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Abstract

In [11], three of the authors obtained a characterization of certain types of reproducing
systems. In this work, we apply these results and methods to various affine-like, wave
packets and Gabor systems to determine their frame properties. In particular, we study
how oversampled systems inherit properties (like the frame bounds) of the original systems.
Moreover, our approach allows us to study the phenomenon of oversampling in much greater

generality than is found in the literature.
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1 Preliminaries

In order to describe the types of reproducing systems that we will consider in this study, we
introduce the following concepts and notation.
A countable family {e, : @ € A} of elements in a separable Hilbert space H is a frame

if there exist constants 0 < A < B < oo satisfying

Allol* < 7 [v,ea))® < Bllof?
acA
for all v € H. If only the right hand side inequality holds, we say that {e, : @ € A} is a
Bessel system with constant B. A frame is a tight frame if A and B can be chosen so
that A = B, and is a Parseval frame (PF) if A= B = 1. Thus, if {¢, : @ € A} is a PF in
‘H, then

ol =D (v, ea)? (1.1)

acA
for each v € H. This is equivalent to the reproducing formula

v = Z(U,%) €a (1.2)

acA
for all v € H, where the series in (1.2) converges in the norm of H. We refer the reader to [12,
Ch. 8] for the basic properties of frames that we shall use.
Let P be a countable collection of indices, {g, : p € P} a family of functions in L?(R")
and {C}, : p € P} a corresponding collection of matrices in GL,(R). For y € R", let T}, be
the translation (by y) operator defined by Ty, f = f(- — y). In [11] we study families of the

form
o&) = {Tehgy ke 2", peP), (1.3)
and we characterize those {g, : p € P} such that @}gcpp}} is a PF (Parseval frame) for L?(R").
In order to state the main result of [11], we need to introduce the following notation:
A=Jclzn, (1.4)
peEP

where CL = (CF)~! (= the inverse of the transpose of Cp), and for a € A,

Pa={pEP:acClZ"}. (1.5)

If @ =0 € A, then Py = P; otherwise the best we can say is that P, C P. We note, in
passing, that L* = C’If Z" is the dual of the translation lattice L = C}, Z", in the sense that
Eel*iffx-£€Z, for each x € L. Let

D =Dg = {f € L*(R"): f € L®(R™) and supp f is compact in R™ \ E}, (1.6)



where E is a subspace of R™ of dimension smaller than n to be specified later in the various

applications. We then have the following characterization result from [11, Thm.2.1]:

Theorem 1.1. Let P be a countable set, {g,}pep a collection of functions in L*(R"™) and
{Cp}pep C GL,(R). Assume the local integrability condition (L.I.C.):

K= X [ iftet Cpml [ O de <o (17)

pEP meL™

for all f € D. Then the system @%‘(g’p}}, given by (1.8), is a Parseval frame for L?>(R™) if and
only if .
> Tqorcy (&) dp(€ +0) = dap for a.c. E€R, (1.8)
pEPa p

for each o € A, where § is the Kronecker delta for R™.

The following result from the same paper will also be useful (cf. [11, Prop.4.1}).

Proposition 1.2. Let P be a countable set, {g,}pep a collection of functions in L*(R") and

{Cp}pep C GL,(R). If the system @}?p}}, given by (1.3), is Bessel with constant 3 > 0, then

3 dﬂm GO <P forae £cR (1.9)
peP

We learned from personal communication that A. Ron and Z. Shen have developed, in-
dependently and by different methods, an approach to study families generated by countable

unions of shift-invariant systems. Their results have many features that are similar to ours.
In many cases, we will consider applications of Theorem 1.1 to various variants of the
affine systems. These systems involve the dilation operator D4, A € GL,(R), defined by

(Da f)(x) = |det A2 f(Aw),  f e L*(R").

Then the affine systems generated by a family ¥ = {u!,...¢*} c L?(R") and by the
integral powers of the dilations D4, A € GL,(R), are the collections of the form

Fa(O)={D\Tpd':jeZ ke {=1,...,L}. (1.10)

The collection ¥ C L?(R") such that the affine system F4(¥) is a PF for L?(R") is called
a multi-wavelet or a wavelet if ¥ = {1y} € L?(R") is a single function. Observe that,
in the literature, this terminology sometimes refers to a function which generates an affine

orthonormal basis.



It is easy to see that the affine systems F4(¥) are special cases of the systems given by
(1.3). Indeed, by a simple calculation one obtains that DQ T’ = Ta-ix Dil Y*, which shows
that the affine systems are obtained from (1.3), by choosing

P={(0):j€Z,t=1,2,...,L},

9p = 9(j,0) = Dil 1/15 and Cp =Cjp = A7, forall £=1,...,L and j € Z.

The various variants of the affine systems F4 that will be discussed in this paper include
the “quasi affine” and “oversampled” affine systems studied by a number of authors (cf.
[4], [20], [17], [19], [15]). Onme of the novel feature of this paper is that all these systems
can be represented in the form (1.3), which enables us to gain a better understanding of
them. This approach allows us to include dilations that are more general than those found
in the literature. In addition, several other systems (including Gabor systems, more general
shift-invariant systems and wave packet systems) can be written in terms of collections of
the form (1.3) and Theorem 1.1 can be applied to them. Moreover, we will discuss how the
ideas used in the proof of this theorem can be applied to general frames (not just PF’s).
Section 2 will be devoted to the oversampling of the affine systems. The other applications,
including oversampling of shift—invariant systems, dilation oversampling and wave packets,

will be treated in the Sections 3, 4 and 5, respectively.

Before embarking in the applications of Theorem 1.1 to the oversampling of the affine
systems, let us be more explicit about the dilation matrices we shall use. A matrix M €
GL,(R) is called expanding provided each of its eigenvalues A satisfy |[A| > 1. As shown
in [11, Sec.5], this is equivalent to the existence of constants k and +, satisfying 0 < k <1 <
v < 00, such that

M7 x| > k7 |z (1.11)

when z € R", j € Z, j > 0. The more general class of dilations that will be considered will
be produced by those M € GL,(R) that are expanding on a subspace F' C R" according
to the following definition.

Definition 1.3. Given M € GL,(R) and a non-zero subspace F of R", M is expanding
on F if there exists a complementary (not necessarily orthogonal) subspace E of R™ with the

ollowing properties:
f g
(i) R*=F+E and FNE = {0};
(ii) M(F)=F and M(E) = E, that is, F' and E are invariant under M ;

(i1i) condition (1.11) holds for all x € F;



(iv) given r € N, there exists C = C(M,r) such that, for all j € Z, the set
ZIE)={me ENZ": |MIm| <r}
has less than C' elements.

The characterization of those ¥ = {1 ... L} C L2(R") for which F4(¥) is a PF for
L?(R™) when B = A" is expanding on a subspace F' C R" is the following:

Theorem 1.4 ([11]). Let ¥ = {¢!,--- oL} € L?(R") and A € GL,(R) be such that the
matriz B = AT is expanding on a subspace F of R™. Then the system Fa(¥), given by
(1.10), is a Parseval frame for L>(R™) if and only if

L
YD B IYYUBI(E+m) =m0 for a.e. £ R, (1.12)

(=1 jEPm
and all m € Z", where Pm, = {j € Z: m € BI Z"}.

In order to illustrate the property of being expanding on a subspace, let us consider the
case where B € GLy(R). If both eigenvalues of B, say A1, A2, satisfy |A1],|A2] > 1, then
B is expanding, and, thus, is expanding on the subspace F' = R2. In this case it is known
that orthonormal wavelets (i.e., functions ¢ such that F4(¢) is an orthonormal basis) always
exist (as shown in [7]). If |A\;| = 1 and |A\o| > 1, then B is expanding on F, where F' is
the eigenspace corresponding to A2, and the complementary subspace E is the eigenspace

corresponding to ;. For example, the matrix

(1)

is expanding on the eigenspace associated with the eigenvalue A = 2. In [11, Example 5.15])
we explicitly construct a wavelet in L?(R?) with dilation matrix M. Furthermore, if [\1| <
1 < |X2| and E, the eigenspace corresponding to A1, satisfies Z? (| E = &, then B is expanding
on F, where F is the eigenspace corresponding to A2 (notice that item (iv) in Definition 1.3
is satisfied). In a very recent study, D. Speegle [22] has shown that there are examples of
matrices in this class for which orthonormal wavelets exist, and others for which they do not

exit. The following example illustrates this situation further.

(2 0 ) (2 a )
Ml = ) M2 = ’
a 2/3 0 2/3

Example 1.5. Consider



where a € R is irrational. In either case, the only invariant proper subspaces are F, the
eigenspace corresponding to A = 2, and E, the eigenspace corresponding to A = 2/3. For
M, condition (iv) in Definition 1.3 is not satisfied, and thus the matrix cannot be expanding
on F' (the only expanding invariant subspace). On the other hand, Mj is expanding on a
subspace F: in fact, since E = {u(3a/4,1) : u € R} with a irrational, then ENZ? = {0} and,

thus, condition (iv) in Definition 1.3 is satisfied. However,

T Ve
Yoo \=3a/4 3/2)°

turns out to be expanding on a subspace F' (F' is the eigenspace associated with the eigenvalue
A =3/2). In fact E = {u(1,3a/4) : u € R} (the eigenspace associated with the eigenvalue
A = 1/2) satisfies ENZ" = {0} and, thus, condition (iv) in Definition 1.3 is satisfied.

It is clear that if B = My, then Theorem 1.4 applies to this case. Furthermore, in view of
the observation that we made after announcing Theorem 1.4, when B = M; then Theorem 1.4
also applies, since M, 'is expanding on a subspace.

In dimensions larger than 2 the situation is more complicated. For example, there are
matrices B with eigenvalues |A;| > 1, for all ¢, and | det B| > 1 that are not expanding on a

subspace (personal communication by A. Jaikin).

Another comment involves the local integrability condition (L.I.C.), given by (1.7). Ob-
serve that this condition is not mentioned in Theorem 1.4. In the proof of this theorem in
[11], it is shown that the property that B = AT is expanding on F' C R" implies that if
Fa(¥) is a Parseval frame for L?(R"), then the L.I.C. is true for all f € Dg, where E € R"
is the subspace complementary to F'. Furthermore, it is shown that if the functions ¥ satisfy
the condition (1.12), then the L.I.C. also holds. Thus, we do not need to state the L.I.C. for
Fa(¥) in Theorem 1.4. These examples also illustrate why Dp, defined by (1.6), is chosen
to be dependent on F.

