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Abstract

Several empirical results appeared in the literature during the last decade have shown that it is often
possible to separate images and other multidimensional data into geometrically distinct constituents. A
rigorous mathematical analysis of the geometric separation problem in the two-dimensional setting was
recently introduced by Donoho and Kutyniok [6], who proposed a mathematical framework to separate
point and smooth curve singularities in 2D images using a combined dictionary consisting of curvelets
and wavelets. In this paper, we adapt their approach and introduce a novel argument to extend geometric
separation to the three-dimensional setting. We show that it is possible to separate point and piecewise
linear singularities in 3D using a combined dictionary consisting of shearlets and wavelets. Our new ap-
proach takes advantage of the microlocal properties of the shearlet transform and has the ability to handle
singularities containing vertices and corner points, which cannot be handled using the original arguments.

Key words and phrases: cluster coherence, geometric separation, `1 minimization, shearlets, sparse rep-
resentations, wavelets.
AMS Mathematics Subject Classification: 42C15, 42C40.

1 Introduction

Data found in applications ranging from astronomy through remote sensing and biomedical imaging can
be frequently modeled as superpositions of several distinct geometric components. Starck et al. [26, 27],
in particular, proposed a very effective algorithmic approach, called Morphological Component Analysis
(MCA), which assumes that a signal is the linear mixture of several constituents, the so-called morphological
components, each one endowed with specific geometric properties. Under the assumption that the various
morphological components are sufficiently distinct and that each one is sparsely represented in a specific
basis but not in the other ones, MCA algorithms are very successful in separating the various components,
as illustrated by several numerical applications.

The idea of using combined-basis representations and taking advantage of their sparsity properties has a
long history in applied harmonic analysis and image processing. Some pioneering work about combined-basis
representations can be found in the papers of Coifman and Wickerhauser [4] and Mallat and Zhang [24].
Another fundamental contribution to formalize these ideas was the introduction of Basis Pursuit [3], which
established `1-norm minimization as an effective method to promote sparse representations from multiple
bases. In more recent years, several other mostly empirical papers have further exploited this point of view
and provided remarkable applications to problems from image processing. In addition to the work cited
above, we recall, for example, the work in [8, 25, 29, 31]1.
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In order to provide a more rigorous mathematical formalization of the problem of data separation into
geometrically distinct components, Donoho and Kutyniok [6] recently proposed a theoretical framework for
the geometric separation of point and curve singularities in 2D (cf. also related work in [19]). The underlying
ansatz is that the success of MCA “stems from an interplay between geometric properties of objects to be
separated and the harmonic analysis for singularities of various geometric types” (cf. [6]). Hence, as a
mathematical idealization of a large class of two-dimensional objects, they consider distributions of the form
f = P + T , where P is a collection of point-like singularities and T is a cartoon-like image, that is, a planar
region enclosed by a smooth closed curve, hence producing an ‘edge’ singularity along the curve. Their goal
is to find a highly sparse representation of f , that is, an expansion into a basis (or frame) that can accurately
represent f using a relatively small number of terms. It is well-known that the type of basis which best
sparsifies a function or distribution depends on the geometry of its singularities. Wavelets, in particular,
provide very sparse representations of point-like singularities; curvelets [1] and sherlets [10, 23] provide very
sparse representations of curve-like singularities. However, neither wavelets nor curvelets (or sherlets) alone
can provide a very sparse representation of f = P + T , where different types of singularities appear jointly.
The natural alternative is to look for an appropriate representation of f in terms of a combined basis of
wavelets and curvelets.

Donoho and Kutyniok developed an ingenious machinery to obtain a sparse representation of f with
respect to a joint wavelet-curvelet dictionary, where sparsity is enforced via a procedure of minimization of
the expansion coefficients in the `1-norm. Their viewpoint for the analysis of the singularities is derived from
microlocal analysis, and, specifically, the observation that while points and curves may overlap spatially,
they are separated microlocally. In order to reveal this separation, the authors observe that the elements of
the wavelet system are ‘incoherent’ to the curvelet system, meaning that they have limited overlap in phase
space. This is used to derive an asymptotic estimate showing that, at very fine scales, the pointlike structure
of f is essentially captured by the wavelet basis while curvelike structure of f is essentially captured by
the curvelet basis. The use of the `1-norm is critical in this context to enforce the desired sparsity of the
expansion of f with respect to the combined dictionary.

In this paper, we extend the framework of geometric separation of Donoho and Kutyniok to the three-
dimensional setting by considering distributions with domain in R3 containing two different types of singular-
ities: point singularities and singularities along polyhedral surfaces. We adapt the general approach from [6]
consisting of using a combined dictionary of incoherent bases and, in particular, we adopt the important
notion of cluster coherence. However, to prove the geometric separation of the two types of singularities, we
do not use the argument in [6] which maps the singularities in phase space, since this argument does not
extend to the 3D setting. Instead, we introduce a novel method and more streamlined approach which is
based on techniques previously developed by the authors and their collaborators for the geometric charac-
terization of edge singularities in terms of the shearlet transform [11, 16, 20]. Because of this, we choose a
shearlet system, rather than a curvelet system, to sparsely represent singularities along surfaces; we use a
standard wavelet system to handle point-like singularities.

In addition to solving the 3D geometric separation problem, an advantage of our new approach is the
ability to deal with singularities including 3D edges and vertices, which pose an additional difficulty in the
geometric separation problem and cannot be handled using the original arguments from [6].

The rest of the paper is organized as follows. After setting some useful notation, we formulate the
geometric separation problem and state our main theorem in Section 2. We present the proof of the main
theorem in Section 3.

1.1 Notation.

In the following, we adopt the convention that x ∈ R3 is a column vector, i.e., x =

x1

x2

x3

, and that ξ ∈ R̂3

(in the frequency domain) is a row vector, i.e., ξ = (ξ1, ξ2, ξ3). A vector x multiplying a matrix A ∈ GL3(R)
on the right is understood to be a column vector, while a vector ξ multiplying A on the left is a row vector.
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Thus, Ax ∈ R3 and ξA ∈ R̂3. The Fourier transform of f ∈ L1(R3) is defined as

f̂(ξ) =

∫
R3

f(x) e−2πiξx dx,

where ξ ∈ R̂3, and the inverse Fourier transform is

f̌(x) =

∫
R̂3

f(ξ) e2πiξx dξ.

We will use the notation f ' g if there exist constants 0 < C1 ≤ C2 < ∞, independent of x, such that
C1 g(x) ≤ f(x) ≤ C2 g(x).

2 The geometric separation problem

As a mathematical model of images and other multidimensional data, it is useful to consider functions
or distributions that contain singularities with different types of geometry, such as points and curves if the
domain is R2 or points and surfaces if the domain is R3. In this paper, we consider idealized three-dimensional
objects of the form f = P+T , where P is a collection of pointwise singularities in R3 and T is a cartoon-like
functions in R3, that we use to model singularities along a class of surface boundaries.

We are interested in finding a representation that is able to decompose f into its distinct geometric
components. As mentioned above, we can find bases that are ideally suited to specific types of singularities.
Wavelets, in particular, offer optimally sparse representations, in a certain sense, for functions with point
singularities, while shearlets were shown to provide optimally sparse representations for functions with dis-
continuities along piecewise smooth edges and surface boundaries [13, 21]. However, neither wavelets nor
shearlets alone (and no other single basis or traditional linear representation methods) are very efficient at
representing f = P + T . This observation leads naturally to consider a multiple-basis dictionary comprising
both wavelets and shearlets. Among all possible representations of f within this dictionary, we look for
an ‘ideally’ sparse representation where wavelets are used to sparsely represent P and shearlets to sparsely
represent T .

