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Remarks about Guido Weiss’ contributions to wavelets

por

Demetrio Labate

Guido Weiss contributed very significantly to the study of wavelets and his work
was instrumental to develop the mathematical theory of wavelets and make it into
an integral part of harmonic analysis.

Wavelets were pioneered in the 1980’s by Grossmann and Morlet to overcome
the limitations of the short-time Fourier transform in signal processing applications.
Their idea, based on the construction of function decompositions consisting of dila-
tes and translates of a single template, was very fruitful and, through the seminal
contributions of Lemariè and Meyer [8], Mallat [9] and Daubechies [2], led to the
formulation of Multiresolution Analysis (MRA) and the definition of an algorith-
mic procedure to build wavelet decompositions customizable to the needs of signal
processing applications.

When I met Guido in 2000, he had already published his outstanding monograph
titled “A First Course on Wavelets” [6] jointly with E. Hernández, where everything
that was currently known about the mathematics of wavelets was rigorously and
carefully presented. Yet, a frequent complaint of Guido was that, “we really know
nothing about wavelets”. I interpreted his statement as Socratic attitude, where the
act of relinquishing any assumptions precedes a renewed effort to a thoroughgoing
investigation.

The notion of wavelet was still evolving during the 1990’s. While MRA had been
established as a very effective approach to build wavelet bases of the form

A(ψ) = {ψj,k = 2
j
2ψ(2j · −k), j, k ∈ Z} ⊂ L2(R), (1)

such approach left many fundamental mathematical questions unanswered, inclu-
ding questions about their multivariate extensions and the relation between MRA
wavelets - those arising from the MRA construction or one of its variants - and
wavelets understood in a more general sense.

In the univariate case, a wavelet is a function ψ ∈ L2(R) such that the collection
A(ψ), given by (1), is an orthonormal basis (ONB) of L2(R); in this case, A(ψ)
is called an ON wavelet system. Hence, a natural question is: what conditions are
necessary or sufficient for ψ to be a wavalet? Additionally, as it was shown that there
are wavelets that are not MRA wavelets [1], a related question is: what conditions
are needed for ψ to be not simply a wavelet but also an MRA wavelet?

Guido led a number of students and collaborators to the investigation of these
questions and it resulted in the discovery of two simple equations that completely
characterize all (uni-variate) wavelets. That is, ψ ∈ L2(R) is a wavelet if and only if
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∥ψ∥2 = 1 and it satisfies∑
j∈Z

|ψ̂(2jξ)|2 = 1, for a.e. ξ ∈ R (2)

∞∑
j=0

ψ̂(2jξ) ψ̂(2j(ξ + 2mπ)) = 0, for a.e. ξ ∈ R,m ∈ 2Z+ 1, (3)

where ψ̂(ξ) =
∫
R e

−iξxψ(x) dx is the Fourier transform of ψ. In fact, these equa-
tions were previously known, even though under more restrictive assumptions. Equa-
tion (2), in particular, was a known necessary condition and is often referred to as
the Calderón condition, as versions of this resolution of identity have appeared in
the works of Calderón. MRA wavelets could also be characterized using a simple
equation; namely, a wavelet ψ ∈ L2(R) is an MRA wavelet if and only if

Dψ(ξ) =

∞∑
j=1

∑
k∈Z

|ψ̂(2j(ξ + 2kπ))|2 = 1, for a.e. ξ ∈ R,

a fact first established by Guido’s student Wang [10] and by Gripenberg [3], indepen-
dently. The interested reader can find a detailed derivation and insightful discussion
of these results in [6, Ch.7].

The line of investigation initiated by Guido went significantly further, leading to
the discovery of characterization equations extending equations (2)-(3) to a much
more general context. In a joint work with Guido and Eugenio Hernández [5], we
considered very general collections of functions of the form

{TCpk gp : k ∈ Zn, p ∈ P} ⊂ L2(Rn), (4)

where {gp : p ∈ P} is a countable family in L2(Rn), Ty is the translation operator
defined by Tyf(x) = f(x − y) and {Cp : p ∈ P} is a collection of n × n invertible
matrices. Under minor technical conditions, it turns out that the system (4) is a
Parseval frame1 of L2(Rn) if and only if it satisfies∑

p∈P

1
| detCp| |ĝp(ξ)|

2 = 1, for a.e. ξ ∈ Rn (5)

∑
j∈Pα

1
| detCp| ĝp(ξ) ĝp(ξ + α) = 0, for a.e. ξ ∈ Rn, α ∈ Λ, (6)

where Λ =
⋃
p∈P C

−t
p (Zn) and Pα = {p ∈ P : Ctpα ∈ Zn}. One can show that

equations (5) and (6) not only imply equations (2) and (3) but can also be used to
derive characterization equations of Gabor systems, wave packet systems and general
multidimensional wavelets. For instance, by letting P = {(j, ℓ) : j ∈ Z, ℓ = 1, . . . , L},
Cp = Cj,ℓ = A−j , gp = gj,ℓ = Dj

Aψ
ℓ, where ψℓ ∈ L2(Rn) and DA is the dilation

1A set {ϕν} ⊂ L2(Rn) is a Parseval frame of L2(Rn) if
∑

ν |⟨f, ϕν⟩|2 = ∥f∥2 holds for any
f ∈ L2(Rn). If, in addition, ∥ϕν∥ = 1 for any ν, it follows that {ϕν} is also an ONB.
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operator associated with the n × n invertible matrix A, defined by (DAf)(x) =
|detA|1/2f(Ax), then the set (4) becomes the following affine system

A(ψ1, . . . , ψℓ) = {Dj
ATk ψ

ℓ : j ∈ Z, k ∈ Zn, ℓ = 1, . . . , L}. (7)

The application of the general theory then yields that the affine systemA(ψ1, . . . , ψℓ)
is a Parseval frame of L2(Rn) if and only if it satisfies the equations

L∑
ℓ=1

∑
j∈Z

|ψ̂ℓ(Bjξ)|2 = 1, for a.e. ξ ∈ Rn (8)

L∑
ℓ=1

∑
j∈Pα

ψ̂(Bjξ) ψ̂(Bj(ξ + α)) = 0, for a.e. ξ ∈ Rn, α ∈
⋃
j∈Z

BjZn, (9)

where Pα = {j ∈ Z : B−jα ∈ Zn} and B = At is a n × n invertible matrix that is
expanding on a subspace . The above equations characterize not only multivariate wa-
velet systems with expanding dilation matrices (i.e., matrices with eigenvalues whose
modulus is larger than one) that are direct generalizations of the univariate wavelet
basis (1) but also wavelet systems with non-expanding dilation matrices. This last
observation was somewhat surprising, as it was commonly assumed that dilation
matrices had to be expanding to generate a reproducing system. It was also very
inspirational, as it motivated the construction of new wavelet-like representations of
multivariate functions that are much more flexible than separable dyadic wavelets,
such as wavelets with composite dilations [4] and shearlets [7]. This discovery spu-
rred an intense research activity on the properties and applications of this class of
wavelet-like systems for multivariate functions, with hundreds of publications.
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