We now examine Theorem 1.4 in the case that B = AT is an integral matrix. Let
I(B) = \;ez, BY(Z™). We consider the three cases: m = 0, m € I(B)\{0} and m € Z™\I(B).
Since BZ"™ C 7", then {B'Z" : i € Z} is a decreasing sequence of sets and, obviously,

1 0
{0} C I(B). One may have some m # 0 in this set. For example, let B = (0 /\) , with

0

1
A € Z,\ > 1; then B* = (0 /\k> , and <nz)1> € I(B) for each m; € Z. If B is expanding,

however, then only m = 0 is in I(B).
When m € I(B), then P,, = Z, since P, = {j € Z : m € BIZ"}. On the other hand, if
m € Z" \ I(B), then there are jo € Z and r € Z" \ BZ such that m = B r. In this case,



after an appropriate change of variables, similar to the one we made above, equation (1.12)

can be rewritten in the form

L
Z Z@E(Bjm IN(Bj(n +7))=0 forae neR"

(=1 j>0
We thus obtain the following refinement of Theorem 1.4 when B Z™ C Z".
Theorem 1.6. Let U = {! ... L} C L2(R™) and let A € GL,(R) be an integral matriz

such that B = AT is expanding on a subspace of R". Then the affine system F(¥) is a
Parseval frame for L2(R™) if and only if the following conditions hold:

L
Z Z WEBTE)?P =1 fora e £ecR, (1.13)
=1 jeZ
L
SO B GBI(E+m) =0 fora. e EER, (1.14)
(=1 jeZ

for allm € I1(B) = ;g B(Z™), m # 0, and

L

SO PBIOYPBIE+1) =0 for ae R, (1.15)

¢=1 >0

and all r € Z" \ B(Z") (observe that r ¢ I1(B)).

As is usually the case, almost all the results that we will discuss remain valid for dual
reproducing systems, where one system is used for analyzing functions and another system
for reconstructing functions. Since essentially no new ideas are involved in this extension,

and, also, to limit the length of this paper, we will not present this material here.

2 Oversampling of the affine systems

The notion of oversampling in the context of affine systems was introduced by Chui and Shi

in [4] in the following manner. Given the dyadic affine system in L?(R),
Fo(4) = (D} : ji k € Z},

the corresponding oversampled affine system is obtained by using a larger collection of

translations. More precisely, it is defined as

F ) = {m Y DL Tx ¢ : j,k € Z},



where m is an odd number. It is shown in [4] that if the original affine system F»(1)) is a
frame for L2(R), then the oversampled affine system JF5*(¢) is also a frame for L?(R) with
the same frame bounds. This result is known as the Second Oversampling Theorem.

This notion of oversampling has been extended to higher dimensions and investigated by
a number of authors (cf. [20], [3], [19], [15]). We will show that our methods, involving the
use of Theorem 1.1 and other results from [11], can be applied to obtain all these results,
as well as others. Not only will we consider higher dimensions, but we shall also consider
an arbitrary change in the lattice of translations at each “scale” (or “resolution”) associated
with the dilations A7.

The quasi affine systems, introduced by Ron and Shen [21], provide an important example
of “scale-dependent” oversampling. Recall that the quasi affine ]?2(1/1), associated with
Fa (1)), is defined by .%2(1/}) = {@ij : 4,k € Z}, where

2172 D Ty 1p, j < 0

Qz}j,k’ = .
D} Ty 4, j>0.

The same definition applies if the dilation 2 is replaced by any integer @ > 1. It has been
observed by many authors that the quasi affine systems enjoy many features that make the
study of their properties easier than the corresponding affine systems. For example, they
form shift-invariant systems, which is not the case for the affine system F,(¢)). It is also
important to realize that these systems are equivalent to the affine systems, in the sense
that exactly the same v generates a PF for both systems (cf. [21]). This fails to be the
case if a ¢ N. If a € Q, however, M.Bownik [2] observed that one can extend the definition
of quasi affine systems, so that the good properties still hold. This can be done using the

7

notion of “scale-dependent” oversampling. We will show that our unified approach can be
applied to obtain all these features. For simplicity, let us begin by showing an application of

Theorem 1.1 to the quasi affine systems with dilation a € Q.

2.1 Example: one-dimensional rational quasi affine systems

Let a = g, p.q€Z, p>q>2 (pq)=1. Given the affine system F () = {D} Tpv : j, k €
Z}, the corresponding quasi affine systems fa(ib) is defined by .7?@(111) = {J]k 2,k € Z},

where
Gis = PRD T, G <0 _ PP Ty Dad, G <0 21)
© |ePDi T, G200 ¢ T, e DiYg, G > 0.
This definition also makes sense when ¢ = 1, p > 2, in which case it gives us the “classical”

quasi affine system .7?1,(1/1). It is easy to show, in general, that the systems fa(w) are shift-



invariant. In fact, given any m € Z", from (2.1), we have that, if j <0,
T ik = P> T Ty, Db = p? Tpspypy DI b = p?/? Tyi (hrq-imy D0 = D} ketg-ms
and, similarly, if 7 > 0,
T Uik = 47 T Tyoik DA = 492 Ty DA = 4777 Ty piom) DY = i

We will now apply Theorem 1.1 to characterize those ¢ € L?(R) for which fa(w) is a PF.
The reader can verify that the L.I.C., given by (1.7), is satisfied in this case (the proof for
the higher dimensional case will be discussed in Theorem 2.4). Let P = Z, and

pPADLy, i j <0, o _)d <o,

gj = . . s i =

¢ 2Dy, it >0, p, ifj>0.
Under these assumptions, F, (1) is of the form (1.3) and Theorem 1.1 can be applied. We
have:

A= U7z v (Jwz) =2
J<0 320

Therefore, for « = m € A, we obtain

Pn={j<0:¢meZYU{j>0:p 7 melZl.
If m = 0, then Py = Z. On the other hand, for any m € Z\ {0}, we can write m = p/0 ¢/t r,
where jg,71 > 0 and r € Z \ (pZ U gZ). Hence:

Pn={j<0:p¢reZ}u{j>0: ¢ pitrecZ}={j€Z: —j1<j<jo}
From (1.8), expressed in terms of the g; we just defined, we obtain that Fa(®) is a PF for
L3(R) iff

D @Y =D W@ TP =1,  forae R (2.2)

J€Po JEZ
and, for r € Z \ (pZ U ¢Z),

Y @I dad(E+m) = Y daI)dlaI(E+poghr)=0  (23)

JEPm —71<5<Jjo
for a.e. £ € R. Let us compare now these characterization equations with the corresponding
characterization equations for the affine system F,(¢)). We apply Theorem 1.4. If m = 0,
then Py = Z. On the other hand, for any m € Z \ {0}, we can write m = p’ ¢/* r, where
Jjo,j1 =>0and r € Z\ (pZ U gZ). Hence:

Pn={j€Z: (p/q) " mecZ})={j€Z: P I¢gtircz}={j€Z: —j1 <j<jo}

10



Thus, using equation (1.12), we have that F,(z) is a PF for L?(R) iff

S lba TP =D (@ TEP =1, forae £€R (24)

J€Po JEZ

and, for r € Z\ (pZ U ¢Z),

D b d(aIE+m) = Y, D@ (E+pghr) =0 (25)
JEPm —71<j<Jjo
for a.e. £ € R. The comparison of equations (2.2) and (2.3) with equations (2.4) and (2.5)
shows that exactly the same v generates a PF for both ﬁa(w) and F, (). Later on, in

Section 2.3.3, we will consider the n-dimensional version of this example.

2.2 Characterization of oversampled affine systems

One of the features of the quasi affine systems described in the example above is that they
are obtained from the affine system F, (1)) by changing the lattice of translation at each scale
j. More generally, corresponding to the affine system F4(¥), given by (1.10), we define the
(scale-dependent) oversampled affine systems generated by W relative to the sequence of

non-singular matrices {R;}jez C GL,(R) as the collections of the form
FUN @) = () = |det Rj| V2 DA Ty 00 i j€Z, k€2 0=1,...,L},  (26)
J

where ¥ = {¢1,--- L} c L?(R™). We will use the notation B = AT, §; = R;fp, Jj € Z,
and the matrices {R;};cz will be called oversampling matrices for the system ]—"iRj}(\If).
It is clear that when R; = R € GL,(R), for each j € Z, then one obtains the notion of
oversampling that is usually found in the literature.

We want to find conditions on the oversampling matrices { R; };7‘:1 such that the oversam-
pled affine system ]-'IgRj}(\II) is a PF whenever this is the case for the corresponding affine
system F4(¥). Later we will also consider the corresponding question about frames.

We start with the following simple observation, which shows that in order for the system
file }(\Il), given by (2.6), to be a frame (or even a Bessel system), there are some restrictions

on the choice of the oversampling matrices {R;}]_;.

Proposition 2.1. If the oversampled system fiRj}(\I/), given by (2.6), is a Bessel system

with constant B, then, for each £ =1,--- | L,

1
| det R;| > 3 |42, for each j € Z.

11



Proof. Since ]—';{‘Rj }(\I/) is a Bessel system with constant 3, then
L
DD KA <8I (2.7)
(=1 jEZ kezn
buﬂfeL%W%Mme%k:MaRﬁ”H&ﬂ%%MJhmmm@Jﬁmm%mmﬁﬂ
any jo € Z, ko € 72,1 < ¥y < L:
|<’l/}‘70 k07w‘]0 k0>’ IB ijo kOHQ (2'8)

Since |92, |2 = | det Rjo| =1 |[%]|2, from (2.8) we deduce:

Josko

| det Rjo| 2 [0 |* < B det Ry |~ [0,

and, thus, |det R;,| > 371 ||vP|?, for all jo € Z, 1 < by < L. O

The following proposition shows how Theorem 1.1 can be applied to obtain a general

characterization of the oversampled systems ]—"f{1 J}( V), given by (2.6).

Proposition 2.2. Let ¥ = {¢!,--- oL} C L}R"), A € GL,(R) and {R;}jez C GLn(R).
Assume the local integrability condition (L.I.C.):

L
XYY [ e BsmP i Brd <o (29)
=1 jez mezr ) swp f

for all f in D, where D is given by (1.6) and S; = RJT, for each j € Z. Then the system
Ffj(\I/), given by (2.6), is a Parseval frame for L?>(R™) if and only if

Z Z VBT YUBI(E+ @) =bap  for ae £ €R™, (2.10)

{=1 jEPq
and alla € A = ¢4 B S;(Z"), where, fora € A, Po = {j € Z: 5]71 B la € Z"}.
Remark. At first sight it is not clear what is the dependence on the oversampling
matrices {R;};jez in the characterization equation (2.10). We point out, however, that the

dependence on the matrices {R;} cz is actually “hidden” in the set P,, which is defined in

terms of the matrices {S;};ez.

