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Bayesian Inference

Bayesian inference provides a key framework for quantifying the
knowledge of the data and prior belief about some parameters of

a model. This expressed mathematically through Baye's theorem.

Baye's Theorem gives,
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p(61]Y,y) is the posterior distribution, the target output of the algorithm
p(Y,ps|0) is the likelihood, i.e. the probability of observing the data Y, given 6

p(Yops) 1s the prior distribution, which represents the knowledge about the parameters before taking into account
the observed data
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MCMC Method

To determine the posterior distribution, we generate a Markov Chain 1n
which the stationary distribution is the target posterior distribution. This
is called Markov Chain Monte Carlo (MCMC), and a common method
1s the Metropolis-Hastings (MH) method.

1. Initialize 0",

2. Generate a proposal sample, 6" ~ q(é’ 6" )

3. Calculate acceptance probability
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4. Accept & with probability «.
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Bayesian Regression

Before we discuss the regression process itself, we contextualize this as a problem of the identification of a trend
between weight and height, with height as the predicting factor for weight. We therefore try to predict weight as a
scalar multiplied to height plus a baseline value. We denote by y the predicted weight, and x the height, so that

V= PBix+ Po.

We also have to describe the random variation of the actual weights y around the predicted weight ¥, that is, for an
observation i
Yi=Yi+6
for some value . For the sake of simplicity we can assume that all these variations are normally distributed with mean

zero and standard deviation . It then follows that y; ~ N(¥;, 62). This analysis then provides us with a way to define
the likelihood of the prediction ¥;. Hence, given independent observations { ( y,-,x,-)}’;il, the total likelihood is given by

(vi — Bixi + Bo)*
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Bayesian Regression: Example

To better understand the process, we proceed to an example. First we generate a data set where the true regression
line takes the form y = x+ 1. We take M points (x;,y;) with x; € [0, 1] along the true regression line. For each of these
points, we add to y;, a Gaussian-distributed noise from N(0.c?). For our purpose, we specify M = 50 and 6 = 0.5.
These new set of points then will serve as our data set, seen in Figure 1.
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Figure 1: Data points together with the true regression line.



Bayesian Regression: Example

First, we define the priors and assume that the parameters are independent. Recall from the previous discussion
that we have to specify priors for o, 1, and o. For both By and 31, we set the informative Gaussian prior N(0,20).
In the case of o, we take the suggestion given in [2], to take a half-Cauchy distribution.
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Figure 2: Posterior distributions obtained using pymc3 together with the traceplot of samples.
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Table 1: Comparison of regression line parameters and the inferred parameter values obtained through sampling from

the posterior distribution.

1.002404 0.133168
1.004820  0.228079
0.477677  0.050640

[0.746450, 1.266259]
[0.558677. 1.446214]
[0.382568.0.577510]
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Support Vector Machine

Given data points {(X;, yi)}N1 where x; e R and y; € {+1}, the task is to

find w and b such that weg (x)+b separates the data with the largest margin.

If the points are not linearly separable, we can reformulate the problem
Into
min L(w,b,C)

weY ,beR

where

L(w,b,C):= % I wll? +ci| (v (wg(x)+b)) (1)



Bayesian SVM: Prior Distribution

L(w,b,C):= % I w Il +ci| (v (wg(x)+b))

The deterministic SVM classifier given by equation (1) is described as the
maximum a posteriori (MAP) solution of the corresponding probabilistic
problem. The first summand induces Gaussian priors on w and b which can
be described as

Q(w,b) oc exp(—%ll Wi _%sz_zj

Since only the latent variable 8(x) = w-@¢(x) +b appear in the 2nd term,
we can express the prior directly as a distribution over @ with covariance

(0(x)-0(x)) ={(#(x)- W) (W-4(x))) + B* = $(x)$(x) + B



Bayesian SVM: Likelihood Function

L(w,b,C):= % I wll? +cj| (v (wg(x)+b))

The second part of equation (1) can be taken as a negative log-likelihood
when we assume the probability of getting output y for a given X is

Q(y=+1|x,0) =« exp(—C (y@(x)))
where x 1S a normalizing constant.

N

The total likelihood therefore is Q(D|6) = [Q(; [, €)Q(x;)
i=1

where Q(x; ) is the distribution of x;.



Bayesian SVM: Example

We are now ready for an example. Consider data points (x1,x,) circling the origin, whose coordinates were inde-
pendently sampled from a standard normal distribution with variance 0.1 for the x;-coordinate and variance 5 for
the x,-coordinate. Suppose we assign to class 0, all points whose distance from the origin is less than or equal to
2, and all others to class 1 (see Figure 4). We assign the label y = 1 to those belonging in class 0, and the label
v = —1 to those belonging to class 1.
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Figure 4: Generated data for binary classification. Green points belong to class 0, while blue ones belong to class 1.



Bayesian SVM: Example

Since the feature space is a subset of R?, the separating hyperplane takes the form

w1

wo | §(x1,x2) +H=0.
w3

We assume that the distribution of the data is known, so that the usnal SVM optimization problem translates to the
total posterior

N

wbley = {exp [=CL (3 (6 () + )] ﬁ cxp (—zfgle)) | sl(z,r) (5 fi)) }
{H\/%p (_Wz)}wlﬁp ()

We apply the Metropolis-Hastings algorithm to sample the marginal distributions of each component of w and b,
with specified parameters C = 10 and B = 20.




Bayesian SVM: Example
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Bayesian SVM: Example

0> (x) = (x1,2x0, X7 +x3)
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Comparison with deterministic counterpart:
Linear Regression

X data % %
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Figure 9: Comparison between OLS and MAP regression lines. Separating hyperplanes are identical with intercept-
coefficient pairs (1.00767, 0.99986) for ordinary least squares and (1.00482,1.00240) for Bayesian.
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Comparison with deterministic counterpart:

Support Vector Machine
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Figure 10: Resulting decision boundaries using Bayesian (left) and deterministic (right) SVMs which uses a feature

map ¢y : X — X — (x1,x2,¢
of the same data points.

x%+x%))

. Decision boundaries in both cases are identical both with three misclassifications
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Figure 11: Resulting decision boundaries using Bayesian (left) and deterministic (right) SVMs which uses a feature
map ¢, : (x; ,xz,x% +x%). Decision boundaries in both cases are identical both performing perfect classification of the
data points.
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