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Overview

» Question: Does a quantum computer "help” in solving
an SVM classification problem when the feature space
becomes large, and the kernel functions become
computationally expensive to estimate?

» Two independent teams try to answer the same question:

> IBM
» Xanadu



Review

Definition

Let X be a nonempty set, called the input set. A function
k: X x X — C is called a kernel if for any finite subset
{xt, ..., xM}y c X with M >2and cy,...,cm € C,
Zl\n/,,m’:l cmc k(x™, x™) > 0.

Definition

Let F be a Hilbert space, called the feature space, X' an input set,
and x a sample from the input set. A feature map is a map

¢ : X — F from inputs to vectors in the Hilbert space. The
vectors ¢(x) € F are called feature vectors.



Review

Theorem

Let ¢ : X — F be a feature map. The inner product of two inputs
mapped to feature space defines a kernel via

k(x,x") :== (¢(x), &(x")) 7, where (-,-)F is the inner product
defined on F.

Theorem
Let ¢ : X — F be a feature map over an input set X, giving rise

to a complex kernel k(x,x") = (¢(x), #(x')) . The corresponding
reproducing kernel Hilbert space has the form

Ry={f: X =>C|f(x)=(w,p(x))rVxeX,weF}



Review

Theorem (Representer Thereom)

Let X be an input set, k : X x X — R a kernel, D a data set
consisting of data pairs (x™,y™) € X xR and f : X — R a class
of model functions that live in the reproducing kernel Hilbert space
Ry of k. Furthermore, assume we have a cost function C that
quantifies the quality of a model by comparing predicted outputs
f(x™) with targets y™, and which has a regularisation term of the
form g(||f||) where g : [0,00) — R is a strictly monotonically
increasing function. Then any function f* € Ry that minimises the
cost function C can be written as

M
*(x) = Z amk(x,x™M),
m=1

for some parameters a, € R.



Squeezing Example

> What is squeezing?
» What is the associated Hilbert space?

» Fock space
» Denote the basis as 5 = {|0), |1),...}

Definition
A squeezed vacuum state of the electromagnetic field is defined as

2) = WZ 2,,,,, VACRE—

where |n) denotes the Fock basis and z = re’? is the complex
squeezing factor. Denote |z) = |(r, ))



Squeezing Example

If (x1,...,xnv)" € RN then we can define the joint state of N
squeezed vacuum modes as
¢ x = (¢, x)),

where |(¢,x)) = [(c,x1)) Q... Q) |c, xn) € F, where F is now a
multimode Fock space and c is a fixed constant hyperparameter.
The kernel associated with this feature map is

N

k(x,x";¢) = [ Td(e, x)l(e. %))

i=1

with

Ve )y sech(c)sech(c)
<(c,x,)]( ) /)> - \/1 _ ef(X,-/*Xf)tanh(C)tanh(C)




Squeezing Example
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FIG. 4. Shape of the squeezing kernel function ks (z, z") from
Equation (7) for different squeezing strength hyperparameters

c. The input z is fixed at (0,0) and z’ is varied. The plots
show the interval [—1, 1] on both horizontal axes.



Overview of Quantum Kernel Estimator

» Needs to implement a
feature-embedding circuit

which is a map Uy(x) such m prediction
o 4
that Ug(x)[0---0) = [¢(x)) h =
> Needs to estimate inner ®
e quantum
products between quantum A—> PEEUE e (ernel(@, )
states

» Input these estimates into a implicit approach

model which runs on a
classical computer



Overview of Quantum Variational Circuit

» Goal is to find a state |w)
such that

f(x:w) = (wle(x))

» |w) is prepared by a

_ . |
variational circuit, W(@) ... — P iction
that depends on trainable Vil device
parameters 6 to give lici h
Iw(6)) = W(6)|0) explicit approac
» Paper follows a slightly more Anewinput @B training inputs

general approach and
computes the state
W(0)Ug|0---0) and then
uses measurements to
determine the output of the
model.



Quantum Kernel Estimator based on two-dimensional
Squeezing
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FIG. 5. Decision boundary of a support, vector machine with
the custom kernel from Eq. (7). The shaded areas show the
decision regions for Class 0 (blue) and Class 1 (red), and each
plot shows the rate of correct classifications on the training
set/test set. The first row plots three standard 2-dimensional
datasets: ‘circles’, ‘moons’ and ‘blobs’, each with 150 test and
50 training samples. The second row illustrates that increas-
ing the squeezing hyperparameter ¢ changes the classification
performance. Here we use a dataset of 500 training and 100
test samples. Training was performed with python’s scikit-
learn SVC classifier using a custom kernel which implements
the overlap of Eq. (8).



Quantum Kernel Estimator based on two-dimensional
Squeezing
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