Proof of Proposition 2.2. Let P, {g,}pep and {Cp},ep be defined by
P={(,0):j€Z, and=1,... L},
() = g(j.0)(x) = [det R;| V2 DY wf(w),  Cp=C(p= A7 RS (2.11)

12



With these assumptions, it follows that
To,k gp = |det R;| 72T, iR 1, D)9t = |det R;| Y2 D, T 1k¢,

and so the collection {T¢, gy : k € Z",p € P} is the scale-dependent oversampled affine
system ffj (U). We can now apply Theorem 1.1.
Under these assumptions for P, g, and Cp, the L.I.C. (1.7) gives (2.9),

A=Jclzr=|]Bi sz,
pEP JEZ
and, for a € A, Po ={peP: ClacZ'}t={jel: Sj_lB*ja € Z"}. By direct

computation, from (1.8), we obtain:

1 -
Z [det Gy 9p(&) gp(§ +a) =
PEPa p

which gives (2.10). O

While the “integrability” condition (2.9) is not guaranteed to hold in general, there are
some important special choices of the oversampling matrices {R;};cz, which we will discuss
in the following, for which we can show that (2.9) is satisfied. In all these cases, under the
assumption that the dilation matrix A is such that B = A7 is expanding on a subspace, we
will be able to remove condition (2.9) from the hypothesis of Proposition 2.2. Before stating
this result, we need to recall the following fact from [11, Prop. 5.6].

Proposition 2.3. Let U = {¢!,--- o} ¢ L2(R") and A € GL,(R) be such that the matriz
B = A" is expanding on a subspace F' of R™. If

L
SN WHBTIYP<B  forae R, (2.12)
=1 jeZ
where 8 > 0, then
L A~ . A~ .
=% B mR B de < o (2.13)
supp

for all f € Dy, where Dg is given by (1.6) and E is the complementary subspace to F'.

13



Remark. Inequality (2.13) is exactly the L.I.C., given by (1.7), corresponding to the
affine systems F4 (V). Thus, Proposition 2.3 shows that (2.12) implies the L.I.C. for F4(¥),

when B = AT is expanding on a subspace.

We thus obtain the following:

Theorem 2.4. Let U = {!, ... oL} € L2(R") and A € GL,(R) be such that the matriz
B = AT is expanding on a subspace F of R". Let {R;}jez, € GL,(R) be in one of the

following three classes:

(I) Rj = R € GLy(Z) for each j € 7 (observe: GLy(Z) denotes the subset of GL,(R) of

matrices with integer entries).
(1) R; satisfies Rj A’ € GL(Z) for each j € Z.
RA-t0 j < g ‘
(IIl) R; = where jo € Z is fized and R € GL,(Z).
R7 .7 > .jOa

Then the system fiRj}(\I/), given by (2.6), is a Parseval frame for L*>(R™) if and only if

L
YD B IYPUBI(E+ ) =ba0  for ae R, (2.14)

=1 j€Pq

and all « € A = |
BI S; 7.

jeZBj S; 2", where S; = R;, and, fora € A, P, ={j € Z : «a €

Proof. In order to prove the Theorem, we only have to show that condition (2.9) is
satisfied under the assumption that the matrices {R;};cz are in one of the three classes
described above. Then the proof follows immediately from Proposition 2.2. In the following,
let D = Dg, where D is given by (1.6) and £ C R" is the subspace complementary to F.

Class (I). Let R; = R, for each j € Z. If FE(¥) is a PF, then, in particular, F{ (V) is a
Bessel family with Bessel constant 3 = 1. By applying Proposition 1.2 to the system F¥(¥)
(the elements P, g, and C), are given by equation (2.11), with R; = R for each j € Z),
we deduce inequality (2.12). This inequality also holds if we assume (2.14) (take oo = 0).
Therefore, we can apply Proposition 2.3, which gives inequality (2.13). As a consequence, we

have

||
Mh

S [ I B smP 1B de
1 Jsupp f

(=1 jE€Z melZ
L

SZZZ/ &+ BB 1B de < oo
=1 jez kezn /suppf
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for all f € D, since S = RT € GL,(Z). This shows that condition (2.9) is satisfied in this
case.

Class (II). Since Rj A7 Z"™ C Z™, for each j € Z, then (by transposing) B/ S; Z" C Z" for
each j € Z. Thus, we have

L
LN =33 3 [ I+ BT sm)P 0BT ds
L
SSYY [ e nP i E R s 215)

forall f € D. If fiRj}( ) is a PF, then, applying Proposition 1.2 to the system .7-";2 7}( V) as
was done for class (I), we obtain inequality (2.12) with § = 1. This inequality also holds if
we assume (2.14) (take o = 0). Furthermore, since f is compactly supported, there are only
finitely many k € Z™ (say, M of then) such that f (£ + k) is contained in supp f. Using this
fact and (2.12), from (2.15) we obtain:

TGEDY / 1f (€ + k)2 de < M Jsupp £ | FI12 < oo
kezn 7supp f

for all f € D, which shows that condition (2.9) is satisfied also in this case.
Class (III). Let S = RT. For every f € D, we have

L

=Z / f(&+ B S;m)|? [04(B€)[? de
=1 jezmezn /suwp S
L

-y / F(€ + B Sm) 2|4 (B de+
{=1 j<jom supp f

L
ST [ Jie B smP B e
supp f

where L1 (f) and Lo(f) denote the sums over j < jg and over j > jo, respectively. If f{R }( U)
is a PF, then, applying Proposition 1.2 to the system ]—1{1 ]}( U) as was done for class (I),
we obtain inequality (2.12) with 8 = 1. This inequality also holds if we assume (2.14) (take
a = 0), and so Proposition 2.3 applies. Consider first Li(f). Since f € D, there exists an
R > 0 such that supp f is contained in {¢ € R™ : |¢| < R}. In order to have L;(f) # 0, we
must have |£| < R and | + B% Sm| < R. Therefore we must have |B% Sm| < 2 R, which
implies |m| < 2|(B%S)~!|| R. This shows that the sum with respect to m must be finite,
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where the number of m € Z" is at most M = 2" ||(B7%S)~!||" R". Thus, using (2.12) we have

L
Li(f)<Y > > / oo |f(€+ B Sm)? [ (B7¢)|* de < M |supp f] || f|I %

(=1 j>Z meLn

Finally consider Lao(f). Since S € GL,(Z), then SZ™ C Z™ and so

L
LH<S Y Y / (e BImP 1 (BIEP de

(=1 jEZmeLn
which is finite by Proposition 2.3. Thus, L(f) is finite and condition (2.9) is satisfied. O

The following application of Theorem 2.4 shows that if the matrices {R;}; ez are in the
class (I), then the characterization equations of the oversampled affine systems F¥(¥) can
be written in a simpler form, involving only the lattice points m € Z", instead of all the

elements o € A.

Theorem 2.5. Let ¥ = {1, ... L} C L2(R"), R € GL,(Z) and A € GL,(R) be such that
the matriz B = AT is exzpanding on a subspace F of R™. Then the system

FROW) = {|det R7YV2 DI Tp-rp bt :j € Z, ke 2, £ =1,...,L}. (2.16)

is a Parseval frame for L*(R™) if and only if

L
ST FUBIOGBI(E+ Sm) = o for ace. £ ER, (2.17)

l=1 jEPsm
and all m € Z", where Psy, = {j € Z: Sm € B/ SZ"}.

Proof. We apply Theorem 2.4 and adopt the same notation (observe that we need the
assumption R € GLy(Z) in order to apply this theorem). For any a € A = [,z BI S(ZM),
we can write o = B/ Smyq for some jy € Z and some mg € Z". By making the change of
variables £ = BJ07 in the left hand side of (2.14), we obtain

D UNBTIGVBIE+a) = Y BT PUBIH (0 + Smo)) = dmo,

J€EPa JjeP

BIO Smy

(2.18)
for a.e. € € R™. Let k = j — jo. Since B=(k+i0)(Bio §my) = B~* Smy, it follows that
J = k+Jjo € Ppiogm, if and only if k& € Pgp,. Using the change of indices j = k + jo
in (2.18), we obtain:

Y UBIYPBH(E )= Y BT YBE( + Smo)), (2.19)

j€Pa kEPSm,

where Psy, = {k € Z : S~1 B~% Smg € Z"}. We thus obtain equation (2.17). O
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2.3 Oversampling theorems for frames

In the previous section, we have obtained the characterization equations of the oversampled
affine systems fiRj }(\Il) which form Parseval frames. By comparing these equations with
the characterization equations of the corresponding affine systems F4(¥), one can deduce
conditions on the matrices {R;};ez such that if F4(¥) is a PF than also flej}(\Il) is a PF.
In this section we show that, using techniques from the unified characterization approach
that we have described in the previous section, it is possible to consider not only Parseval
frames but even more general frames. In order to illustrate the method that we shall use in
dimension one, let ¥, = D2 Ty, v, and Q/J;fk = 7";1/2 Dl TTj—lk ¥, where ¢ € L2(R), a,7; € R,
j,k € Z, and define the functionals

N2(f) =D WL wml Ny () = D0 (el

J,kEZ J,kEZ
Our method consists in expressing the functional N{er (f) (corresponding to the oversampled
affine system) as an average of N?(T), f) (corresponding to the affine system) over a countable
set of translates v € V (V' depends on the oversampling sequence {r;}). This idea extends

and generalizes similar ideas that appeared in [21], [5] and [19].
We will consider oversampling matrices in the three classes defined in Theorem 2.4, and
show that, under certain conditions on the oversampling matrices { R;} jcz, if the affine system
Fa(P) is a frame, then the corresponding oversampled system fiRj }(\I/) is also a frame with

the same frame bounds.

2.3.1 Class (I).

The first case we examine involves the matrices {R;} in the class (I), given by Theorem 2.4.
This gives us the classical notion of oversampling which has been extensively studied in the
literature (cf. [4], [20], [3], [19], [15]). The main result that we obtain is the following
generalization of the so-called “Second Oversampling” theorem, which holds for dilation

matrices that are not only expanding, but expanding on a subspace.

Theorem 2.6. Let S = RT € GL,(Z) and S~ B S € GL,(Z), where the nonsingular matriz
B = A" € GL,(Z) is expanding on a subspace F' of R™. Assume that BZ"NSZ" = B S7Z".
If the affine system Fu (V) = {DQTH// cj €L keZ"t=1,...,L} is a frame, then the
system FL(W), given by (2.16), is also a frame with the same frame bounds.

Remark. (1) This theorem extends similar results in Chui-Shi [4], Ron-Shen [21], Chui-
Czaja-Maggioni-Weiss [3], Laugesen [19] and Johnson [15], where only expanding matrices

are considered. The proof that we will present uses several ideas from a theorem in [19].

17



(2) In dimension n = 1, with A = B =a € Z and R = S = r € Z, the hypothesis
BZ"NSZ" = BSZ"™ gives the condition ma + nr = 1 for m,n € Z; that is, ¢ and r
are relatively prime. Regarding this hypothesis, notice that we only need the assumption
BZ"NSZ" C BSZ™ in Theorem 2.6 since the converse inclusion is trivial. Also observe
that, under the assumption that S,S~! BS € GL,(Z), this hypothesis can be replaced by
ATLZ"O\R™1Z™ C Z" (see [15, Sec. 5] for this and more comments about the notion of
relative primality).

