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Abstract

Hyperspectral imagery has emerged as a popular sensing modality for a variety of applications,

and sparsity based methods were shown to be very effective to deal with challenges coming from high

dimensionality in most hyperspectral classification problems. In this work, we challenge the conventional

approach to hyperspectral classification, that typically builds sparsity-based classifiers directly on spectral

reflectance features or features derived directly from the data. We assert that hyperspectral image pro-

cessing can benefit very significantly by decoupling data into geometrically distinct components since the

resulting decoupled components are much more suitable for sparse representation based classifiers. Specif-

ically, we apply morphological separation to decouple data into texture and cartoon-like components,

which are sparsely represented using local discrete cosine bases and multiscale shearlets, respectively. In

addition to providing sparser representation, this approach allows us to take advantage of the invariance

properties of each basis within each geometrically distinct component of the data. Experimental results

using real-world hyperspectral image datasets demonstrate the efficacy of the proposed framework for

classifying multi-channel imagery under a variety of adverse conditions — in particular, small training

sample size, additive noise, and rotational variabilities between training and test samples.
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I. INTRODUCTION

Hyperspectral imaging modalities have been extremely successful in a wide variety of applications,

including remote sensing for ground cover analysis, terrestrial/ground based imaging for scene under-

standing, microscopy and other laboratory imaging for biomedical applications [1]–[6]. However, while

remarkable technological advances in optics, electronics and integration of imaging systems with a variety

of platforms have further increased the popularity and adoption of hyperspectral imaging modalities in

recent years, there is a critical need to develop improved image analysis frameworks tailored to such data.

Popular applications of hyperspectral images (HSI) include classification, spectral unmixing, change and

anomaly detection [6]–[9]. Since the approach proposed in this paper is for robust HSI classification, the

following discussion will be restricted to this topic and related work, although the ideas presented in this

paper are applicable to applications such as anomaly and change detection and target recognition as well.

Traditional approaches to hyperspectral image (HSI) analysis, particularly classification, entail the

following flow: Analysis typically begins with feature extraction and feature reduction (i.e., extracting

pertinent spectral and spatial information, finding lower dimensional subspaces that preserve underlying

information etc.), followed by design and optimization of classifiers that operate on the resulting feature

space. Multispectral and hyperspectral sensors, when used for image analysis tasks typically result in very

high dimensional feature spaces — posing unique challenges, such as burdening transmission and storage

systems, reducing generalization capability of traditional Bayesian classifiers, etc. [2]–[4], [7], [10], [11].

Classical transform-based feature reduction approaches such as Principal Components Analysis (PCA),

Independent Component Analysis (ICA), Fisher’s Linear Discriminant Analysis - (LDA) and their many

variants have been extensively developed and widely studied for hyperspectral image analysis tasks. More

recently, supervised subspace learning approaches that exploit (and often preserve) the underlying structure

of the data (e.g. data that resides on a manifold) have shown great promise for hyperspectral image

analysis [12], [13]. These approaches have primarily alleviated the over-dimensionality problem posed

hyperspectral data, better conditioning feature spaces for interpretation (classification, spectral unmixing,

sub-pixel and pixel-level target or anomaly detection, change detection etc.). In separate developments,

multi-resolution analysis based representations including wavelets, curvelets etc. have been utilized for

hyperspectral data processing and analysis, facilitating improved compression, noise robust classification,

denoising etc.



Sparse representations have emerged as a promising tool for a range of applications, including com-

pressed sensing, signal denoising, and more recently, classification. In such representations, most or all

of the information of an unknown signal can be linearly represented by a small number of atoms in a

“dictionary”. Based on this theory, a sparse representation classifier (SRC) was developed for robust face

recognition, and was later adapted for other applications, including hyperspectral image classification. The

central idea in SRC and its variants is to represent a testing sample (e.g. a pixel in a hyperspectral image)

as a linear combination of all available training samples (which form an over-complete dictionary) [14]–

[20] — most of the nonzero or large value entries in the recovered coefficients are expected to correspond

to training samples having the same class membership as the testing sample. The assumption of such an

approach is that the testing sample approximately lies in the linear span of the training samples from the

same class. We note that virtue of their design, such approaches are generally robust to small training

sample sizes, even when the dimensionality of the input space is large (e.g. with hyperspectral imagery).

Related to sparsity is the notion of geometric separation, according to which sparse representations can

be used to exactly separate data consisting of geometrically distinct components (e.g., texture, smooth

regions, egdes) provided one selects appropriately sparse representation systems which are also mutually

incoherent [21], [22]. One classical manifestation of this idea is the Morphological Component Analysis

(MCA), showing that images containing different morphologies can be broken into separate morphological

components using an appropriate dictionary amalgamating multiple bases. This idea was successfully

applied to problems of image denoising and restoration [23]–[25].

