
Paper review: U-Net: Convolutional Networks for
Biomedical Image Segmentation

O. Ronneberger, P. Fischer, and T. Brox

Malcolm Davies

University of Houston

daviesm1@math.uh.edu

May 6, 2020

Malcolm Davies (UH) U-Nets May 6, 2020 1 / 27

Overview

1 Introduction
Abstract
Introduction
The Paper’s five operations

2 Network Architecture

3 Training

4 Experiments

5 Conclusion

Malcolm Davies (UH) U-Nets May 6, 2020 2 / 27

Abstract

This paper introduces a new (as of May 2015) strategy for the design
and training of neural networks.

The Authors call their new method a U-Net after the U-like shape of
the architecture when drawn out as a picture.

Such a network can be trained end-to-end from very few images, and
outperforms the prior best method on the ISBI challenge for
segmentation of neuronal structures in electron microscopic stacks.

The network is fast. Segmentation of a 512x512 image takes less
than a second on a recent GPU.

Malcolm Davies (UH) U-Nets May 6, 2020 3 / 27

Basic Ideas: Neural Networks

The goal of an artificial neural network (ANN) is to approximate
some function f ∗. In our case, this is a classification function
y = f ∗(x), where x ∈ Rn is an input vector.
The simplest architecture for an ANN is a directed graph composed
of three layers of nodes, an input layer, a hidden layer, and an
output layer, along with the connections between those nodes (the
arrows in the graph).

x1

x2

Input
layer X

h
(1)
1

h
(1)
2

h
(1)
3

Hidden
layer H

ŷ1

ŷ2

Output
layer Ŷ

Malcolm Davies (UH) U-Nets May 6, 2020 4 / 27

Basic Ideas: Neural Networks

The architecture of the network can be a lot more complicated than
the above example with many more layers, numbers of nodes in
layers, and types of connections.

The network architecture will create a collection of formula
relationships between the nodes defined by by connecting functions
f(j ,k)(x , θ) for nodes (j , k) with parameters θ.

h
(j)
1

Node j

h
(k)
1

Node k

f(j ,k)(∗, θ) : h
(j)
1 7−→ h

(k)
1

Malcolm Davies (UH) U-Nets May 6, 2020 5 / 27

Basic Ideas: Neural Networks

So the specific architecture of an ANN defines a mapping ŷ = f (x ; θ)
and then learns the value of the parameters θ that result in the best
function approximation to f ∗(x) given that graph and those
connecting functions.

Often there will also be a response function g , either at the end of
the network, or between layers, to further modify the outputs.
Common examples are the RELU function g(z) = max(0, z), or the
Sigmoid function σ(z) = 1/(1 + e−z).

Malcolm Davies (UH) U-Nets May 6, 2020 6 / 27

Introduction: Convolutional networks and biomedical
imaging

Convolutional Neural Networks (CNNs) are commonly used for
the analysis of 2D (or 3D) images having either gray level pixel
intensities, or multi-channels pixel intensities, such as
Red/Blue/Green.

Malcolm Davies (UH) U-Nets May 6, 2020 7 / 27

Basic Ideas: Convolution Operations in ANNs

A CNN is an ANN where some of the primitive functions f(j ,k)(x , θ)
act on their layers as a convolution operation (often called a
convolution filter).

In CNNs, convolution operations act on whole sections of an image
file, so they are usually not single primitive functions f(j ,k)(x , θ), but
rather are made up of such functions working together.

Recall the definition of a convolution in the context of functions:
Given two functions k and f , their convolution is defined

(k ∗ f)(x) :=

∫ ∞
∞

k(y)f (x − y) dy .

The insight here is that the two functions are first offset by y , then
multiplied together, and then their multiple is integrated over all y in
their domain.

Malcolm Davies (UH) U-Nets May 6, 2020 8 / 27

Basic Ideas: Linear Convolution Operations in ANNs

Convolutions over an image file X are similar, except that the domain
is the 2D discreet coordinate space, so the integral is actually a
summation.