(3) In dimension n = 1, Theorem 2.6 requires A = a € Z. This assumption is not
necessary in order to have oversampling that is preserving the frame bounds. We will later
show (Theorem 2.12) a result similar to Theorem 2.6 for dilations a € Q and more general
matrices in GL,(Q).

In order to prove Theorem 2.6, some constructions are needed. Some of these ideas will
also be used in the analysis of oversampling matrices in the classes (II) and (IIT) which will be

discussed in Sections 2.3.2 and 2.3.3. We will use is the following result from [11, Prop. 2.4]:

Proposition 2.7. Let P be a countable indexing set, {gp}pep a collection of functions in
LE(R™), {Cplpep C GLn(R), and let C’If = (C’;;F)_l. Assume that the L.I1.C. given by (1.7)
holds for all f € D, where D is given by (1.6). Then, for each f € D, the function

2
= > > UTuf Tokgp)]
pEP kEZ™
1 a continuous function that coincides pointwise with the absolutely convergent series
Z Z wp 2TrzCImx 7
PEP meZL™

where,
1

dp(m) = racret [, TO FE+Cim) 5p(€) dpl€ + Com) e, (2:20)

and the integral in (2.20) converges absolutely.

The application of Proposition 2.7 to the affine systems F4 (V) gives the following result:

Proposition 2.8. Let ¥ = {¢!,--- [ ¢*} € L*(R") and A € GL,(R) be such that the matriz
B = AT is expanding on a subspace F of R™. If the system Fa(¥), given by (1.10), is a
Bessel system for L?(R™) then, for each f € D = Dg, where Dg is given by (1.6) and E is

the complementary subspace to I, the function

w(z) = NX(T; f) = ZZZITLDJTMH (2:21)

(=1 jeZ keZr
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18 a continuous function that coincides pointwise with the absolutely convergent series

L
DN 0D dve(m) T

(=1 jEZ meLn

where the function wj, is defined, for any p € R™, by

wie(n) = | F€)FE+ B pBI P (BT E+ Bp)) de. (2:22)
and the integral in (2.22) converges absolutely.

Proof. By choosing P = {(j,¢) : j € Z, 0 = 1,2,...,L}, gp = g(jo) = Diwé, and
Cp=Clp = A7 forall ¢ =1,...,L, then the collection {Tc, k gp}pep is the affine system
Fa(¥). We will now apply Proposition 2.7. Under the assumptions that we made for P,
gp and C), equation (2.20) gives (2.22), provided (1.7) is satisfied. Therefore, in order to
complete the proof, we only have to show that the L.I.C. (1.7) holds. Arguing as in the proof
of Theorem 2.4, we observe that, since F4 (V) is a Bessel system, then, by Proposition 1.2,
we have inequality (2.12). We can now apply Proposition 2.3 which gives (2.13). As observed
in the Remark following Proposition 2.3, (2.13) is exactly inequality (1.7), for this choice of
P, gp and Cp. O

Remark. Proposition 2.8 can be easily generalized to the case where the sum over
j € Z, in (2.21), is replaced by a sum over a smaller set j € J C Z. We will also use this
generalization of Proposition 2.8 in the following.

The application of Proposition 2.7 to the oversampled affine system ffj (0), with over-

sampling matrices in the classes given by Theorem 2.4, gives the following result.

Proposition 2.9. Let ¥ = {¢!,--- oI} ¢ L*(R"), A € GL,(R) be such that the matriz
B = AT is expanding on a subspace F of R™, and suppose that

L
Z Z [W{(BTEE< B forae £€R”, (2.23)

=1 jez.
where 3 > 0. If {R;}jcz is in one of the three classes given in Theorem 2.4, then, for each

f € D =Dg, where Dg, is given by (1.6) and E is the complementary space to F', the function

L
w(@) = Nipy(Te f) = Y>> [Tuf,|det Ry|71/2 D)) TR]_—1k@ZJZ)|2 (2.24)

(=1 jEZ kezn

s continuous and coincides pointwise with the absolutely convergent series

L
ZZ Z HA)]"g(Sjm) e27riBijm-x 7

(=1 jEZ meLn

where Sj = R? and ;g is given by (2.22).
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Proof. If we choose P, g, and C, as in (2.11), then the collection {T¢, 1 gp}pep is the
system ffj (U), and, thus, we can apply Proposition 2.7. Under the assumptions that we
made for P, g, and C), equation (2.20) gives the coefficients w; ¢(Sjm), where w; ¢ is given
by (2.22), provided (1.7) holds. Hence, in order to complete the proof, we only have to show
that: ;

Y2 Y [ e B S mP (B P g (2.25)
=1 jEZ meZn supp f
is finite for each f € D (in fact, this is exactly condition (1.7) in this particular case). Observe
that, since (2.23) holds and B is expanding on a subspace, we can apply Proposition 2.3 which
gives (2.13). We can now examine the expression (2.25) corresponding to the different classes
of matrices {R;}cz.

Class (I). Since Sj = S € GLy,(Z), for each j € Z, arguing as in the proof of Theorem 2.4,

for all f € D we have:

H<yY % / €+ B B[4 (BIE)? de < ox.
=1 jez kezn /suppf

Class (II). Since R; A7 Z" C Z", then BJS; Z"™ C Z" for each j € Z. Using this observation

and the fact that f is compactly supported, then arguing as in proof of Theorem 2.4, we have:

L
ZZ / . FE+ k)P |[H(BE) de

l=1 jEZ keZ™

IN
)

S [ liesRPde < oMo 17 < o
supp f

keZr

for some K > 0 and for all f € D.
Class (III). In this case we have

~

=YY [ e B smP (B der
supp f

(=1 j<jo mezZn

+Z > /Supp f(&+ B sm) 2 |94(BI€)? de.

{=1 j>jo meZ™

Also in this case, using the argument in the proof of Theorem 2.4, we have that the two sums
are finite for all f € D. 0O

The following proposition extends a result of R. Laugesen [19] to the case of dilation

matrices B = A7 that are expanding on a subspace.
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Proposition 2.10. Let S = RT € GL,(Z) and S~ BS € GL,(Z), where B = AT € GL,(7Z)
is expanding on a subspace F' of R™. Assume that BZ"NSZ" = BSZ"™. LetV be a complete
set of distinct representatives of R™1Z"/Z". If Fa(¥) is a Bessel system, then, for each
f € Dg, where D is given by (1.6) and E is the complementary space to F', we have

L
N2 =350 S0 ((f, [det RIY2 DI, T o 092 = lim ——— 3" N2(Ts, f),

im
(=1 jeZ kezn J—oo | det B| <=
where J € 7 and N?(Txs, f) is given by (2.21), with x = A'v.

Proof. Since F4(¥) is a Bessel system, we can apply Proposition 2.8. Thus, for each
f € Dg and any v € V we have

L
N2(TAJ'U f) _ Z Z 'llA}]’g(m) 627riB]+Jm.v’

(=1 jEL meL"
where w; ¢(m) is given by (2.22), with absolute convergence of the sum.

Recall the following property of finite groups (cf. [13, Lemma 23.19]):

Lemma 2.11. Let M € GL,(Z) and q = |det M|. Choose a complete set {dr}g;é of distinct
representatives of the quotient group M~ Z" /7™, that is, M~ 7" = Ug;é(dr +7Z"). Then

—

=}

: T
omibd, _ )1 if k € MTZ"
0 if k€ Z"\ MTZ".

(&

Q|
Il
o

r

Using Lemma 2.11 (with M = R) we are now going to show that if j + J > 0 then:

L § i 1 if m € §2Z"

(2.26)
| det R & 0 if mezr\ Sz

In fact, if m € SZ", then k = B/*'m = B/*/SI for some | € Z". Thus S~k =
(S~1BS)i*+1 € Z" (since ST'BS € GL,(Z) and j+.J > 0). On the other hand, if m ¢ SZ",
then Bm ¢ SZ" (since BZ" N SZ" C B SZ") and, thus, by induction, k = Bi*/m ¢ SZ".
This proves (2.26). Using (2.26), for each f € Dy we have:

1

N%(T =
‘detR|1§/ (AJ’Uf)

L .
- IdeltRl DoDDL D dalm)

veV =1 jEZ meZn

L L
_ N 1 2miBIt mev 1 N 2miBIt mew
- Z, 2 0. (m) e Rl 1;6 T det B| )PP je(m) e



L L ‘
=22 D wlSm) delt DI ;.4 (m) 2B, (2.27)

(=1 j>—J meznr vEV I=1 j<—J meZ"

Observe that, by Proposition 1.2, equation (2.23) is satisfied and, thus, we can apply Propo-
sition 2.9, with {R;} in class (I), which gives:

L
N =D D dju(Sm), (2.28)

(=1 jE€Z meZn

with absolute convergence of the series. Since 25:1 > iez 2omezn |Wje(m)| < oo, then the

second sum in (2.27) goes to zero as J — oo and thus, using (2.28), for each f € Dg, we have

, 1 L )
g SN ) =3 3 ia(m) = MR-

(=1 jEZ meL™

Proof of Theorem 2.6. It suffices to prove the theorem for f € Dg, where E is the
complementary space to F, since Dg is dense in L?(R™).

Since F4 (V) is a frame, there are 0 < a < § < 0o such that

L
allfIP<Y DT [ DL TP = N2(f) < BIIfI%,

(=1 jEZ keZn

for all f € L2(R™), and thus, since ||T,f|| = || f|| for each z € R™, this implies that

L
allfIP <D D0 D" UTasy £ DY Te ) = N*(Tas, f) < BISI, (2.29)
(=1 jeZ keZr
for all J € Z, v € R™. Let v € V, where V is a complete set of distinct representative of the
quotient group R™Z"/Z", and apply the averaging operator lim_, ﬁ > vey 0 (2.29).
Thus, using Proposition 2.10, for each f € Dp we obtain:

allfI? < Na(f) < BIIfIP

These inequalities extend to all f € L?(R™) by a standard density argument. O

As we mentioned in the Remarks following Theorem 2.6, we can deduce a result similar
to Theorem 2.6 for some matrices that do not satisfy the condition S™'BS € GL,(Z). The
following result, which is not a consequence of Theorem 2.6, allows us to use dilation matrices
A € GL,(Q). For example, in the one-dimensional case, we can consider dilations a € Q (this
case was not allowed in Theorem 2.6, where a had to be integer-valued). As in Theorem 2.6,
also in this case the idea of the proof consists in expressing N{QRJ_}( f) as an appropriate

average over N2(T,, f), where v ranges over a finite set.
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Theorem 2.12. Let ¥ = {y',--- ¢r} ¢ L*(R"), R = ST € GL,(Z) and assume that
A=PQ ' e GL,(Q), where P and Q are commuting matrices in GL,(Z), and B = AT is
expanding on a subspace F C R™. For M = P or M = Q, assume that RM R~ € GL,(Z)
and MTZ" N\ SZ" = MT SZ"™. If the affine system Fa(¥), given by (1.10), is a frame for
L2(R™), then the system FE(¥), given by (2.16), is also a frame for L?>(R™), and the frame

bounds are the same.