Let us be more precise about the statement of the problem and the singularities we consider. Following
the general idea from [6], we take P to be of the form

P =

I∑
i=1

|x− xi|−1. (2.1)

This defines a function that is smooth away from the singular points {xi : 1 ≤ i ≤ I} ⊂ R3. For T , we
consider special cartoon-like images

T =

J∑
j=1

χBj , (2.2)

where each Bj is a polyhedron, that is, a compact region in R3 with polygonal boundaries. The reason for
choosing the exponent −1 in P is that we want to match the energies of P and T at each scale 2−2j , j ∈ Z.
That is, we want to make the two types of singularities comparable at each scale, so that the separation is
challenging at every scale and it is not possible to trivially separate the two components of f at different
scales.

To justify our observation about the matching energies, note in fact that P̂(ξ) ' |ξ|−2 (cf. [30, Ch.4]),

and this easily implies that
∫ 22j+2

22j |P̂(ξ)|2dξ ' 2−2j . For the cartoon-like component, we will show below in

Lemma 3.3 that T satisfies the same type of estimate so that
∫ 22j+2

22j |T̂ (ξ)|2dξ ' 2−2j .
Following the language in [6], the geometric separation problem can be stated as follows. From the

observation of f = P + T , we want to recover the unknown components P and T of f where we only know
that they are of the form (2.1) and (2.2).
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To solve this problem, we will adopt the successful strategy of Donoho and Kutyniok [6] based on `1

minimization. More precisely, we will expand f with respect to a representation consisting of the union of
a Parseval frame of wavelets in L2(R3) and a Parseval frame of shearlets in L2(R3) and enforce sparsity
by minimizing the representation coefficients in the `1-norm. As mentioned above, the sparsity-inducing
properties of the `1-norm are well known in applied harmonic analysis. We recall that these properties play
a fundamental role in the celebrated theory of compressed sensing (cf. [2, 5]).

Let us now define the wavelet and shearlet systems that we will use to represent f = P + T .

2.1 A Parseval frame of 3D wavelets

For the wavelet system, we will consider a Parseval frame of Lemariè-Meyer wavelets (cf. [18] for more details
about this class of wavelets) in L2(R3) that we denote as Φ = {φλ : λ ∈ Λ}, for Λ = {λ = (j, k), j ≥ −1, k ∈
Z3}. Here the functions φλ = φj,k ∈ L2(R3) are defined in the Fourier domain by

φ̂j,k(ξ) =

{
2−3jW (2−2jξ) e2πi2−2jξk, for j ≥ 0,

W̃ (ξ) e2πiξk, for j = −1,

where W, W̃ ∈ C∞0 (R3) satisfy the condition

W̃ 2(ξ) +
∑
j≥0

|W (2−2jξ)|2 = 1, for a.e. ξ ∈ R̂3.

In particular, we assume that the window function W has support supp (W ) ⊂ [− 1
2 ,

1
2 ]3 \ [− 1

16 ,
1
16 ]3 so that

the functions Wj = W (2−2j ·) have supports inside the Cartesian coronae

[−2−2j−1, 2−2j−1]3 \ [−2−2j−4, 2−2j−4]3 ⊂ R̂3, (2.3)

and the collection of window functions W̃ 2,W 2
j , j ≥ 0, produce a smooth tiling of the frequency space into

concentric Cartesian coronae associated with various frequency bands indexed by j.
Recall that the Parseval frame condition implies that, for any f ∈ L2(R3), we have the reproducing

formula:
f =

∑
λ∈Λ

〈f, φλ〉φλ,

with convergence in L2-norm.

2.2 A Parseval frame of 3D shearlets

The shearlet representation is one of the multiscale methods introduced during the last decade to overcome
the limitations of conventional wavelets in the analysis of multivariate functions. Similar to the curvelets of
Candès and Donoho [1], the shearlets form a collection of well localized functions defined not only across
several scales and locations, as the conventional wavelets, but also across several orientations and with highly
anisotropic shapes, so that they can more efficiently represent functions containing distributed singularities,
e.g., edges in images. Thanks to their ability to combine multiscale anlysis and high directional sensitivity,
shearlets are useful to provide a precise characterization of the geometry of singularities of functions and
distributions of several variables [11, 16, 12] and enable optimally sparse representations, in a precise sense,
for a large class of multivariate functions where traditional wavelets are suboptimal [10, 13].

With respect to curvelets, shearlets offer a combination of useful features: their mathematical structure
is derived from the theory of affine systems and the directionality is controlled by shear matrices rather than
rotations. This last property enables a unified framework for both continuum and discrete settings since
shear transformations preserve the rectangular lattice and this is an advantage in deriving faithful digital
implementations [7, 22]. Furthermore, there is a well-developed shearlet-based theory for the analysis of
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singularities (cf. [9] in addition to the references cited above). This theory sets the foundation for the main
ideas that we will employ for the analysis of the surface singularities and it is the main reason for selecting
this representation in our approach to the geometric separation problem.

Roughly speaking, our shearlet system is obtained by introducing an angular partition in the multiscale
decomposition defined by the window functions W̃ 2,W 2

j used above for the construction of the wavelet
system. Since we will not use rotations but shear transformations (defined below), we need first to split the

Fourier space R̂3 into the following 3 pyramidal regions in R̂3:

P1 =

{
(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ2

ξ1
| ≤ 1, |ξ3

ξ1
| ≤ 1

}
,

P2 =

{
(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ1

ξ2
| < 1, |ξ3

ξ2
| ≤ 1

}
,

P3 =

{
(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ1

ξ3
| < 1, |ξ2

ξ3
| < 1

}
.

Now, we let W ∈ C∞0 (R3) be the same window defined above and let v ∈ C∞(R) be an appropriate ‘bump
function’ satisfying supp v ⊂ [−1, 1] and

|v(u− 1)|2 + |v(u)|2 + |v(u+ 1)|2 = 1 for |u| ≤ 1. (2.4)

For d = 1, 2, 3, ` = (`1, `2) ∈ Z2, a 3D shearlet systems associated with the pyramidal regions Pd is a collection

{ψ(d)
j,`,k : j ≥ 0,−2j ≤ `1, `2 ≤ 2j , k ∈ Z3}, (2.5)

where

ψ̂
(d)
j,`,k(ξ) = |detA(d)|−j/2W (2−2jξ)V(d)(ξA

−j
(d)B

[−`]
(d) ) e

2πiξA−j
(d)
B

[−`]
(d)

k
, (2.6)

V(1)(ξ1, ξ2, ξ3) = v( ξ2ξ1 )v( ξ3ξ1 ), V(2)(ξ1, ξ2, ξ3) = v( ξ1ξ2 )v( ξ3ξ2 ), and V(3)(ξ1, ξ2, ξ3) = v( ξ1ξ3 )v( ξ2ξ3 ); the matrices A(d)

are given by

A(1) =

4 0 0
0 2 0
0 0 2

 , A(2) =

2 0 0
0 4 0
0 0 2

 , A(3) =

2 0 0
0 2 0
0 0 4

 ,

and the matrices B(d), called shear matrices, are defined by

B
[`]
(1) =

1 `1 `2
0 1 0
0 0 1

 , B
[`]
(2) =

 1 0 0
`1 1 `2
0 0 1

 , B
[`]
(3) =

 1 0 0
0 1 0
`1 `2 1

 .

Notice that (B
[`]
(d))
−1 = B

[−`]
(d) . Let us make a few observations about the properties of these systems.

