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Introduction

e |nverse Problems

Formulation of an Inverse Problems in terms of signal and data as variables:

g=T(f )+09g wheresignal f eX anddata g €Y

true

X and Y are topological vector spaces, T : X =Y (forward operator), 69 is a smgle 52 mo
random variable that represents the noise component of data.

 Classical regularization

A common approach in solving an inverse problem of the above form is to n
i.e. by minimizing: f —> L(T(f),9) where L:YxY —0 is a suitable aff ,
likelihood (finding a maximum likelihood solution). .

 How to avoid over fitting

There are 3 strategies:
1-Approximate inverse  2-Iterative regularisation  3-Regula



Introduction

» Regularised objective functional
min[L(T(7),9)+4AS(1)]

for a fixed 1>0 , where S:X — 0 is a regularisation functional and S(f):=|Vf|

e Machine learning approaches to inverse problems (Su ervised,;;
g app p (Sup leg

« Machine learning can be phrased as the problem of finding a (non-linear) mappﬁi,;' v
To(9) ~ fre whenever data § is related to fu .
« Set of pseudo-inverse operators is parameterized by @ e Z where Z is a suitable

« Supervised learning : Estimating ® € Z from training data, can be formu
2 / 7 g
L(®)=E [TT(g)— f } , Wwhere «4s a known probability distributic
Ame@-f] ] - | - e

* p can be chosen by expressing as an analytically conditional density o

density of f.



Introduction

Challenges of variational regularization
« Computational feasibility

» Flexibility in the prior information that can be accounted for
» Choice of regularization parameters

e Several attempts In order to address above ohallenges

« Sequential data and knowledge driven reconstruction: Separating the Iear‘n
encodes some knowledge about the structure of T and the data manlfol

where A:Y — X is a known component that encodes knowledge about e st
are the learned components. |

 Learning for variational reconstruction: The aim is to solve a varl" s
select the regularisaton parameters.

 Learned iterative reconstruction: Compromising upon the a lity



Solving inverse problems by learned gradient descent

Heuristic motivation

« Error functional: E(f)=|f - ftmell2 where E: X —[]
+ Therefore we have: E(f):=|f - f,.|. ~arg mln[L(T(f) g)+AS(f)]

* By assummg the right hand side is Frechet dlfferentlable and convex, A simple gradient desce
minimum: _
fi = 1., —o(VIL(T (), 9)1(fi ) + A[VS]I(fi0))

where, assuming a differentiable likelihood and forward operator, we note that:
VIL(T (), 9)I(f) = [5T

likewise, Considering left hand side in the same way, we get:

Learned updating operator:

Ao (T, VIL(T().0)]. AVS(f)) = VE(f) where A



Solving inverse problems by learned gradient descent

. Select an initial guess fy
2: fori=1,...,

3 Afi+ —ole (l.fi—lu VIL(T(), )] (fii)s A \7*5{)0-:‘.—1))
4

fi+fisi+ Afz
5: Tf_;;(y) — ff




Solving inverse problems by learned gradient descent

- fo+— T (9).
2. Initialize “memory” so € X M.

3: fori=1...., I do

(sis Afi) . Ao (51_11 fict, VI L(T(-).9)](fi—1), VS(fi_a ])

s fie fi+ AS | |
5: T (g) < fi




Solving inverse problems by learned gradient descent

Choice of affine and non-linear operator families

Narrowing down the generative models for the operator families:

W, (W1

W, ,b w,,b, 1"

where the components W,, . represents the affine transformatlon for the I: chan
a0 +ZW"(f )
wl' : X — X is a channel-wise linear operator
Using CNNs to learn the learned updating operator ..;;;sﬁff”
By using convolution operators, affine operators can be written:
where b el and W, as a ‘matrix’ of convolution kernels w." eX
Non-linear response function can be chosen as rectified Im 1ni

e
| i
/ W X —
’ =X"—>X forl=1 .
We ) W, = orl=1..c,
n:*>~n n»=n ,521’
i
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Solving inverse problems by learned gradient descent

s «— 0O

fo +— T (g)

for : =1,... LA do
ul « (fica,si 1, VL(T(-).9)](fim1). VS(fi1))
u? — relu (Woewy by (ul)) -

L

o

u? <« relu (W, b, (1))
(ud, Afi) +— Was bo (1)
s; < relu(u)