Proof. It suffices to prove the theorem for f in a dense subspace of L?(R). By Proposi-
tion 2.8, for each f € D, where D is given by by (1.6) with E = {0}, and for any z € R we

have

L L )
NATe ) =YY" UL £, D) Ty =) ) 0 " aje(m) 2B ™, (2.30)

t=1 jET keZn (=1 j€Z meZ

where w; ¢(m) is given by (2.22), and the sum converges absolutely.
Let V be a complete set of distinct representatives of the quotient group R™'Z/Z (the
cardinality of V' is | det R|). Using Lemma 2.11 with M = R, we have

1 itke SZ"

1 omik-
ik — (2.31)
| det R| 1; 0 if k e z"\ SZ".

Suppose j1,j2 € Z, j1,7J2 > 0. We claim that (2.31) implies the following relation:

1 $ P @ pm ! ifme Sz (2.32)
| det R| 0 if mezZr\ Sz

In order to prove the claim, observe first that the hypothesis MT Z"(SZ" = MT SZ" is
equivalent to
zr(\(M")tszr = szr, (2.33)

and, under the assumption that S, M € GL,(Z), we will show that (2.33) implies (and, thus,
is equivalent to)
ZM(\(MT) 7 SZ" = SZ", for each j > 0. (2.34)

In fact, if (2.33) holds, then, for any u € Z", we have that u € SZ" iff MT € S7Z™. This is
equivalent to saying that, for any p € Z", we have u € SZ" ifft (MT)2 u e MT S7Z" € SZ".
And, similarly, by induction, this is equivalent to saying that, for any u € Z" and any j > 0,
we have u € SZ" iff (MT) ype (MT) SZ" C SZ". The last statement is equivalent to the
relation Z" ((M7T)=7 SZ" = SZ", for any j > 0, and, thus, (2.33) implies (2.34).

For m € Z", write | = (Q7)"2m and k = (PT)%1[. Tt is clear that k,I € Z". We have
that k = (PT)1l € SZ"iff | = (PT)~71k ¢ (PT)=1S7Z". Thus, | € Z"((PT)™SZ", and,
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using (2.34) with M = P, this is equivalent to [ € SZ". Next, observe that m = (Q7) 721 €
(QT)=72 SZ"NZ". Thus, using (2.34) with M = Q, this is equivalent to m € SZ". This
completes the proof of the claim.

Fix J € Z, J > 0. For any j € Z such that |j| < J, let j1 = J 4 j, jo = J — j (observe
that ji,j2 > 0). Since PT and Q7 commute, then (PTQT)/ B/ = (PT)71(QT)7%2. Applying
this observation and equation (2.32) into (2.30), we deduce that, for any f € D,

; miBIm-(PQ)/v
\detR[ 1;/]\72( PQ)Jvf \detR[ ZZZZ“}M 2 7 P

veV l=1 jEZ m€EeZ

|det R| Z Z Z Z wj @ e2mi (PT)i1(QT)i2mv

vEV (=1 jEZ mETL

|d R| Z Z Z Z wje e2mi (PTY1(QT)2m-v
et

veV (=1 |j|<J meZ

e2mi (PTYI1(QT)2m-v

V =1 |j|>J mEZ

Z ’lf}jvg(s m)

1|j|<J meZ

L
i |de1t R| STSTST S () 2@ (9 35)

veV £=1 |j|>J meZ

Mh

14

Since the series (2.30) converges absolutely, then the sum in (2.35) corresponding to |j| > J

goes to zero when J — oco. Thus,
L
Jim_ ’detR‘ Z (Tpgyo £) =YD > je(Sm). (2.36)
(=1 jEZ meL

Finally, since F4(V) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied and,

thus, we can apply Proposition 2.9, which gives:

L
ZZ S L det RITV2 DA T )P =D 00 ) " aije(Sm),  (2.37)

(=1 jE€Z kezn (=1 jEZ meZ"

where the sum converges absolutely. Comparing (2.36) and (2.37), we obtain

> N Tipgyy f) = Ni(f)- (2.38)

.
72% [det R]
veV

The proof now follows from (2.38) as in the last step of the proof of Theorem 2.6. O
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2.3.2 Class (III).

We will now examine the case of oversampling matrices {R;} in the class (III), defined in

Theorem 2.4. We obtain the following result.

Theorem 2.13. Let A, S and W = S~' B S be in GL,(Z), where S = RT and the matriz
B = AT is expanding on a subspace F of R". Assume that BZ" N SZ" = BSZ". If the
affine systems Fa(V), given by (1.10), is a frame, then the system }-il ]}( U), given by (2.6),

s also a frame with the same frame bounds, where jo € Z and
Rj _ R A—ItJo i< 7o (2.39)

R, J = Jo

Remark. In the special case where R = I in (2.39), the oversampled affine systems
file }(\Il) are the n-dimensional extensions of the quasi affine systems that we have described
at the beginning of Section 2. In this case, the systems F4(¥) and ]—"ngj}(\Il) are equivalent
in the sense that one is a frame if and only if the other is a frame, and the frame bounds are

the same. This situation will be examined later in Theorem 2.16.

The main tool to prove this theorem is the following result. As in Theorem 2.6, we will
write the functional N{2Rj}( f) as an appropriate average over N2(T,, f), where v ranges over

a finite set.

Proposition 2.14. Let B = AT € GL,(Z), Vi be a complete set of distinct representatives
of the quotient group Z"/AKZ", K >0, and the oversampling matrices {ﬁj} be given by
- AT <0
R, = (2.40)
I, Jj=0.
If Fa(¥), given by (1.10), is a Bessel system and B is expanding on a subspace F C R"™,
then, for each f € Dy, we have:

2 _ 2
N ) = i o aw \detA]K Z NI ), (241)

where N{2 }(f) is given by (2.24), N2(f) is given by (2.21), Dg is given by (1.6) and E is

the complementary space to F.

Proof. Since F4(¥) is a Bessel system, we can apply Proposition 2.8, which gives that,
for each f € Dp and any x € R™

L .
NATo )= > abje(m) ™ Bme, (2.42)



where w0, ¢(m) is given by (2.22) and the sum converges absolutely. For K > 0, write

1

1 S ~ miBIm-v
oA 2 M) = g 2000 30 3 el
veVK

veVEK =1 meZ" j<—K

1 - A miBIm-v
et dlf 2 2o 2 2 wielm)e

veVE =1 meZ™ —K<j<0
1 L -
A 2miBIm-v
| det A|K ~ (m)
veEVK =1 meZ™ 520

= L(f; K) + L(f; K) + I3(f), (2.43)

where I; is the sum for j < —K, I is the sum for —K < j < 0, and I3 is the sum for j > 0.
If j > 0, then B/m-v € Z" whenever m € Z" and v € V. Thus, under these assumptions,

e2miBImv — 1 and, consequently, since Vi has cardinality | det A|¥, we have

L
L) =) D>, > wjlm). (2.44)
£=1 meZn j>0
For j < 0, let V; be a complete set of distinct representatives of the group Z" JATIZ (V;

has cardinality | det A|=7). We will need the following variant of Lemma 2.11 (which is easily
obtained by setting ¢, = Md, in Lemma 2.11):

Lemma 2.15. Let M € GL,(Z) and q = |det M|. Choose a complete set {&}3;6 of distinct
representatives of the quotient group 7" /MZ", that is, 7" = U?;é(ér + MZ"™). Then

7
)

1 ifu ez

e27riu-6r —

Q|
Il
o

0 if ue (MT)=1zn\ Zn,

r

Using Lemma 2.15, with M = A~/ and u = B’ m, we have

. i —Jjgn
% Z e27riB'7m-1; _ 1 if me B Z ‘ (245)
|det A[~7 = if m € 2"\ B~ Z".
We claim that for each —K < j < 0 we have:
1 _ 2wiBImy _ ! iftm e B2 (2.46)
| det AR & 0 if m € Z"\ BIZ".

Indeed, by the Third Homomorphism Theorem (cf., for example, [10]), for any —K < j < 0,
the quotient group (Z"/AKZ"™)/(A=IZ"/AKZ") is isomorphic to Z"/A~IZ". This implies
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that Z"/AK7Z" = Uv(j)evj (v(j) + A=9Z"JAKZ™), and, thus, each v(K) € Vg is of the
form v(K) = v(j) + A7 v(K + j), where v(K) € Vg and v(K + j) € Vg4; (notice that
ATIZN AR ~ A= 70 JAKFIZM). Since Vicy; has cardinality |det A|577, then Vi is made
up of as many copies of Vj, and, thus, (2.46) follows from (2.45).

Using (2.46) into the expression for I, we can write:
L .
=> ) ) (B Im). (2.47)
(=1 meZr —K<j<0

Since the sum in (2.42) is absolutely convergent, then
lim I (f; K) = 0. (2.48)
K—oo
Thus, using (2.44), (2.47) and (2.48) into (2.43), we deduce
L ' L
(IR OREUE TS 0D 2) SLNLLIIND o) o SUNRNCYS
> (=1 meZn j<0 (=1 mezZ" j>0

Finally, since F4(¥) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied

and we can apply Proposition 2.9, which gives us
L ~
Nfgj}(f) =3 )" > du(Sim), (2.50)
(=1 j€Z meZr
with absolute convergence of the sum, where
IS BT j<0
I, J=0.

The proof is completed by combining (2.49) and (2.50). O

We can now prove the theorem.
Proof of Theorem 2.13. To prove the theorem, it suffices to consider the case jo =0

n (2.39). In fact, consider the system .7-";{1 J}(@ZJ), where {R;} is given by

RA7T <0
R; = (2.51)
R, j=0.

Applying the dilation operator D]O to each element of .7-"‘51 J}(w) and making the change of

variables j' = j + jo, we obtain:
DI FF 0y = (| det RI7V/2 | det AJ/2 DI Ty j < 0, k € 2}
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| J{Idet RI72 DI Tponyqp 2 > 0, k € 27}

= {|det R|7"/2|det AV 2 DI T oy b 7 < o, k€ Z7)
(I det R D) Trap < §' > jo, k € 2"}
(RO}
=Fa (W), (2.52)

where the oversampling matrices {R?} are given by

0 R A—J+do j < jo

R7 .7 > jO‘

0
Since the dilation fo is a unitary operator, ]—"i J }(1/1) is a frame if and only ]—'i }(¢) is a
frame, and the frame bounds are preserved. Therefore, in the following, we will write R; as
n (2.51) and }~2j as in (2.40), so that R; = Réj for each j € Z.