Due to the support conditions on W and v, the elements of the system of shearlets (2.5) have compact

support in Fourier domain. For example, for d = 1, the shearlets ψ̂
(1)
j,`,k(ξ) can be written explicitly as

ψ̂
(1)
j,`1,`2,k

(ξ) = 2−2jW (2−2jξ) v
(

2j
ξ2
ξ1
− `1

)
v
(

2j
ξ3
ξ1
− `2

)
e

2πiξA−j
(1)
B

[−`1,−`2]

(1)
k
, (2.7)

showing that their supports are contained inside the regions

Uj,` = Uj,`1,`2

= {(ξ1, ξ2, ξ3) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2ξ1 − `12−j | ≤ 2−j , | ξ3ξ1 − `22−j | ≤ 2−j}. (2.8)

That is, the shearlets ψ̂
(1)
j,`,k have supports contained in trapezoidal regions defined at various scales, controlled

by j > 0, and various orientations, controlled by the shear parameters `1, `2. Hence, the elements of the
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ξ1

ξ2

ξ3

Figure 1: Frequency support of a representative shearlet ψ
(1)
j,`,k, inside the pyramidal region P1. The orienta-

tion of the support region is controlled by the shear index ` = (`1, `2).

shearlet system (2.5) are well-localized functions, defined over a range of locations, scales and orientations,
controlled by the indices j, ` = (`1, `2) and k, respectively. The support region of a representative shearlet

ψ̂
(1)
j,`,k is illustrated in Fig. 1.

A Parseval frame of shearlets for L2(R3) is obtained by combining the shearlet systems (2.5) associated
with the cone-shaped regions Pd together with the coarse scale system {φ−1,k : k ∈ Z3}. Note that this
is the same coarse scale system of the Lemeriè-Meyer wavelet system defined above. For brevity, in the
following we will denote the Parseval frame of 3D shearlets as Ψ = {ψη : η ∈ M} ⊂ L2(R3), where the
index set is M = MC ∪MF , MC = {k ∈ Z3} is the set of indices associated with coarse-scale shearlets and
MF = {η = (j, `, k, d) : j ≥ 0, |`1| ≤ 2j , |`2| ≤ 2j , k ∈ Z2, d = 1, 2, 3} is the set of indices associated with
fine-scale shearlets. As above, the Parseval frame condition implies that, for any f ∈ L2(R3), we have the
reproducing formula:

f =
∑
η∈M
〈f, ψη〉ψη,

with convergence in L2-norm.
Remark. To simplify the presentation, our construction above omits some technical details. To ensure

that the frame is tight when the shearlet functions from the 3 pyramidal regions are combined and still
guarantee that all elements of the combined shearlet system are C∞0 in the Fourier domain, it is convenient

to slightly modify the functions ψ
(d)
j,`1,`2,k

, for `1, `2 = ±2j (these are the functions whose support overlap
the boundaries of the regions Pd). This modification consists, essentially, in merging shearlet elements from
contiguous pyramidal regions. The construction of these boundary shearlets is rather technical and plays no
role in the paper. We refer the interested reader to [13, 15].

2.3 Main theorem

Our main theorem shows that it is possible to separate the two geometrically distinct components of f taking
advantage of the sparsity properties of the Parseval frames of wavelets and shearlets. Similar to [6], this
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separation result is true only asymptotically in scale, that is, we show that we separate point singularities and
singularities along polyhedral surfaces only as a limiting process, when the scale tends to zero (i.e., j →∞).

Therefore, it will useful to derive an appropriate multiscale decomposition of f = P + T .
For this, we recall that the window functions Wj used in the construction of the wavelet and shearlet

systems produce a multiscale decomposition of the Fourier space L2(R3) into the Cartesian coronae (2.3).

Hence, we can define a family of band-pass filters Fj , j ≥ −1, by setting F̂j(ξ) = W (2−2jξ), for j ≥ 0,

F̂−1(ξ) = W̃ (ξ). By applying these filters to f , P and T we define

Pj = P ∗ Fj , Tj = T ∗ Fj , fj = f ∗ Fj , (2.9)

where, as observed above, we have that ‖Pj‖2 ' 2−j and ‖Tj‖2 ' 2−j . It follows that the functions f̂j are
band-limited, with frequency support contained in the Cartesian coronae [−22j−1, 22j−1]3\[−22j−4, 22j−4]3 ⊂
R̂3. Furthermore, for f ∈ L2(R3), it follows from the tiling properties of the function W (2−2j ·) that

f =
∑
j

Fj ∗ fj , (2.10)

with convergence in the L2-norm.
Let Fj denote the range of the operator of convolution with Fj . It is a simple calculation to verify that

the shearlets and wavelets at level j′ are orthogonal to Fj unless |j′−j| ≤ 1, that is, unless j′ = j−1, j, j+1.
It is useful to introduce the notation

Λj = {λ = (j′, k) : |j′ − j| ≤ 1, k ∈ Z3} ⊂ Λ (2.11)

and
Mj = {η = (j′, `, k, d) : |j′ − j| ≤ 1, |`1| ≤ 2j , |`2| ≤ 2j , k ∈ Z3, d = 1, 2, 3} ⊂M. (2.12)

Due to the Parseval frame property and the observation above, we have that a function fj ∈ Fj can be
expanded using only the elements of the wavelet system in Λj but also using only the elements of the
shearlet system in Mj . In other words, at the level j, we can use the wavelet system to represent fj as

fj =

j′=j+1∑
j′=j−1

∑
k′∈Z2

〈fj , φj′,k′〉φj′,k′ =
∑
λ∈Λj

〈fj , φλ〉φλ;

or we can use the shearlet system to represent fj as

fj =

3∑
d=1

j′=j+1∑
j′=j−1

∑
|`1|≤2j′

∑
|`2|≤2j′

∑
k∈Z2

〈fj , ψ(d)
j′,`1,`2,k

〉ψ(d)
j′,`1,`2,k

=
∑
η∈Mj

〈fj , ψη〉ψη.

Clearly, we can also consider a combined representation of the form

fj =
∑
λ∈Λj

uλ φλ +
∑
η∈Mj

tη ψη,

for an appropriate choice of coefficients u = (uλ) and t = (tη). Since, in this last expression, we are
considering an overcomplete dictionary, there are many possible choices of coefficients u and t, some of
which may provide sparser representations than either one of the two expansions above. Similar to [6], we
seek a solution providing a geometric separation, that is, we consider the following dual-frame component
separation problem based on `1 minimization:

(U∗j , T
∗
j ) = arg min(‖u‖1 + ‖t‖1), subject to fj = Uj + Tj , (2.13)
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where uλ = 〈Uj , φλ〉, λ ∈ Λj and tη = 〈Tj , ψη〉, η ∈Mj . It follows from (2.10) that, if we let P̃ =
∑
j Fj ∗Uj ,

T̃ =
∑
j Fj ∗ Tj , then we can express f as the superposition f = P̃ + T̃ .

The main result of our paper is the following theorem, stating that we achieve the separation of the
distinct geometric objects P and T , asymptotically at fine scales, by applying `1 minimization over the
expansion coefficients of f with respect to our combined wavelet-shearlet dictionary.

Theorem 2.1. Let Φ and Ψ be the Parseval frames of wavelets and shearlets, respectively, defined above
and denote ‖g‖1,Φ =

∑
λ∈Λj

|〈g, φλ〉| and ‖g‖1,Ψ =
∑
η∈Mj

|〈g, ψη〉|, where Λj is given by (2.11) and Mj is

given by (2.12). Let fj = Uj + Tj be given as above and Pj, Tj be given by (2.9). We have that

lim
j→∞

‖Uj − Pj‖1,Φ + ‖Tj − Tj‖1,Ψ
‖Pj‖1,Φ + ‖Tj‖1,Ψ

= 0.

That is, asymptotically as the scale tends to zero, the pointlike component of f is captured by the Parseval
frame of wavelets and the piecewise linear component of f is captured by the Parseval frame of shearlets.

Remark 2.1. The statement of Theorem 2.1 is different from the corresponding Theorem 1.1 in [6], valid
in the two-dimensional case, since it is formulated using the `1–norm rather than the `2–norm used in [6].
This difference with respect to the original result is crucial to be able to handle singularities containing edges
and vertices.

We recall that the geometric separation result originally obtained in [6] deals with 2D images containing
point-like and smooth curve-like singularities, but does not handle linear or curve-like singularities containing
corner points. The approach presented in our paper can be easily adapted to the two-dimensional case so
that our Theorem 2.1 is indeed valid also in the case of 2D images containing point-like and piecewise linear
singularities including corner points. We remark that the handling of corner points is not trivial and cannot
be derived from the arguments in [6].