Jfi+— fi1 +Af;

: TE(g) «— fi

3}

f=l S




Implementation and evaluation

B :
=g
CA

Forward operator is expressible in terms ray transformP: X — Y integrating ove
Hence elements iny are functions on lines:

P(f)(/) =j f (x)dx for £ e M

« CT simulations from two particular types of phantoms are considered as training data with ¢
operators and noise models:

1-Ellipses : The log-likelihood was selected as L(-,g):=%”-—gH§ which implies V[L(P(.), ]

2-Heads : Non-linear forward operator given by T (f)(/) = Aexp(-uP(f)(¢))

The log-likelihood is given by Kullback-Leibler divergence and data discrepancy

which implies that V[L(I’(.),g)](f)=[8T(f)]*(1.0—%j

After some simplifications expression for the gradient is: V[L(T

For both above cases regulariser was selected as the Dirichle



Implementation and evaluation

Implementation
« The methods are implemented in Python using ODL. The NN layers and training were implementeﬁ,:;sffzE
» 1 GB of GPU is required for storing ray transform used for the heads dataset as sparse matrix gff
 Parameters ® is trained using RMSPropOptimizer optimizer in Tensorflow.
« Performance of partially learned(PL) iterative algorithm against the FBP algorithm and;[;’ﬁ:'
« All 3 algorithms (regularisation parameter) maximise peak signal to noise ratio (PSN:EE:'

» For the ellipse dataset, the evaluation is performed on the modified Shepp-Logaﬁg;z'
 For the heads dataset a slice through the nasal region is used.

e Results

» Reconstructions of the PL algorithm with the FBP and TV reconstrg,::
were compared, the PSNR and runtime were computed. Results '

« Impact of including gradient mappings in the PL gradient sche



Results

* Reconstructing Shepp-Logan phantom using FBP,
TV and PL gradient scheme.

PSNR (dB) Runtime (ms)
Method Ellipses Heads Ellipses  Heads
FBP 19.75  36.12 4 130
Learned 32.02 43.82 58 430
TV 29.83 38.40 11963 173 845 (2) Phantom (b) FBFP

Comparison of the learned method with standard methods.

(d) Partially learned gradient scheme



Results

Reconstructing a head phantom using FBP,
TV and PL gradient scheme.

* Note that for ellipse data, The FBP algorithm
performs very poorly under noise while the TV
and learned methods give comparable results.

« Note that for head dataset, where the noise is
Is lower, FBP reconstruction performs much better
and is significantly better than the TV w.r.t the
PSNR.

» The runtime of the PL algorithm is slower than
FBP but faster than TV methods as shown in table.

(d) Partially learned gradient scheme



Results

* Impact of including the gradient mappings
VIL(T(.),9)],VS: X > X
in the PL gradient scheme.
« Without the gradient, the PSNR was 29.65 dB while
it was 30.51 dB with the gradient of the data

(a) Phantom (b) No gradient
discrepancy.
» Method took 19 ms without gradients, 64 ms with
gradient of data discrepancy and 66 ms with both
gradients. '
(c) Only gradient of data discrepancy (d) Gradient of both data discrepancy and

regularizer
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Discussion and Conclusion

» The partially learned gradient scheme is presented with a strong emphasis on the gorit
implementation and its performance.

» The framework for partially learned reconstruction was primarily motivated by a numbe
ill-posed inverse problems.

* The PL gradient scheme does not have an explicit regularization parameter, its regular on |
implicitly contained in the training dataset. Hence, a significant change in the traini »% as
re-training. /

« Numerical experiments on tomographic data shows that the method gives notab y bett
traditional FBP and TV regularization.

» Adding prior information improves the reconstruction.

 using prior knowledge about the forward operator, data acquisition, d /
significantly improve the performance of deep learning based appr che

» A possible way to improve PL algorithm and further leverage the DO
more sophisticated error functional.






	Solving ill-posed inverse problems using iterative deep neural networks
	Outline
	 Introduction
	Introduction 
	 Introduction
	Solving inverse problems by learned gradient descent
	Solving inverse problems by learned gradient descent
	Solving inverse problems by learned gradient descent
	Solving inverse problems by learned gradient descent
	Solving inverse problems by learned gradient descent
	Implementation and evaluation
	Implementation and evaluation
	Results
	Results
	Results
	Discussion and Conclusion
	End