Since F (W) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied and, thus,

using Proposition 2.9 we obtain that, for each f € Dp,

{R} ZZ > je(Sim) 2B (2.53)

(=1 jEZ meZL™

and .
Nipy (=22 > wie(S;m), (2.54)

=1 jEZ meZn
where N{R y(To f) is given by (2.24), j(m) is given by (2.22), S; = =Rl = RT RT = §; 8,

Dg is given by (1.6), E is the space complementary to F', and the sums converge absolutely.
We will now use an argument similar to the one in the proof of Proposition 2.10. Let U
be a complete collection of distinct representatives of the quotient group R~1Z"/Z"; U has

cardinality |det R|. Given J > 0, for any f € Dg, we write:

\detR\ Z {R;} TAJuf ]detR\ ZZ Z Z w]g S m 27TZBJ+JSmu

uelU b= 1]< J mezZmn

—L(J)+ IQ(J), (2.55)

where I1(J) is the sum when j < —J, I3(J) is the sum when j > —J, and the sums

converge absolutely. Since the sum (2.55) converges absolutely, then limj o I;(J) = 0.
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Next, using (2.26) for the expression for I5(J) (notice that (2.26) holds due to the hypotheses
that S,S™'BS € GL,(Z) and BZ"NSZ" = B SZ"), we obtain that, for any J > 0,

L L
L =Y"3" ) we(Si8m) =" 3" > (S m). (2.56)

(=1 j>—J meznr (=1 j>—J mezn

Taking the limit when J — oo in (2.55) and using (2.54) and (2.56) we have:
. 1 2 _ A2
Jim [det ] %N{gj}(TAJu f) = Nig s (f)- (2.57)

Using (2.41) from Proposition 2.14, we finally obtain

1 1
N2 —lm —— S lim ——— S N¥T

) = Jim To R ;]Klféo [ det AK ; (Toraru ),
u VEVK

where Vi is a complete collection of distinct representatives of the quotient group Z" /AKX 7.

The proof now follows as in the (last step of the) proof of Theorem 2.6. O

As we mentioned before, if R = I in (2.39), then fiRj }(\IJ) is the quasi affine system
corresponding to F4(¥). We will now prove that the affine system is a frame if and only if
the corresponding quasi-affine system is a frame, and the frame bounds are the same. This
equivalence was originally discovered by Ron and Shen [21] for A € GL,(Z) and expanding,
under a decay assumption on 1 that was later removed by Chui, Shi and Stockler in [5].
Our proof, which is adapted from Laugesen [19, Thm. 7.1], generalizes this result to matrices

which are expanding on a subspace of R™.

Theorem 2.16. Let A € GL,(Z), where B = AT is expanding on a subspace F of R"®. The
affine systems Fa(V) = {DQT“/J@ :j €L kel =1,...,L} is a frame if and only if
fzgRj}(\If), given by (refoo), is also a frame with the same frame bounds, where jo € Z and
R; = AT G < do (2.58)
I, J = Jo-

Proof. As in the proof of Theorem 2.13, it suffices to prove the case jo = 0. Also, it
suffices to prove the theorem for f in a dense subspace for L2(R"); then the extension to
f € L*(R") follows from a standard density argument.

By Theorem 2.13, if F4 (V) is a frame, then FiRj}(\I’) is also a frame with the same frame
bounds.

Conversely, assume that fiRj}(\I') a frame, let J € Z, J > 0, and, for j < 0, let V; be

a complete set of distinct representatives of the quotient group A/Z"/Z". Then, using the
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change of indices j — j — J, we have:

L
SO ST det AP D T o) 2 =

(=1 j<0 keZr

L . .

=3 ST Jdet AP ST ST, DY T ) 2
=1 j<0 vEV; kEZ™

—ZZ\detAV SN (Tassof D Tt 2
=1 5<0 veV; kEZn
L ' |

=33 (et AP NN [(Tums f, DY T ). (2.59)
(=1 j<—J VEV 4y keLn

Since .7-“;5 ]}(\I/) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied and we can
apply Proposition 2.8 (see the Remark following its proof), which gives us, for each f € Dg
and any z € R™:

L .
SN S (TS, D TP Z STy elm) i (2.60)

(=1 j<—J kezZ" l=1 j<—J mezn

with absolute convergence of the sum, where w;¢(m) is given by (2.22), Dg is given by (1.6)
and E is the complementary space to F. Thus, from (2.59) and (2.60) with z = A7 we
obtain that, for any f € Dg,

ZZ Z I{f, ’detA’]/QD] JTAJHM Z Z Z wﬂ ’detA’j—i-J Z Q2mimy

¢=1 j<0 kezZn 0=1 j<—J mez" veVjy g
(2.61)

Since the cardinality of Vj, ;s is exactly |det A/ and Y, ;. W) ¢(m) converges absolutely,
then the expression (2.61) converges to zero when J approaches infinity. Using (2.61) and
letting Nij}(f) be the functional given by (2.24), we obtain that, for any f € Dg,

L
Jim Nip)(DAf) = Jim 357 3 KDAS, |det Ryl ™2 D) Tvg)
=1 jEZ kezm

L
= 1im (330 3 (£ [det AP/ DI T 0P+

J—o00 -
l=1 j<0 keZ™

L
=35 WD e )

(=1 j>0 kezn

= lim ZZ LD Tyt R

Z 1 7>0 kezZ™

30



Thus, comparing this quantity with the functional

hmzz > D) Tyt 2 = lim ZZZW’D] M IRTSIE

J—>oo
(=1 j>—J keZ™ K 1 5>0 kezn

we have that, for any f € Dg,

N*(f) = lim Nig,(D4f). (2.62)
Since the ||D% f|| = || || and f{R }( V) is a frame, then there are constants 0 < a < 8 < oo

such that
a|[fII* < N{gy(DAS) < BIFIP,

for any f € Dg. By (2.62), the same inequalities hold for N2(f). O

2.3.3 Class (II).

We will now examine the case of oversampling matrices {R;} in the class (II), defined in
Theorem 2.4. Given a dilation matrix A = BT € GL,(Q), we will consider the matrices
R; = S]T satisfying

S;z" =B z"(\Z", jEL. (2.63)

From (2.63), it is clear that S; Z" C B~7Z", which implies that R; A7 Z" C Z", and, thus,
the matrices R; given by (2.63) are in class (II). For example, in the one-dimensional case,
with A = a = %, p,q €Z,p>q>2, (p,q) =1, equation (2.63) becomes R;Z = S;Z =
(%)*JZQZ, and, thus, we have

ajpd, j<0

Rj = ,
ﬁjqjv ]Zov

where a; = £1 and 3; = £1. Under these assumptions on R;, the oversampled affine systems
Fa {7 }(1/1) given by (2.6), are the quasi affine systems discussed in Section 2.1. In higher
dimensions, the oversampled systems .7-"51 i} (¥), given by (2.6) with R; given by (2.63), are
the n-dimensional quasi affine systems for rational dilation matrices introduced by Bownik
[2]. The following theorem shows that, in this case, .7-"1;{1 I }( V) is a PF for L?(R™) if and only if
the corresponding affine system F4(¥) has the same property. This result is a generalization
of a similar result in [2, Thm.3.4], where the dilation matrices are simply expanding and not

expanding on a subspace.
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Theorem 2.17. Let B = AT € GL,(Q) be expanding on a subspace F C R™. For every
JEZ, let Rj = SJT be defined by (2.63). Then the affine system Fa(V), given by (1.10),
is a Parseval frame for L*(R™), if and only if the corresponding oversampled affine system
f;{le}(‘ll), given by (2.6), is a Parseval frame for L*(R™).

Proof. It is clear that S; € GL,(Z) for each j € Z. Fix j € Z and let P; = B7 S;. Since
S;z" =Bz (2",

it follows that
Pzt =7"(\BZ",
which shows that P; € GL,(Z), for each j € Z, and that PyZ" = Z". We can apply
Theorem 2.4. With the assumptions that we made for {S;}, we have
A=JBSs;z =Pz =7
JEZ JEZ
(using the observation that P; Z™ C Z" and PyZ™ = Z"). For any m € A = Z" we have

I [ . o—1 p—J ny _ [, . -1 n
Pn={i€Z:S; B'meZ't={j€Z: P, meZ}. (2.64)

Thus, from Theorem 2.4 it follows that the system FiRj}(\I') is a Parseval frame if and only
if

L
Z Z GBI PUBI(E +m)) = dmo forae £e€R", melZ"

(=1 j€PL,
In order to complete the proof we need to show that the corresponding affine system F4(¥)

has the same characterization equation. To do this, it suffices to show that the set
Pn={j€Z: B'meZ'}={jeZ: S;P 'meZ", (2.65)

which appears in Theorem 1.4 (in the characterization equation of F4(¥)) is equal to P,.
Fix m € Z". Since S;j € GLy,(Z), then Pj_1 m € Z" implies S; Pj_1 m € Z", and so P}, C Pp,.
For the other direction, let N = S; Pj_1 m € Z™. Since

S;z" =B z"(\Z" = S; Pt z"()Z",

then N € S;Z", and so P, ' m = S;' N € Z". This shows that P,, C P},, and thus P, = P},
for each m € Z".
Since the sets (2.64) and (2.65) are equal, it follows that the systems fiRj}(‘Il) and F4 ()

have the same characterizing equations, and this completes the proof. O
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2.3.4 Special case: quasi-affine systems a € Q

Let us consider the one-dimensional case where A = a = g, p,qE€EZ,p>q>1,(pqg =1
and let
spd, j<0
R; = ' (2.66)
s¢/,  Jj=0,
where s € Z. The following theorem, which is not a consequence of Theorem 2.17, shows that,
in this case, if the affine system F,(1) is a frame, then also the corresponding oversampled
system is a frame. As is the case for similar results that we have proved in Sections 2.3.1
and 2.3.2, here, again, the idea of the proof consists in expressing N{QR_}( f) as an appropriate
J

average over N2(T,, f), where v ranges over a finite set.

Theorem 2.18. Let a = %, where p,q € Z, p > q > 2, (p,q) =1, and s € Z, with s > 1,
(s,p) =1, (s,q) = 1. If the affine system Fo(v)) = {Dfl Ty 1 j € Z, k € L} is a frame for
L%(R), then FiRj}(q/)) = {Rj_l/2 D TR;%zp 1 J €L, k € L}, where {R;} is given by (2.66),

is also a frame for L?(R), and the frame bounds are the same.