On the other hand, our result does not cover general surface and curve singularities (e.g., an arc of a
circle or a a section of a sphere). After presenting our proof, we will make additional comments to show
where our arguments break down in this situation.

The rest of the paper is devoted mostly to the proof of Theorem 2.1.

3 Proof of main theorem

As we will show below, our proof follows the general architecture of the proof from [6], which is centered
around the notion of cluster coherence. However, the most critical parts of the proof, that is, the actual
proof that the cluster coherence satisfies the desired estimates for the three-dimensional objects considered
in this paper, do not follow from [6] and are completely new. These arguments are contained in the proofs of
Lemma 3.5 and Lemma 3.6 and are presented in the next sections. The proof of Lemma 3.5, in particular,
uses a self-improving process that is a valuable idea in itself. Lemma 3.6 gives the decay estimate for edges
and corner points and is significantly more involved than the corresponding result used in [6] to analyze the
smooth segment case (also compare our Lemma 3.7 in Section 3.2). We will make further comments about
the significance of these lemmata below, after introducing some definitions.

Let Φ = {φλ : λ ∈ Λ} and Ψ = {ψµ : µ ∈ M} be the Parseval frames of 3D wavelets and 3D shearlets
introduced above, respectively. For each level j ∈ Z, we will identify certain subsets of the indices Λ and M
that we denote as S1,j ⊂ Λj and S2,j ⊂Mj . Following the terminology in [6], we refer to them as indices of
significant wavelet coefficients and indices of significant shearlet coefficients, respectively. These index sets
will identify, essentially, those wavelet and shearlet coefficients whose magnitude is above a certain scale-
dependent threshold (hence, the name ‘significant’). Their explicit definition, when the expansion coefficients
are computed on f = P + T , will be determined in Sec. 3.1 (for S1,j) and Sec. 3.2, after Lemma 3.7 (for
S2,j).
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Corresponding to the sets S1,j and S2,j , we define the wavelet approximation error and the shearlet
approximation error at the level j as

δ1,j =
∑
λ∈Sc1,j

|〈Pj , φλ〉|, δ2,j =
∑
η∈Sc2,j

|〈Tj , ψη〉|

respectively. As we will see below, it will be possible to determine the indices of significant wavelet and
shearlet coefficients S1,j and S2,j in such a way that the wavelet and shearlet approximation errors are small,
meaning that the `1-norm of the wavelet and shearlet coefficients is negligible (asymptotically, at fine scales),
when the indices are outside the sets S1,j and S2,j .

We define the cluster coherences as

µc(S1,j ,Φ; Ψ) = max
η

∑
λ∈S1,j

|〈φλ, ψη〉|, µc(S2,j ,Ψ; Φ) = max
λ

∑
η∈S2,j

|〈φλ, ψη〉|.

The notion of cluster coherence was originally proposed in [6]. Unlike the more standard definition of
coherence, given by µ(Φ,Ψ) = maxλ,η |〈φλ, ψη〉|, the cluster coherence bounds coherence between a single
member of a frame and a cluster of members of another frame.

Let Φ be the matrix representation of the Parseval frame of wavelets and Ψ the matrix representation of
our Parseval frame of shearlets. For a gj ∈ L2(R3) ∩ L1(R3) such that supp (ĝj) ⊂ Fj , let

‖1S1,jΦ
T gj‖1 =

∑
λ∈S1,j

|〈gj , φλ〉|, ‖1S2,jΨ
T gj‖1 =

∑
η∈S2,j

|〈gj , ψη〉|.

We define the joint concentration by

κ = κ(S1,j , S2,j) = sup
gj

‖1S1,j
ΦT gj‖1 + ‖1S2,j

ΨT gj‖1
‖ΦT gj‖1,Φ + ‖ΨT gj‖1,Ψ

.

The following observation from [6] illustrates the relationship between joint concentration and data separa-
tion.

Proposition 3.1. ([6, Prop. 2.1]) Suppose that, for j ∈ Z, fj = Uj + Tj so that each component of fj is
relatively sparse in Φ or Ψ, that is,

‖1SC1,jΦ
TUj‖1 ≤ δ1,j , ‖1SC2,jΨ

TTj‖1 ≤ δ2,j .

If (U∗j , T
∗
j ) solves (2.13), then

‖U∗j − Pj‖1,Φ + ‖T ∗j − Tj‖1,Ψ ≤
2(δ1,j + δ2,j)

1− 2κ
.

Another observation from [6] is that the joint concentration is bounded above by the maximum of the
cluster coherences:

Lemma 3.2. ([6, Lemma. 2.1])

κ(S1,j , S2,j) ≤ max{µc(S1,j ,Φ; Ψ), µc(S2,j ,Ψ; Φ)}

It follows from Proposition 3.1 and Lemma 3.2 that Theorem 2.1 is proved if we can construct appropriate
sets of significant wavelet and shearlet coefficients S1,j and S2,j such that δ1,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ),
δ2,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ) and

µc(S1,j ,Φ; Ψ)→ 0, µc(S2,j ,Ψ; Φ)→ 0, as j →∞.
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The rest of the proof is organized as follows. In Section 3.1, we will select an appropriate set S1,j and
show that µc(S1,j ,Φ; Ψ)→ 0 and δ1,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ). This is the easy part of the argument and it
follows from an idea similar to [6]. For the ‘hard’ part of the proof, concerning the analysis of the singularities
along the polyhedral surfaces, it is not possible to apply the original argument from [6] and we will derive
a novel approach. Namely, in Section 3.2, we will construct an appropriate index set of significant shearlet
coefficients S2,j and show that µc(S2,j ,Ψ; Φ) → 0 and δ2,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ). Our most delicate
estimates are contained in the proof of Lemma 3.6 in Section 3.2, where it is highly nontrivial to control the
size of the translation variable k corresponding to 3D edges and vertices. Our novel argument is based on
techniques for the analysis of singularities using the shearlet transform that we originally developed for the
characterization of piecewise smooth boundaries of multivariate functions in [12, 14].

In the following, for all our arguments, it will be sufficient to consider the shearlet system associated with
the cone-shaped regions P1 ⊂ R̂3 only, since the properties of the similar system in P2 and P3 are the same.
The elements (2.7) of such shearlet system can be written2 as

ψ̂
(1)
j,`1,`2,k

(ξ) = 2−2jΓj,`1,`2(ξ) e
2πiξA−j

(1)
B

[−`1,−`2]

(1)
k
,

where

Γj,`1,`2(ξ) = W (2−2jξ) v
(

2j
ξ2
ξ1
− `1

)
v
(

2j
ξ3
ξ1
− `2

)
.

Note that A−j(1)B
[−`1,−`2]
(1) k = (2−2j(k1 − `1k2 − `2k3), 2−jk2 + 2−jk3). Each function Γj,`1,`2 is supported

inside the set Uj,`1,`2 , given by (2.8). It is easy to verify that its measure satisfies |Uj,`1,`2 | ≤ C 24j .

3.1 Estimate for the point singularities

In this section, we will select the set S1,j and prove that µc(S1,j ,Φ; Ψ)→ 0 and δ1,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ),
asymptotically as j →∞. As indicated above, the rather simple argument that we use is similar to [6].

Let φj′,k′ and ψj,`1,`2,k be generic elements from the Parseval frames of wavelets and shearlets, respec-

tively. Due to the frequency support of W , for any `1, `2, k and k′ we have that 〈ψ̂j,`,k, φ̂j′,k′〉 = 0 if
|j − j′| > 1. Thus for all large j′ and j = j′ − 1, j′, j′ + 1, a direct computation shows that

|〈 ̂ψj,`1,`2,k, φ̂j′,k′〉| =

∣∣∣∣∫
R2

(
2−2jΓj,`1,`2(ξ) e

−2πiξA−j
(1)
B

[−`1,−`2]

(1)
k

)(
2−3j′W (2−2j′ξ)e2πi2−3j′ξ·k′

)
dξ

∣∣∣∣
≤ 2−2j2−2j′

∫
R3

|Γj,`1,`2(ξ)W (2−2j′ξ)| dξ

≤ C 2−2j2−3j′
∫

Ωj,`1,`2

dξ ≤ C 2−2j2−3j′24j ≤ C 2−j ,

where C is independent of `1, `2, k, k
′ and j.