Let V be the square ”window” of integer coordinates (m, n) such that
|m| ≤ S and |n| ≤ S for some integer S .

Fix a ”function” of arbitrary real numbers K (m, n) defined for all
(m, n) in V . The (2S + 1)x(2S + 1) matrix K defines the ”kernel” of
a linear convolution filter with support included in V .

This convolution filter acts linearly on an image X to generate another
image G denoted G = K ∗X , computed as follows for each pixel (i , j)

G (i , j) = K ∗ X (i , j) =
∑

(m,n)∈V

K (m, n)X (i −m, j − n)

Malcolm Davies (UH) U-Nets May 6, 2020 9 / 27

Basic Ideas: Convolution Layers and Non-Linear
Convolution Operations in ANNs

Fix a kernel K with support in a square window V , and fix a single
threshold parameter ”b”. Then (K ,V , b) defines a convolution layer
of size NxN, with one ”neuron” (or ”node”) NODij placed at each
pixel position (i , j).

When the current input is an NxN image X , the state Y (i , j) of
neuron NODij is then computed by

Y (i , j) = g(b + K ∗ X (i , j))

Here g is a response function. When this is non-linear, it makes the
convolution layer into a non-linear convolution layer.

Malcolm Davies (UH) U-Nets May 6, 2020 10 / 27

The five operations: 3x3 Convolution with RELU

The 3x3 convolution operation with RELU in this paper is the
standard unpaded version.

A 3× 3 kernel K (in grey) ranges over all contained intersections with
an image X (in blue), i.e., those completely contained within the
image.

Malcolm Davies (UH) U-Nets May 6, 2020 11 / 27

The five operations: 3x3 Convolution with RELU

The 3x3 kernel operation reduces the size of the image by 2 in both
dimensions.

The RELU function then takes the outputted matrix and retains only
the positive part.

Malcolm Davies (UH) U-Nets May 6, 2020 12 / 27

The five operations: Copying and cropping

An important aspect of the U-Net’s architecture is the large number
of feature channels in the up-sampling part. As a consequence, the
expansive path is more or less symmetric to the contracting path, and
yields the u-shaped architecture.

The key insight here is that deep features can be obtained when going
deeper, but spatial location information is also lost when going deeper,
so output from shallower layers have more local information. We
want to combine both to enhance the results.

We do this through the copying and cropping operation. Every step
in the expansive (upwards) path is concatenated with the
correspondingly cropped feature map from the contracting
(downwards) path. The cropping is necessary due to the loss of
border pixels in every convolution.

Malcolm Davies (UH) U-Nets May 6, 2020 13 / 27

The five operations: Copying and cropping

There is a detail here that I do not fully understand concerning how
the the concatenated data are merged. Figure 1 shows the
concatenated data as a white and blue box stuck together, followed
by a 3x3 conv operation, followed by a blue box of the same spatial
dimensions but half the feature dimensions. However, it gives no
details.

Speculation: Two possible answers

The layers are somehow being gobbled up and merged by the
following 3x3 convolution operation, similarly to how the 1x1
convolution operation works at the last step.

The layers are simply being merged by element-wise addition. (This
was the explanation given by an outside source, but the paper is too
vague to say for sure.)

Malcolm Davies (UH) U-Nets May 6, 2020 14 / 27

The five operations: 2x2 Max-Pooling Down-Sampling

The max pooling operation in this paper partitions an input image X
up into 2× 2 squares, then takes the maximal element from each
square and arranges them in a new image Y that is half the size in
both dimensions.

It can be thought of as a form of data compression that ”picks the
local highlights”.

Malcolm Davies (UH) U-Nets May 6, 2020 15 / 27

The five operations: 2x2 Max-Pooling Down-Sampling

The max pooling operation in this paper involves increasing the
number of feature channels.