Proof. It suffices to prove the theorem for f in a dense subspace of L?(R). By Propo-
sition 2.8, for each f € D, where D is given by (1.6) with £ = {0}, and for any x € R we
have

N(To f) = 3 (Te fDAT0) =D D dbylm) 7, (2.67)
J,kEZ JEZ meL
where w;(m) is given by (2.22), and the sum converges absolutely.

Denote by V;, with j € Z, a complete set of distinct representatives of the quotient group
Z/(Z—jZ NZ). Observe that (¢/p)! ZNZ =p 7 Zif j <0 and (¢/p)!ZNZ = ¢ Zif j >0,
and so the order of the group is |V;| =p~7 if j <0 and |V;| = ¢’ if j > 0.

If j > 0, it follows from Lemma 2.15 (it suffices to let u = k/¢7 in the lemma) that:

T 1 ifkeqg'Z
|v1| a0 o Hhed (2.68)
il ey 0 ifkeZ\¢Z
v(j)EV;
This implies that
1 rim P v (j 1 ifmeqgZ
Ly i) “e (2.69)
Vil Wiev, 0 ifmeZ\¢Z

In fact, if m € ¢/Z, then k = mp’ € p/¢? Z C ¢Z. On the other hand, if m € Z\ ¢/Z,
then k = mp’ € Z, but k = mp’ ¢ ¢/Z since (p,q) = 1. Now we will argue as in the proof
of Proposition 2.14. By the Third Homomorphism Theorem [10], for any 0 < j < J the
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quotient group (Z/q’ Z)/(¢’ Z/q’ Z) is isomorphic to Z/q¢’ Z. This implies that Z/q’Z =
Usiyev, (v(j)+¢/Z/q’Z), and, thus, each v(J) € V; is of the form v(J) = v(j) + ¢/ v(J — j),
where v(j) € Vj and v(J — j) € Vj_; (notice that ¢/ (Z/q’Z ~ ¢/ Z/q’~I7Z)). Since V;_; has
cardinality ¢’ =7, V; is made up of as many copies of V;. Therefore, from (2.69) we have that,
for each 0 < j < J,

1 ifmeq¢g7Z

1 2m‘mp—§-v . 2.70
] Z e v = . , (2.70)
veVy 0 ifmeZ\ ¢ Z.

If 7 < 0 the same argument carries through with the roles of p and ¢ reversed, and we obtain
that, for each —J < j < 0,

L Z eQﬂimz—;-v _ 1 ifme p_j Z (2‘71)
Vil = 0 if meZ\pL.

From (2.67), for any J > 0, we have:

1 1 A miadm-v
o SN2 S S

veEVy; —J<j<0meZ

1 ~ mial m-v
+W Z Z ij(m)e2 !

veV; 0<j<J meZ
1 N iadm.

+ |V | Z § : ij(m)e27rm m-v
T vevy i[>0 mez

= [(J) + L(J) + I3(J), (2.72)

where I (J) is the sum for —J < j < 0, I5(J) is the sum for 0 < j < J and I3(J) is the sum
for |j| > J. Since the sum (2.72) converges absolutely, then

Jim I5(J) = 0. (2.73)
By (2.71), |
L= > > @ im), (2.74)
—J<j<0meZ
and by (2.70) |
L(J)= Y > @gdm). (2.75)
0<j<J meZ

Thus, using (2.73), (2.74), and (2.75) into (2.72), it follows that

im (> D m+ Y Y wild'm).  (276)
veVy —J<j<0meZ 0<j<J mezZ
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Write
- i, j<0
R={"" (2.77)
¢, 320,
so that R; = s ]ij for all j € Z. By Proposition 2.9 we have that, for any f € D,
2 _ 0 (R
N{E]}(f) = Z w],f(Rj m),
3 mEZL
where N{QR}(f) is given by (2.24), w;¢(m) is given by (2.22) and the series converges abso-
J
lutely. Using (2.77) in this expression we have
N =Y Y - XY e m).
mez j<0 mez j>0
Comparing this equation with (2.76) we deduce
1
2 1 - 2
Nl (D) = Jim ZV N(T, f). (2.78)
VeV

Now let U be a complete set of representatives of the quotient group s~'Z/Z. An argument

similar to the one used in Theorem 2.12 shows that
. 1
N{py(f) = lim = > N*(Tpwr, f), (2.79)

for all f € D. Notice that to prove (2.79) it is necessary to use the assumptions (p,q) = 1,
(s,p) =1 and (s,q) = 1. Finally, combining (2.78) and (2.79) we obtain that, for any f € D,
1 1
2 . 2
N{Rj}(f) = J};IBOOE Z W Z NHTyyprgrc o f)- (2.80)
’ uelU veVy

The proof now follows from (2.80) as in the last step of the proof of Theorem 2.6. O

2.3.5 Co-affine Systems

Another possible choice of matrices in class (II), defined in Theorem 2.4, is given by the
matrices R; = A7/, for each j € Z, where A € GL,(R) is the dilation matrix and B =
AT is expanding on a subspace F' C R™. In fact, if R; = A7J, for each j € Z, then
Rj A7 = I € GL,(Z) and this trivially shows that the matrices R; are in class (II). Under
these assumptions, since Df‘4 Tyir, = Ty Di‘, it follows that the oversampled affine systems
]-jRj }(\1!) are the co-affine system

FN W) = Fa(W) = {|det AP T DY vt s j €2, ke, e=1,..., L},

However, since |det R;| = |det A|™/ is not bounded below, it follows from Proposition 2.1
that this system cannot be Bessel and, thus, cannot be a frame for L?(R™). This situation is

also investigated in [9].
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3 Oversampling of the shift-invariant systems

In this section, we consider families of the form

ot — {Topg, kez" pePl, (3.1)
where {g, : p € P} € L*(R") and C € GL,(R). They are special cases of the families @%‘gp}},
given by (1.3), where C, = C, for each p € P. It is clear that, unlike the more general

@égp } are invariant with respect to C'Z" translations,

systems given by (1.3), the families
and so, we will refer to these systems as shift-invariant systems. As we shall see, this
invariance makes the study of these systems easier and their properties simpler than the

general systems @%’p}} where C,, depends on p € P.

In [17], we characterize those {g, : p € P} such that <I>{Cgp V is a Parseval frames for L2 (R™).
We obtain the following result (cf. [17, Th.3.1]), that can also be found in [20]. Observe that

this characterization is simpler than Theorem 1.1 since the L.I.C. is not needed in this case.

Theorem 3.1. Let {g,}pep C L*(R") and C € GL,(R). Then CI%Q”}, given by (3.1), is a
PF for L*(R™) if and only if

Z Gp(&) §p(§ + CTm) = | det C| I o for a.e. £ € R", (3.2)
peEP

for each u € Z", where C1 = (CT)~ and § is the Kronecker delta in Z™.

In the same paper, we also deduce the following result (cf. [17, Prop.4.1]), which is similar

to Proposition 2.7, except that the L.I.C. is not needed in this case.

Proposition 3.2. Let {g,}pep be a countable collection in L*(R™) and C' € GL,(R). Assume
that
Z 9,(&)I* < B (3.3)
peEP
for a.e & € R™, for some B > 0. Then, for each f € D, where D is given by (1.6) with
E = @, the function w(z) = N*(T, f) = > pep 2kezn (Taf, Tok gp)|? is continuous and

~ (CI’I’)’L) eZWiCIm~x

coincides pointwise with the absolutely convergent series Y rn W , where

1

#(C'm) = o

| FO e+ (X a@ e+ Clm)ds @4

peP
and the integral in (3.4) converges absolutely.
(I){C-?p}

Define the oversampled shift-invariant system corresponding to as the family

o} = {1det RI7V2 Ty1cp9p - k € 27, p € P, (3.5)
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where R € GL,(R). Using the same approach as in the case of affine systems, we obtain
conditions such that, if the shift-invariant system <I>{Cgp Vis a frame, then the corresponding
oversampled system @}{%gff c
can also be found in [15], where the proof does not involve the use of the Fourier series

is also a frame with the same frame bounds. The following result

expansion. The proof that we present, on the other hand, illustrates how the the approach

that we used in the case of affine systems simplifies in the case of shift-invariant systems.

Theorem 3.3. If the shift-invariant system CID{Cg”}, C € GLy(R), is a frame and W =

C~'RC € GL,(Z), then (I);{ngl}c 18 also a frame with the same frame bounds.

Proof. Since @g‘“ Visa frame, then it is Bessel with Bessel constant 3, for some § > 0.
By Proposition 3.2, condition (3.3) is satisfied (with B = (3| det C|), and, thus, we can apply

Proposition 3.2, which gives the absolutely convergent series

NAT f) = 30 3 UTuf. Tergp)? = Y w(Clm)e2micime, (3.6)

pEP kez™ mez"

for all f € D and = € R", where @ (CTm) is given by (3.4). Replacing the matrix C by R~'C
in (3.6) and letting S = R”, Proposition 3.2 also gives

1 ~ miSCIm-x
N(T: f) = [det & SO UTf Trorcwgp)? = D b(SCTm) ™5 m e,
kezZ™ peP mezZn

which is an absolutely convergent series for all f € D and z € R".
Let V be a complete set of distinct representatives of the group W~!Z"/Z" where
W = C7'RC € GL,(Z). By Lemma 2.11,

1 if mewTzr
0 if mezZn\ wrzr.

1 2mwim-v
[ det W] D e -
veV

Observe that m € WZTz» = CTSC!Z™ if and only if C'm € SCIZ™ Thus, the above
expression is equivalent to
1 if C'm e sCzn

1 2miCTm-
2miCimy (3.7)
| det W ; 0 if C'm €z \ SC'z".

By applying (3.7) to (3.6), it follows that

1 1 T
N2 Tv _ A CI 2miC* m-v
\detW]z‘:/ (T )= 3 o m>]detW]v§:e

mezZ™ 9%
= ) @(SC"m) = Ni(f), (3.8)
meZ™
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for all f € D. Since q)ég"} is a frame, there are 0 < a < 8 < oo such that a||f||> < N?(f) <
BIf]I?, for all f € L%(R™), and, as a consequence, « || f||* < \de%im Y vev N2(T, f) < BIfII?
for any f € L?(R"). Using (3.8), it follows that

allfI? < Ni(f) < BIFI%

for all f € D. These inequalities can be extended to all f € L?(R") by the usual density

argument. Therefore, @gﬁ’f o is a frame for L?(R™) with frame bounds a and . O

We will now apply Theorem 3.3 to the Gabor systems. Let M,, y € R", be the mod-
ulation operator, defined by M, f(z) = e*™? f(z). The Gabor systems generated by
G =1{g",¢%...,9"} C L*(R") are the families of the form

Gp.c(G) = {Tex My gt - mk € 2", £ =1,2,--- L}, (3.9)

where B,C € GL,(R). The corresponding oversampled Gabor system GZ (G) are

defined as the collections
GR o(G) = {|det R|7* Tg104 Mpmg* :m,k € 2", £ =1,2,--- L},

where B,C,R € GL,(R). An elementary application of Theorem 3.3 gives the following

result.