For a fixed 0 < ε < 1, we set S1,j = {(j′, k′) : j′ = j − 1, j, j + 1; |k′| ≤ 2εj
′}. Then, using the calculation

above, we have that

µc(S1,j ,Φ; Ψ) ≤ C max
`1,`2,k

j+1∑
j′=j−1

∑
|k′|≤2εj′

|〈 ̂ψj,`1,`2,k, φ̂j′,k′〉| ≤ C2(−1+ε)j .

It follows that µc(S1,j ,Φ; Ψ)→ 0, as j →∞.

2Here we ignore the fact that the boundary elements corresponding to ` = ±2j are slightly modified, since this is irrelevant
for all our arguments.
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We also observe that 〈φ̂j′,k′ , P̂j〉 = 0 for all k′ if |j′ − j| > 1. For |j′ − j| ≤ 1, we have that

〈φ̂j′,k′ , P̂j〉 = 2−3j′ C

∫
R3

W (2−2j′ξ) e2πi2−2j′ξ·k′W (2−2jξ)|ξ|−2 dξ

= C2−j
′
∫
R3

W (ξ)W (22(j′−j)ξ) e2πiξ·k′ |ξ|−2 dξ.

Hence, for |k′| ≥ 2εj , integration by parts gives that

|〈φ̂j′,k′ , P̂j〉| ≤ CN 2−j(1 + |k′|)−N ≤ CN 2−(1+Nε)j .

It follows that, by choosing N sufficiently large, we have:

δ1,j =
∑
λ∈Sc1,j

|〈φλ, Pj〉| ≤ C 2−2j = o(2−j) = o (‖Pj‖1,Φ + ‖Tj‖1,Ψ) .

3.2 Estimate for the piecewise linear singularities

We first recall the Divergence Theorem in R3. Let ~F be a smooth vector field in R2 and S be a compact
region in the plane with a piecewise smooth simple boundary ∂S. Then∫

S

5 · ~F dA =

∫
∂S

~F · ~n ds,

where ~n(x) is the outer normal direction at x ∈ ∂S.
Let T be the characteristic function of a polyhedron of M faces in R3. Without loss of generality, we

may assume that the polyhedron is contained inside the cube [−1, 1]3 (if not, the polyhedron can be rescaled
by dilation on the space variables). Let S = ∪Mm=1Sm be the boundary of the polyhedron, where for each

1 ≤ m ≤ M , Sm is a polygon in R2. For ξ ∈ R̂3, Using the divergence theorem we can express the Fourier
transform of T as follows

T̂ (ξ) = − 1

2πi|ξ|

∫
S

e−2πiξ·x ξ

|ξ|
· ~n(x) dσ(x)

=

M∑
1

(− 1

2πi|ξ|
)

∫
Sm

e−2πiξ·x ξ

|ξ|
· ~n(x) dσ(x)

=

M∑
1

T̂ (m)(ξ),

where T̂ (m)(ξ) = − 1
2πi|ξ|

∫
Sm

e−2πiξ·x ξ
|ξ| · ~n(x) dσ(x) for each 1 ≤ m ≤M .

In order to estimate T̂ (m)(ξ), we divide Sm into finitely many sub-surfaces so that each sub-surface is the
graph of a linear function on a triangle domain Dm ∈ R2. Without loss of generality, we may assume that
each surface Sm can be written as Sm = {(Ax2 +Bx3, x2, x3) : (x2, x3) ∈ Dm}, where Dm = {(x2, x3) : 0 ≤
x3 ≤ bx2, a1 ≤ x2 ≤ a2} and A,B, b, a1, a2 are appropriate constants. Let η = (η1, η2) = (Aξ1 +ξ2, Bξ1 +ξ3)
so that, for x ∈ Sm, we have ξ ·x = ξ1(Ax2 +Bx2) + ξ2x2 + ξ3x3 = (Aξ1 + ξ2)x2 + (Bξ1 + ξ3)x3 = η · (x2, x3).

A direction calculation shows that∫
Sm

e−2πiξ·x ξ

|ξ|
· ~n(x) dσ(x) =

∫
Dm

e−2πi η·(x2,x3) ξ

|ξ|
· (−1, A,B) dx3dx2

' 1

1 + |Bξ1 + ξ3|
1

1 + |Aξ1 + ξ2 + b(Bξ1 + ξ3)|
.
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It follows that

T̂ (m)(ξ) ' 1

|ξ|
1

1 + |Bξ1 + ξ3|
1

1 + |Aξ1 + ξ2 + b(Bξ1 + ξ3)|
. (3.14)

Let K be the characteristic function of the unit ball in R3. It is known that K̂(ξ) = |ξ|− 3
2 J 3

2
(|ξ|), where

J 3
2

is the Bessel function of order 3/2. Using the observation that the asymptotic decay of J 3
2
(|ξ|), for large

|ξ|, is of the order |ξ|− 1
2 (cf. [28, Ch.8]), it follows that ‖Kj‖2 = ‖K ∗ Fj‖2 ' 2−j . The following lemma

shows that the same estimate holds for Tj .

Lemma 3.3. For j ∈ N and Tj defined above, the following estimate holds:

‖Tj‖2 ' 2−j .

Proof. Using the notation introduced above, let T̂ (m)
j (ξ) = T̂ (m)(ξ)W (2−2jξ). Since T̂j =

∑M
1 T̂

(m)
j

and 22j ≤ |ξ| ≤ 22j+2 inside the support of W (2−2jξ), an easy calculation using spherical coordinates gives
that

‖T (m)
j ‖22

'
∫

22j≤|ξ|≤22j+2

1

|ξ|2
1

1 + |Bξ1 + ξ3|2
1

1 + |Aξ1 + ξ2 + b(Bξ1 + ξ3)|2
dξ

' 2−2j .

Hence, ‖Tj‖2 = ‖
∑M

1 T
(m)
j ‖2 ' 2−j . 2

The following lemma is a special case of Proposition 4.7 in [17].

Lemma 3.4. Let β = (βi) be a sequence of non-negative numbers and let |β|(N) be the Nth-largest element
in the decreasing rearrangement of β. Then ∑

βi≤|β|(N)

β2
i

 1
2

≤ C N− 1
2 ‖β‖1,

where C is independent of N .

Using the Lemma 3.4, we derive the following observation.

Lemma 3.5. For a fixed large j, let βj = {βj(j′, `1, `2, k) = 〈Tj , ψj′,`1,`2,k〉 : |`1| ≤ 2j
′
, |`2| ≤ 2j

′
, j − 1 ≤

j′ ≤ j + 1, k ∈ Z3} and, for v = 1, 2, define the norms

‖βj‖v =

 j+1∑
j′=j−1

∑
|`1|≤2j′

∑
|`2|≤2j′

∑
k∈Z3

|〈Tj , ψj′,`1,`2,k〉|v
 1

v

.

Then there is a constant C > 0 such that ‖βj‖1 ≥ C 2−
1
4 j .

Proof. Let

α̂j′,j,`(ξA
−j′
(1) B

[−`]
(1) ) = 2−2j′W (2−2j′ξ) Γj′,`(ξ) e

2πiξA−j
′

(1)
B

[−`]
(1)

k
W (2−2jξ)

so that

βj(j
′, `1, `2, k) = 22j′

∫
[−1,1]3

T (x)αj′,j,`1,`2(B
[`]
(1)A

j′

(1)x− k) dx.
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Using the change of variable y = B
[`]
(1)A

j′

(1)x, it is easy to verify that there is a constact C > 0 such that

|βj(j′, `, k)| ≤ C 2−2j′ since
∫
R3 |αj′,j,`1,`2(y − k)|dy ≤ C uniformly for all j′, j, `1, `2.