Each layer of data in a CNN is actually a three-dimensional array of
size h × w × d , where h and w are spatial dimensions, and d is the
feature or channel dimension.

Author explanation:

”At each down-sampling step we double the number of feature channels.”

Malcolm Davies (UH) U-Nets May 6, 2020 16 / 27

The five operations: 2x2 Max-Pooling Down-Sampling

The exact mechanism for the max-pool feature creation currently
eludes me. The paper itself does not give much detail here, though
the authors do ”provide the full Caffe[6]-based implementation and
the trained networks”.

Speculation:

My guess is that the new features are ”abstract” in that they are an
extra avenue for the learning algorithm to encode information, but
they wont be as ”straightforward” as color levels.

These new features correspond to using additional convolution
Kernels.

Malcolm Davies (UH) U-Nets May 6, 2020 17 / 27

The five operations: Convolution and 2x2 Up-Sampling

Figure: Action of the convolution
operation over an image.

Up-sampling is a method that
gets the output size larger.

This can be a convolution
operation that allows the kernel
K (in grey) to range over all
intersections with an image X
(in blue), not just those
contained within the image.

This is made concrete by
expanding the image X to X ′

(all the white squares) by some
method.

Malcolm Davies (UH) U-Nets May 6, 2020 18 / 27

The five operations: Convolution and 2x2 Up-Sampling

In this paper, the expansion of the image X to X ′ is done by
mirroring the image where necessary.

Malcolm Davies (UH) U-Nets May 6, 2020 19 / 27

The five operations: Convolution and 2x2 Up-Sampling

Here again, the exact mechanism for this eludes me. The paper does
not give much detail here.

Author explanation:

”Every step in the expansive path consists of an up-sampling of the feature
map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels”

Malcolm Davies (UH) U-Nets May 6, 2020 20 / 27

The five operations: Basic 1x1 Convolution

At the final layer a 1x1 convolution is used to map each
64-component feature vector to the desired number of classes.

A 1× 1 convolution maps an input pixel, along with all it’s channels
(features), to an output pixel, not looking at anything around itself.

Malcolm Davies (UH) U-Nets May 6, 2020 21 / 27

Network Architecture

Malcolm Davies (UH) U-Nets May 6, 2020 22 / 27

Training and Data Augmentation

Data augmentation is essential to teach the network the desired
invariance and robustness properties, when only few training samples
are available.

”We apply elastic deformations to the available training images. This
allows the network to learn invariance to such deformations, without
the need to see these transformations in the annotated image corpus.
This is particularly important in biomedical segmentation, since
deformation used to be the most common variation in tissue and
realistic deformations can be simulated efficiently.”

Additionally, ”we primarily need shift and rotation invariance as well
as robustness to deformations and gray value variations”.

Malcolm Davies (UH) U-Nets May 6, 2020 23 / 27

Experiments

The authors apply the u-net to three different segmentation tasks:

1 The segmentation of neuronal structures in electron microscopic
recordings provided by the ISBI 2012 EM segmentation challenge.

2 Two sets of cell segmentation task in light microscopic images
provided by the 2014 and 2015 ISBI cell tracking challenge.

Malcolm Davies (UH) U-Nets May 6, 2020 24 / 27

Experiments: Results

Malcolm Davies (UH) U-Nets May 6, 2020 25 / 27

Conclusion

The u-net architecture achieves very good performance on very
different biomedical segmentation applications.

Using data augmentation with elastic deformations, it needs very few
annotated images, and has a very reasonable training time of only 10
hours on a NVidia Titan GPU (6 GB).

Malcolm Davies (UH) U-Nets May 6, 2020 26 / 27

The End

Malcolm Davies (UH) U-Nets May 6, 2020 27 / 27

	Introduction
	Abstract
	Introduction
	The Paper's five operations

	Network Architecture
	Training
	Experiments
	Conclusion