Corollary 3.4. If the Gabor system Gpc(G) is a frame and C~'RC € GL,(Z), then

gg’C(G) is also a frame with the same frame bounds.

Proof. Let P = {(m,f) : m € Z", £ = 1,--- ,L}, gy = gmye = Mpn g* for any p =
(m,£) € P. Under these assumptions, the system {Tcr g, : p € P} is exactly the Gabor
system given by (3.9). The proof now follows immediately from Theorem 3.3. O

4 Dilation—oversampling of the affine systems

So far we have considered the oversampled systems obtained by using a larger collection of
translations. In this section, we examine the case where we increase the number of dilations
of an affine system.

Let U = {y!,--- ¢F} c L?(R"), and A € GL,(R) be of the form A = e, where
E € GL,(R). Let Fa(V) be the affine system given by (1.10). For M € N, define the
dilation—oversampled affine systems relative to F4(¥) as the collections

1
Fau(¥) = {\/—MDANM Tedt:j€Z, ke (=1,...,L}. (4.1)

We obtain the following result which shows that the dilation—oversampled affine systems

Fa,m(¥) preserve the frame property of the corresponding affine systems F4 ().
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Theorem 4.1. Let U = {3!,--- P} C L?(R"), and A € GL,(R) be of the form A = e,
where E € GL,(R). If the affine system Fa(¥), given by (1.10), is a frame for L*(R"), then
the dilation—oversampled affine system Fanr(¥), given by (4.1) is also a frame for L*(R™),

and the frame bounds are the same.

Proof. Suppose that the affine system F4(V) is a frame for L?(R™). Then there are
constants 0 < o < < oo such that

ol fI? < N2(f) < BIFIP, (4.2)

for all f € L2(R"™), where N2(f) is given by (2.21). Then, for all f € L?(R") we have:

L

1
N (f) = [(f, —= D i T )|
M ZZ:;JEZZng:n \/M Ai/

1 L M—-1
== SN Dam D gupns Ti )P

=1 k€Z"™ meZ u=0
1

L
— M Z Z |<DA—u/1LI Jy Dam Tk ¢Z>|2

Since || f|| = | D g-unr fl], for any f € L?(R™), it follows from (4.2) that
allfI* < N*(Dg-ue f) < BIIFIP,
for any f € L?(R") and all u = 0,1,..., M — 1. Thus, from (4.3) we have that

allfI? < Ny () < BIfIP

for any f € L2(R"). O

5 Wave Packets

In this section, we examine those function systems generated by the combined action of
translations, modulations and dilations on a finite family of functions. Systems of this form
have been considered by several authors, including [6], [16], [14], and have been applied, for
example, to decompose the symbol or the kernel of some classes of singular integral operators
(see, for example, [6], [8, Ch. 3], [18]). In this paper, we will only consider discrete systems

and will refer to such systems as wave packet systems. Our terminology generalizes the one
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introduced by Coérdoba and Fefferman, where the wave packets are the families of functions
obtained by applying dilations, modulations and translations to the Gaussian function.

Let U = {¢!,--- [ 9¥} C L?(R") and S C Z x R™ be a countable set. We define the wave
packet systems generated by U relative to the dilation matrices A = {4;} C GL,(R) and
to S C Z x R™ as the set

Wa,s(¥) ={Da, Ty My " : k€ Z", (j,v) € S, =1,...,L}. (5.1)

Special cases of such Wa s(¥) are the affine systems Fa(¥), where A; = A7, S = Z x {0},
and the Gabor systems Gp(G), where S = {0} x Z". This simple observation already suggests
that the wave packet systems provide greater flexibility than the affine or the Gabor systems.
We are interested in characterizing the families ¥ C L?(R™) such that the system Wa g(¥) is
a reproducing system for LZ(R™). While it is well known that such reproducing systems exist
in the special cases given by the affine and Gabor systems, it is not obvious that for more
general sets S C Z x R™ there exist families ¥ C L?(R™) such that the collection Wy ()
is a Parseval frame for L?(R"). The following one-dimensional example, whose idea was

suggested to us by D. Speegle, shows that such “nontrivial” wave packet systems do exist.

Example 5.1. Let 1) € L*(R) be such that (€)= x[1.9)(€), E € R. Let Zy = {j € Z: j > 0}
and
§=1{0,0):5 € 23 ({6 -3) -5 € 243 J{(0,-1), (0. -2)}. (5.2)
We will show that the wave packet system Wa s(v)), given by (5.1) with dilations A; = 27
and S given by (5.2), is an orthonormal basis (ONB) for L?(R).
Observe that
(DT M, ¢)" = Dy? M_y, T, 9.

If (4,v) = (0,—1) and (j,v) = (0, —2), we have:
{(M_p Ty 9(€) s k€ Z} = {e 2 € x0.1)(€) : k € Z},

and
{M_x T29(€) 1k € Z} = {7 x 1 0)(€) 1 k € Z}.
The combination of these two systems forms an ONB for L?([—1,1)). For (j,v) = (4,0),5 €

Z4 we have the system
{Dy? Moy () s k € Zoj € 2} = {272 7™ 7K x5, 0500)(€) 1 k € 2, € L ).

This gives an ONB for L?([1,00)). For (j,v) = (j,—3),j € Z4, a similar calculation shows
that the system

(DY) My T3 (&) ik €Z,j € Zy} = {2772 e 227 ey oiin () 1k €Z,5 € Ly}
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is an ONB for L?((—00,—1)). Combining all these systems, we have that the collection
{Dz_j M T, : k € Z,(j,v) € S} is an ONB for L?(R) and, as a consequence, Wy 5(1) is
also an ONB for L?(R).

We will now turn our attention to the characterization of the wave packet systems. Using
Theorem 1.1, we obtain the following characterization of all ¥ C L?(R™) such that the system
Wa s(¥), given by (5.1), is a PF for L2(R").

Theorem 5.2. Let U = {y!,--- ¢F} c L2(R"), A € GL,(R) and S C ZxR"™ be a countable
set. Assume the L.I1.C.:

=3 ¥ / €+ Bym) P ABTE — v) P < oo (5.3)
(jv)es mezn  supp f

forallt=1,...,L and for any f € D, where D = Dg is given by (1.6) with E = {0}. Then
the system Wa s(V), given by (5.1), is a Parseval frame for L*>(R™) if and only if

> BB (E+ @) —v) =bap forae EER, (5.4)

(4,V)EPa
where B = A;;7 a € A=Ujey By Z" and, for each o € A, Po ={(j,v) € S: Bj_1 a €L}
Proof. Let P, {g,}pcp and {Cp}pecp be defined by
P={3G,v,0):(,v)eS, and {=1,...,L},

gp(x) = 93,0 (x) = DAj M, ¢Z(x)a Cp= C(j,u,ﬁ) = A;1 (55)

With these assumptions, it follows that
TCpk 9p = TAJ_—l k DAj M, ¢e = DAj Ty M, 1/}67

and so the collection {T¢ 1 g, : k € Z",p € P} is the wave packet system Wa (V). We can
now apply Theorem 1.1.

Under these assumptions for P, g, and Cp, we have that A = UpeP C’If 7" = UjeZ B; 7",
and, for « € A, we have P, = {p € P: Cla € Z"} = {j € Z : B 'a € Z"}. Since
gp = (Da, M, YN =Dy T, !, the expression (1.7) is exactly the L.I.C. (5.3). Finally, by

J

direct computation, from (1.8) we obtain equation (5.4). O

41



5.1 A very general example

Using some ideas from Example 5.1 it is possible to construct some very general wave packet
systems. In fact, in the following example, the dilations do not have to be expanding and
the modulations do not have to be associated with a lattice. For simplicity, we will present
a one-dimensional construction.

Let I = [1,2) and consider the tiling of R given by the union of countably many disjoint
half-open intervals {/;};>1. That is:

R=|]JIL. (5.6)
jz1

For each interval I; = [cj,d;), let a; = d; —c; be the length of the interval. Let z; = ¢j—a; =
2¢j —dj. Thus aj_l(Ij —zj) = aj_l[aj, 2a;) = [1,2), and this shows that to each interval I;
there is a uniquely associated dilation a; and translation x; mapping Iy into I;.

Consider the (one-dimensional) wave packet system
W(p) ={Da, T}y M. a;le LU ke, jELLY, (5.7)
where 1(£) = x1, (€). We will now apply Theorem 5.2 to show that W(v) is an PF for L?(R).
Since any function ¢, = Dq, Ty, M, w in W(%) has norm equal one, this will also imply
]

that W(1) is an orthonormal basis.
Since ]1/}((1;1(5 —z;))| = x1,(§), the left hand side of the L.I.C., given by (5.3), becomes

-y / F(& + agm) 2 (a5 (€ — )| de
supp f

7>1mez
“Y S [ e amPa 69)
24 2 Juwwso,

We need to show that L(f) < oo for all f € D, where D is given by (1.6). Since f is
compactly supported and a; = |I;| > 0, for each fixed j there are only finitely many m € Z
such that the integral in (5.8) is nonzero. More precisely, if supp fc (=R, R), with R > 0,
then |m| < 2 R/a;. Furthermore, there are only finitely many intervals I; intersecting supp f
(say, J of them). Thus, from (5.8) we have
N[ ds < TR+ DIFIE <
a supp fNI;

j>1 J

which shows that condition (5.3) is satisfied. In order to show that the wave packet system
W(1) is a Parseval frame it only remains to show that v satisfies the characterizing equations

(5.4) which, in this case, are the two equations:

D (e M€ —a))P =1 forae ER, (5.9)

JEP
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Z @Z}(aj*l(g —xj)) &(a}l(ﬁ +a—u1x;)) =0, forae £€R, if a#0. (5.10)
J€Pa

Since 1&(@;1(6 —x;)) = Ty, D;jlqﬁ = x1,(§), then (5.6) implies equation (5.9). Next consider
equation (5.10) with o # 0 and observe that

dlaj €+ a—a5)) = x, (€ + ) = x5, (€ + a5 (a5 ).

By the definition of P,, we have that aj_loz € Z for each j € P,. Therefore, since xy,(§) has
support of length a;, and o # 0, we have

1&(%—1(5 —zj)) %Z)(aj_l(ﬁ +a—xj)) = x5;,(6) x5; (€ + aj (a; ' @) =0,
for each j € P,, and thus equation (5.10) is also satisfied.

Observe that the choice of the interval I; plays no special role in this example. The
construction can easily be modified by choosing any initial interval I;. Furthermore, this

construction easily generalizes to higher dimensions.
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