For a fixed j ≥ 0, as in Lemma 3.4, we denote by |β|(n) the nth-largest element for |βj(j′, `1, `2, k)|. If
we let N = 2j , then we have the following estimate for the sum of the squares of the first 2j largest terms:

(

2j∑
n=1

|β|2(n))
1
2 ≤ C 2

1
2 j 2−2j′ = C 2−

1
2 j 2−j ≤ C 2−

1
2 j‖βj‖2,

where we used the fact that ‖βj‖2 ' 2−j since the shearlet system is a tight frame.

The last expression is controlled by 2−
1
2 j‖βj‖1 since ‖βj‖2 ≤ ‖βj‖1. Thus, combining this fact with the

estimate of Lemma 3.4 for N = 2j , we have that

‖βj‖1 ≥ 2
1
2 j‖βj‖2 ≥ 2−

1
2 j .

Now we apply Lemma 3.4 again with N = 2
3
2 j to get that there is constant C > 0 such that ∑

βi≤|β|(23j/2)

β2
i


1
2

≤ C 2−
3
4 j ‖βj‖1.

Again we observe that

(

2
3
2
j∑

n=1

|β|2(n))
1
2 ≤ C 2

3
4 j 2−2j′ = C 2−

5
4 j = C 2−

3
4 j2−

1
2 j ≤ C 2−

3
4 j‖βj‖1.

Combining the above two estimates, we conclude that there is constant C > 0 such that ‖βj‖1 ≥
C2

3
4 j‖βj‖2 ≥ C2−

1
4 j . 2

Let β
(m)
j (j′, `1, `2, k) = 〈T (m)

j , ψj′,`1,`2,k〉, where (using the same notation as in the proof of Lemma 3.3)

T̂ (m)
j (ξ) = T̂ (m)(ξ)W (2−2jξ) and T̂ (m)(ξ) is given by (3.14). Since

〈Tj , ψj′,`1,`2,k〉 = 〈T̂j , ̂ψj′,`1,`2,k〉 =

M∑
m=1

〈T̂ (m)
j , ̂ψj′,`1,`2,k〉,

we can write

βj(j
′, `1, `2, k) =

M∑
m=1

〈T (m)
j , ψj′,`1,`2,k〉 =

M∑
m=1

β
(m)
j (j′, `1, `2, k).

A direct calculation gives that

β
(m)
j (j′, `1, `2, k) = 〈T̂ (m)

j , ̂ψj′,`l,`2,k〉

= 2−2j′
∫
Uj′,`1,`2

T̂ (m)
j (ξ) Γj′,`1,`2(ξ) e

2πiξA−j
′

(1)
B

[−`]
(1)

k
dξ.

In order to deal with the edges and vertices in the singularity set and control the size of k, we will now

decompose the functions T̂ (m)
j into their ‘directional’ components.

Let g(t) = |V (t)|2, where V is the function introduced in Section 2 for the construction of the shearlets.
Clearly, g ∈ C∞0 (−1, 1) and, by (2.4), it follows that for all j ≥ 0 it satisfies the equation

2j∑
p=−2j

g(2jt− p) = 1, for |t| ≤ 1.
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Hence, we obtain the following expansion of T̂ (m)
j into its the ‘directional’ components:

T̂ (m)
j (ξ) =

2j∑
p=−2j

2j∑
q=−2j

̂T (m,p,q)
j (ξ),

where

T̂ (m,p,q)
j (ξ) = −W (2−2jξ)

(2π)2|ξ|
ξ

|ξ|
· (−1, A,B)

∫
D

g(2jx2 − p)g(2jx3 − q)e−2πiη·(x2,x3)dx3dx2.

Let β
(m,p,q)
j (j′, `1, `2, k) = 〈T̂ (m,p,q)

j , ̂ψj′,`1,`2,k〉. For simplicity of notations, in the following we will
assume j′ = j. If j′ 6= j, the only difference is that one needs to add up the terms corresponding to
j′ = j − 1, j, j + 1 and, as we have seen above, the effect of adding up j′ = j − 1, j, j + 1 is irrelevant for the
argument since it only yields a different uniform constants in the final estimates. Thus, in the following, we
will ignore the sum over j′ and only consider the terms

β
(m,p,q)
j (`1, `2, k) := 〈T̂ (m,p,q)

j , ̂ψj,`1,`2,k〉.

Let η = (Aξ1 + ξ2, Bξ1 + ξ3) = ξ1(A+ ξ2
ξ1
, B + ξ3

ξ1
). Due to the assumptions on the support of ψ̂, we see

that, on the support Uj,`1,`2 of Γj,`1,`2 , we have that |2j ξ2ξ1 − `1| ≤ 1, |2j ξ3ξ1 − `2| ≤ 1 and 22j ≤ |ξ1| ≤ 22j+2.

Let `1,m = −A2j , ; `2,m = −B2j . It follows that

|η|2 = |ξ1|2
(

(A+
ξ2
ξ1

)2 + (B +
ξ3
ξ1

)2

)
' 2j

(
(2j

ξ2
ξ1

+A2j)2 + (2j
ξ3
ξ1

+B2j)2

)
' 2j

(
(`1 − `1,m)2 + (`2 − `2,m)2

)
.

For each pair of (p, q) ∈ Z× Z, it is easy to see that the support of the function g(2jx2 − p)g(2jx3 − q)
is contained inside the set Ip,q = (2−jp− 2−j , 2−jp+ 2−j)× (2−jq− 2−j , 2−jq+ 2−j) and that

⋃2j
p,q=−2j Ip,q

is an open cover of [−1, 1]2. We wil consider the following two types of integer pairs (p, q):

J (1)
p,q = {(p, q) ∈ Z× Z : Ip,q

⋂
∂D 6= ∅}, J (2)

p,q = {(p, q) ∈ Z× Z : Ip,q
⋂
∂D = ∅}.

We observe that there are at most C2j pairs of (p, q) in J
(1)
p,q and at most C22j pairs of (p, q) in J

(1)
p,q . The

following two lemmata are the key estimates for the proof of Theorem 2.1. The ideas used below are based
on the techniques developed by the authors for the shearlet-based analysis of singularities in [11, 13].

Lemma 3.6. For a given ε > 0 and for (p, q) in J
(1)
p,q , we have that

∑
(p,q)∈J(1)

p,q

M∑
m=1

∑
|`1|≤2j

∑
|`2|≤2j

∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ C 22εj2−

1
2 j .

Proof. Let L be the differential operator:

L =

(
I − (

22j

2π
)2 ∂

2

∂ξ2
1

) (
1− (

2j

2π
)2 ∂

2

∂ξ2
2

)2(
1− (

2j

2π
)2 ∂

2

∂ξ2
3

)
.
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A direct computation shows that

β
(m,p,q)
j (`1, `2, k) = 〈T̂ (m,p,q)

j , ̂ψj,`1,`2,k〉

=
2−2ji

2π

∫
D

g(2jx2 − p)g(2jx3 − p)
∫
Uj,`

ξ · (−1, A,B)

|ξ|
W (2−2jξ) Γj,`1,`2(ξ)

×e2πiξ·(2−2j(k1−`1k2−`2k3−22j(Ax2+Bx3),2−j(k2−2jx2)),2−j(k3−2jx2)) dξ dx3 dx2

=
2−2ji

2π

∫
D

g(2jx2 − p)g(2jx3 − p)
∫
Uj,`

LN
(
ξ · (−1, A,B)

|ξ|
W (2−2jξ) Γj,`1,`2(ξ)

)
×L−N

(
e2πiξ·(2−2j(k1−`1k2−`2k3−22j(Ax2+Bx3),2−j(k2−2jx2)),2−j(k3−2jx2))

)
dξ dx3 dx2.

