelled (Theorem 2 IV.2.3 of
[25]).

Acknowledgements

S. Dahlke acknowledges support from Deutsche Forschungsgemeinschaft (DFG), Grant
DA 360/19–1. F. De Mari, E. De Vito and S. Vigogna were partially supported by Pro-
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[23] J. G. Christensen, G. Ólafsson, Examples of coorbit spaces for dual pairs, Acta Appl. Math. 107 (1-3)
(2009) 25–48.

[24] G. B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC
Press, Boca Raton, FL, 1995.

[25] N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-
Verlag, Berlin, 1987, translated from the French by H. G. Eggleston and S. Madan.
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[35] L. Schwartz, Théorie des Distributions., Hermann & Cie., Paris, 1966.
[36] A. Grossmann, J. Morlet, T. Paul, Transforms associated to square integrable group representations.

I. General results, J. Math. Phys. 26 (10) (1985) 2473–2479.
[37] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent states, wavelets and their generalizations, Graduate

Texts in Contemporary Physics, Springer-Verlag, New York, 2000.
[38] G. Alberti, L. Balletti, F. De Mari, E. De Vito, Reproducing subgroups of Spp2, Rq. Part I: Algebraic

classification., J. Fourier Anal. Appl.
[39] A. Zygmund, Trigonometric series. Vol. I, II, 3rd Edition, Cambridge Mathematical Library, Cam-

bridge University Press, Cambridge, 2002.
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