It is easy to verify that, for ξ ∈ Uj,` = Uj,`1,`2 , we have:

|LN
(
ξ · (−1, A,B)

|ξ|
W (2−2jξ) Γj,`1,`2(ξ)

)
| ≤ CN 2−2j .

Since |Uj,`| ≤ C 24j , it follows that

|β(m,p,q)
j (`1, `2, k)| ≤ CN

∫
D

((
1 + (k1 − `1k2 − `2k3 − 22j(Ax2 +Bx3))2

)
×
(
1 + (k2 − 2jx2)2

) (
1 + (k3 − 2jx3)2

))−N
dx3dx2.

For any given ε > 0, if |k2−2jx2| > 2εj or |k3−2jx3| > 2εj or |k1−k2`1−k3`2−22j(Ax2 +Bx3)| > 2εj for
all (x2, x3) ∈ Ip,q, then the above inequality with sufficient large N yields the lemma. Thus, let us instead
examine the situation where, for some (x2, x3) ∈ Ip,q, k = (k1, k2, k3) satisfies the following set of conditions:

|k2 − 2jx2| ≤ 2εj , |k3 − 2jx3| ≤ 2εj , (3.15)

|k1 − k2`1 − k3`2 − 22j(Ax2 +Bx3)| ≤ 2εj . (3.16)

To complete the proof, we want to obtain an `1 estimate for the sequence {β(m,p,q)
j (`1, `2, k), |`1| ≤ 2j , |`2| ≤

2j , k ∈ Z3}. By the Parseval’s Theorem on Fourier series, it is easy to derive an `2 estimate for this sequence
with respect to the index k. In order to apply Hölder’s inequality and obtain the desired `1 estimate from
the `2 estimate, we need to use the inequalities (3.15) and (3.16) to estimate the cardinality of the set of

those k that are really involved in the sequence {β(m,p,q)
j (`1, `2, k)}. From the above two inequalities, we

obtain the norm estimate |k| ≤ C24j for those k in the set and this gives an upper bound for the cardinality
of the set. Unfortunately, this estimate is too rough to be useful for the proof of the result of this lemma.
In fact, we need a bound for the cardinality of the set of order O(e(1+3ε)j). To this end, we observe that a
translation of the set will change the norm estimate of the set, but will not change the cardinality of the set.
It turns out that, on each open interval Ip,q ⊂ [−1, 1]2, we can find the appropriate translation so that the
estimate O(e(1+3ε)j) for the cardinality of the set is achieved.

Recalling that Ip,q = (2−jp−2−j , 2−jp+2−j)×(2−jq−2−j , 2−jq+2−j), it follows that 2jx2 = p+α(x2),
2jx3 = q + β(x3), and 22j(Ax2 + Bx3) = 2j(Ap + Bq) + γ(x2, x3) with |α(x2)| ≤ 1, |β(x3)| ≤ 1 and
|γ(x2, x3)| ≤ C2j for all (x2, x3) ∈ Ip,q. Let

S1 = {k2 : |k2 − 2jx2| ≤ 2ε}, T1 = {k3 : |k3 − 2jx3| ≤ 2ε}, for some (x2, x3) ∈ Ip,q,
S2 = {k2 : |k2 − α(x2)| ≤ 2ε}, T2 = {k3 : |k3 − β(x3)| ≤ 2ε}, for some (x2, x3) ∈ Ip,q,
J1 = {k1 : |k1 − k2`1 − k3`2 − 22j(Ax2 +Bx3)| ≤ 2εj , k2 ∈ S1, k3 ∈ T1}, for some (x2, x3) ∈ Ip,q,
J2 = {k1 : |k1 − k′2`1 − k′3`2 − 22j − γ(x2, x3)| ≤ 2εj , k2 ∈ S2, k3 ∈ T2}, for some (x2, x3) ∈ Ip,q,
K1 = S1 × J1 × T1, K2 = S1 × J1 × T1.
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From inequalities (3.15) and (3.16), we see that we need to estimate card (K1). In the following we will
show that, on Ip,q, K2 is a translation of K1 and that card (K2) ≤ C2(1+3ε)j , which will yield the desired
estimate card (K1) ≤ C2(1+3ε)j .

Since 2jx2 = p + α(x2) and 2jx3 = q + β(x3), it follows that card (S1) = card (S2) and card (T1) =
card (T2). For any k2 ∈ S2, k3 ∈ T2, we have that |k2| ≤ 2εj+ |α(x2)| ≤ C2εj and |k3| ≤ 2εj+ |β(x3)| ≤ C2εj .
Thus, card (S1) = card (S2) ≤ C2εj and card (T1) = card (T2) ≤ C2εj uniformly for (x2, x3) ∈ Ip,q. Note
that, for k2 ∈ S1, k3 ∈ T1, we have that k2 = k2−p+p = k′2 +p and k3 = k3− q+ q = k′3 + q. Since k′2 ∈ S2,
k′3 ∈ T2, we have that |k′2| ≤ C2εj and |k′3| ≤ C2εj .

Similarly, for fixed k2, k3, let J1 = {k1 : |k1 − k2`1 − k3`2 − 22j(Ax2 + Bx3)| ≤ 2εj} and J2 = {k1 :
|k1− k′2`1− k′3`2− 22j − γ(x2, x3)| ≤ 2εj}, for some (x2, x3) ∈ Ip,q so that card (J1) = card (J2). For k1 ∈ J2,
we have that |k1 − k′2`1 − k′3`2 − γ(x2, x3)| ≤ 2εj . It follows that

|k1| ≤ |k′2`1|+ |k′3`2|+ γ(x2, x3)|+ 2εj ≤ C2(1+ε)j ,

for all x2, x3 ∈ Ip,q such that |`1| ≤ 2j , |`2| ≤ 2j . We have shown that card (J1) = card (J2) ≤ C2(1+ε)j ,
uniformly for all (x2, x3) ∈ Ip,q and all |`1| ≤ 2j , |`2| ≤ 2j . Thus, for the rest of the proof, we can assume
that card (K1) ≤ C 2(1+3ε)j .

We recall that

T̂ (m,p,q)
j (ξ) =

−W (−2jξ)

(2π)2|ξ|
ξ

|ξ|
· (−1, A,B)

∫
D

g(2jx2 − p)g(2jx3 − q)e−2πiη·(x2,x3) dx3 dx2

=
−2−2jW (−2jξ)

(2π)2|ξ|
ξ

|ξ|
· (−1, A,B)

∫
2jD

g(x2 − p)g(x3 − q)e−2πi2−jη·(x2,x3) dx3 dx2.

Similar to (3.14), we have the following estimate:

| ̂T (m,p,q)
j (ξ)| ≤ C 2−2j

|ξ|
1

1 + 2−j |Bξ1 + ξ3|
1

1 + 2−j |Aξ1 + ξ2 + b(Bξ1 + ξ3)|
.

It follows that, for ξ ∈ Uj,`1,`2 , we have that

|T̂ (m,p,q)
j (ξ)| ≤ C 2−4j(1 + |`2 − `2,m|)−1 (1 + |(`1 − `1,m) + b(`2 − `2,0)|)−1

.

Using this last observation, together with the fact that the family

{2−2je
2πiξA−j

(1)
B
−`1,`2
(1)

k
: k ∈ Z3}

is an orthonormal basis for L2(Uj,`1,`2), it follows that∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)|2 =

∫
Uj,`1,`2

|W (2−2jξ) Γj,`1,`2(ξ)|2 |T̂ (m,p,q)
j (ξ)|2 dξ

≤ 24j2−8j (1 + |`2 − `2,m|)−2 (1 + |(`1 − `1,m) + b(`2 − `2,m)|)−2
.

Since card (K1) involved in the above sum is of order O(21+3ε)j), Hölder’s inequality yields that∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ C 2

1+3ε
2 j2−2j (1 + |`2 − `2,m|)−1 (1 + |(`1 − `1,m) + b(`2 − `2,m)|)−1

.

It follows that ∑
|`1|≤2j

∑
|`2|≤2j

∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ C j2 2−

3
2 j2

3
2 j ≤ C 22εj2−

3
2 j .
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Hence, computing also the sum over the indices m and the indices (p, q) in J
(1)
p,q , we have that

∑
(p,q)∈J(1)

p,q

M∑
m=1

∑
|`1|≤2j

∑
|`2|≤2j

∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ C 22εj2−

1
2 j .

This completes the proof of the lemma. 2

Lemma 3.7. Using the notation introduced above, for a given ε > 0 and for (p, q) in J
(2)
p,q , we have that:

∑
(p,q)∈J(2)

p,q

M∑
m=1

∑
|`2−`2,0|≥2εj

∑
|`2|≤2j

∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ C 22εj2−

1
2 j

∑
(p,q)∈J(2)

p,q

M∑
m=1

∑
|`1|≤2j

∑
|(`1−`1,0)+b(`2−`2,0)|≥2εj

∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ C22εj2−

1
2 j

Proof. We will only prove the first of the two estimates since the second one can be proved using a
similar argument.

As in the proof of Lemma 3.6, we use the following identity:

T̂ (m,p,q)
j (ξ) = −2−2jW (2−2jξ)

(2π)2|ξ|
ξ

|ξ|
· (−1, A,B)

∫
2jD

g(x2 − p)g(x3 − q)e−2πi2−jη·(x2,x3) dx3 dx2.

Since Ip,q
⋂
∂D = ∅, we see that supp (g(x2 − p)g(x3 − q))

⋂
∂2jD = ∅. We also have that |ξ| ' 22j on

Uj,`1,`2 . Therefore, using integration by parts N times with respect to the variable x2 and x3 in the integral
above, we have that

|T̂ (m,p,q)
j (ξ)| ≤ C 2−4j(1 + |`2 − `2,m|)−N (1 + |(`1 − `1,m) + b(`2 − `2,m)|)−N .

It follows that∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)|2 ≤

∫
Ωj,`1,`2

|Γj,`1,`2(ξ)W (2−2jξ)|2 |T̂ (m,p,q)
j (ξ)|2 dξ

≤ 24j2−8j(1 + |`2 − `2,m|)−2N (1 + |(`1 − `1,m) + b(`2 − `2,m)|)−2N
.

As in the proof of Lemma 3.6, we can assume that k ∈ K1 with card (K1) = O(2(1+3ε)j) uniformly for all
(p, q) (the case k ∈ Z3 \K1 yields fast decay for the sequence). Hence, from the last inequality, we have that∑

k∈K1

|β(m,p,q)
j (`1, `2, k)| ≤ CN 2

1+3ε
2 l2−2j(1 + |`2 − `2,m|)−N (1 + |(`1 − `1,m) + b(`2 − `2,m)|)−N .

This implies that ∑
|`2−`2,m|≥2εj

∑
|`1|≤2j

∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ CN 2

1+3ε
2 j2−2j2(N−1)εj .

It follows that, for N large enough, we have the estimate:

∑
(p,q)∈J(2)

p,q

M∑
m=1

∑
|`2−`2,m|≥2εj

∑
|`1|≤2j

∑
k∈Z3

|β(m,p,q)
j (`1, `2, k)| ≤ CN 22j2

1+3ε
2 j2−2j2(N−1)εj

≤ C 22εj2−
1
2 j . 2
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We are now ready to prove Theorem 2.1.

We choose any 0 < ε < 1
8 and we introduce the notation

S
(m)
2,j = {(j, `1, `2,m, k) : |`1 − `1,m| ≤ C2εj , |`2 − `2,m| ≤ 2εj , k ∈ Z3}.

We have that S2,j =
⋃M
m=1 S

(m)
2,j . Since |`2 − `2,m| ≤ 2εj and |(`1 − `1,m) + b(`2 − `2,m)| ≤ 2εj yield

|`1 − `1,m| ≤ C2εj , it follows from Lemma 3.6 and Lemma 3.7 that

δ2,j =
∑
η∈Sc2,j

|〈Tj , ψη〉| ≤ CM 22εj 2−
1
2 j .

Thus, since 0 < ε < 1
8 , Lemma 3.5 implies that δ2,j = o(‖Pj‖1,Φ + ‖Tj‖1,Ψ).

As we pointed out above, to complete the proof of Theorem 2.1, it remains to show that µc(S2,j ,Ψ; Φ)→ 0,
as j →∞. Since

µc(S2,j ,Ψ; Φ) = max
λ

∑
η∈S2,j

|〈φλ, ψη〉| ≤ max
λ

M∑
m=1

∑
η∈S(m)

2,j

|〈φλ, ψη〉|,

it is sufficient to show that
max
λ

∑
η∈S(m)

2,j

|〈φλ, ψη〉| → 0, as j →∞.

This means that the proof of Theorem 2.1 is completed once we show the following result.

Proposition 3.8. Using the notation from above, for a given ε > 0, we have that

max
k′∈Z3

∑
|`1−`1,m|≤C2εj

∑
|`2−`2,m|≤2εj

∑
k∈Z3

|〈φj,k′ , ψj,`1,`2,k〉| → 0, as j →∞.

Proof. Let L be the differential operator

L1 =

(
I − 1

(2π)2

∂2

∂ξ2
1

) (
I − 1

(2π)2

∂2

∂ξ2
2

)(
I − 1

(2π)2

∂2

∂ξ2
3

)
.

For brevity, let

α = (α1, α2, α3) = B
[`1,`2]
(1) Aj(1)(2

−2jk′) = (k′1 + 2−j`1k
′
2 + 2−j`2k

′
3, 2
−jk′2, 2

−jk′3).

By direct calculation, we have that

〈ψ̂j,`,k, φ̂j,k′〉 =

∫
R3

(
2−2j Γj,`1,`2(ξ) e

2πiξA−j
(1)
B

[−`]
(1)

k
)(

2−3jW (2−2jξ) e−2πi2−2jξ·k′
)
dξ

= 2−5j

∫
R3

Γj,`1,`2(ξ)W (2−2jξ) e
2πiξ[A−j

(1)
B

[−`]
(1)

(k−α)]
dξ

= 2−j
∫
R3

ψ̂2(η2η1 )ψ̂2(η3η1 )W 2(η1, 2
−j(`1η1 + η2), 2−j(`2η1 + η3)) e2πiη·(k−α) dη

= 2−j
∫
R3

L1

(
ψ̂2(η2η1 )ψ̂2(η3η1 )W 2(η1, 2

−j(`1η1 + η2), 2−j(`2η1 + η3))
)
L−1

1

(
e2πiη·(k−α)

)
dη.

It follows that ∑
|`1−`1,m|≤C2εj

∑
|`2−`2,m|≤2εj

∑
k∈Z3

|〈φj,k′ , ψj,`1,`2,k〉|

≤ C 22εj2−j
∑
k∈Z3

(1 + (k1 − α1)2)−1(1 + (k2 − α2)2)−1(1 + (k3 − α3)2)−1

≤ C 2(−1+2ε)j ,
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where the constant C > 0 is independent of k′. Since ε < 1
8 , it follows that −1 + 2ε < 0, and this implies

that
µc(S2,j ,Ψ; Φ)→ 0 as j →∞.

This completes the proof of the proposition. 2

This also completes the proof of Theorem 2.1.

Remark 3.1. Concerning the extension of our 3D result to the situation of singularities along general piece-
wise smooth surfaces, we remark that our arguments do not work for general surfaces, e.g., a section of a
sphere. In fact, the proofs of Lemma 3.6 and Lemma 3.7 rely on the crucial observation that all values
of p and q from 2−j to 2j correspond to the same `1,m and `2,m, and this requires the assumption that a
singularity along a surface is linear or piece-wise linear. As a consequence, a different argument is needed
to deal with singularities along more general surfaces.
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