Inspired by these ideas, in this paper we introduce a novel framework of image classification for robust

image understanding based on a morphologically decoupled sparse representation and customized to high

dimensional hyperspectral imagery (we validate with hyperspectral imagery, but the ideas can be applied

to any multi-channel imagery). The proposed approach utilizes a bank of sparse representation classifiers

operating on a sequence of subspaces generated via MCA, with each classifier optimized to a dictionary

that provides optimally sparse representation on a specific subspace. The core idea of our approach

is that hyperspectral imaging data (be it remote sensing or images of natural scenes or of biological

samples) can be modeled as superposition of multiple geometrically distinct components, e.g., texture-

like and a cartoon-like components. By building a combined dictionary consisting of sub dictionaries

that are optimally sparse in each distinct image component, we obtain a data representation adapted to

the geometry of each image component. We contend that the classifiers resulting from this approach are

morphologically optimal in the sense that they use the sparsest representation for each image component.

An additional benefit of this approach is that we can exploit the special ‘geometric’ properties of these



morphologically-adapted data representations to derive classifiers endowed with rotational invariance and

noise robustness.

The remainder of this paper is organized as follows. In section II, we provide background on sparse

shearlet representations, the notion of combined dictionaries and multi-task joint sparse representation

based classification. In section III, we describe the proposed classification approach and provide insights

specific to specific benefits with this framework — orientation invariance and noise robustness. In section

IV, we validate the proposed approach by applying it to two real-world hyperspectral datasets. We

demonstrate the efficacy of the proposed approach, and quantify the associated benefits of orientation

invariance and noise robustness. Concluding remarks are provided in section V.

II. BACKGROUND AND RELATED WORK

A. Sparse shearlet Representation

The shearlet representation emerged during the last decade as a powerful refinement of conventional

wavelets and other classical multiscale representations [26], [27]. Similar to curvelets [28], shearlets

are well-localized waveforms defined not only over a range of scales and locations, like wavelets, but

also over multiple orientations and with highly anisotropic shapes so that they are especially efficient to

capture edges and the other relevant geometric features in images.

Fig. 1: Tiling of the Fourier plane associated with shearlets (n = 2). The Fourier support Σj,` of

a typical shearlet element is shown as a solid grey region. The horizontal and vertical cones are

partitioned into directional subbands using solid lines and dashed lines, respectively.



Roughly speaking, in dimension n = 2, shearlets are generated by the action of anisotropic dilations

and shear transformations on an appropriate set of generators ψ(ν) ∈ L2(R2), that is,

ψ
(ν)
j,`,k(x) = 23j/2ψ(ν)(B`

νA
j
νx− k), (1)

for j ≥ 0, −2j ≤ ` ≤ 2j , k ∈ Z2, ν = 1, 2, where A1 =

4 0

0 2

 , A2 =

2 0

0 4

 are the anisotropic

dilation matrices and B1 =

1 1

0 1

 , B2 = Bt
1 are the shear matrices. The indices j, `, k are associated

with a range of scales, orientations and locations, respectively.

Shearlet properties are better illustrated by the precise shearlet construction in the Fourier domain [29].

Let φ ∈ C∞([0, 1]) be a ‘bump’ function with supp φ ⊂ [−1
8 ,

1
8 ] and φ = 1 on [− 1

16 ,
1
16 ]. For

ξ = (ξ1, ξ2) ∈ R2, let Φ(ξ) = Φ(ξ1, ξ2) = φ(ξ1)φ(ξ2) and define

W (ξ) = W (ξ1, ξ2) =
√

Φ2(2−2ξ1, 2−2ξ2)− Φ2(ξ1, ξ2).

The functions W 2
j = W 2(2−2j ·), j ≥ 0, have support inside the Cartesian coronae

Cj = [−22j−1, 22j−1]2 \ [−22j−4, 22j−4]2

and produce a smooth tiling of the frequency plane:

Φ2(ξ1, ξ2) +
∑
j≥0

W 2(2−2jξ1, 2
−2jξ2) = 1 for (ξ1, ξ2) ∈ R2.

To obtain an angular partition, let V ∈ C∞(R) so that supp V ⊂ [−1, 1], V (0) = 1,

|V (u− 1)|2 + |V (u)|2 + |V (u+ 1)|2 = 1 for |u| ≤ 1.

Hence, the ‘fine-scale’ shearlets are the functions

ψ̂
(ν)
j,`,k(ξ) = 2−3j/2W (2−jξ)Fν(ξA−jν B−`ν )

× e2πiξA−jν B−`ν k, (2)

where F1(ξ1, ξ2) = V ( ξ2ξ1 ) and F2(ξ1, ξ2) = V ( ξ1ξ2 ) and the matrices Aν , Bν are as above. As shown

in [29], functions (2) can be (essentially) written in space-domain as (1).

We remark that the functions ψ̂(1)
j,`,k can be written as

ψ̂
(1)
j,`,k(ξ) = 2−2jW (2−2jξ)V

(
2j
ξ2
ξ1
− `
)
e2πiξA

−j
1 B−`1 k,

showing that their supports are contained inside the trapezoidal regions

Σj,` = {(ξ1, ξ2) : 22j−4 < |ξ1| < 22j−1, | ξ2ξ1 − `2
−j | ≤ 2−j}



within the horizontal cone |ξ2| ≤ |ξ1| of the Fourier plane. Similar properties hold for the functions

ψ̂
(2)
j,`,k, whose supports are contained within the vertical cone |ξ2| > |ξ1| of the Fourier plane. The tiling

of the Fourier plane associated with the shearlet construction is shown in Fig. 1.

A smooth Parseval frame for L2(R2) is obtained by combining the ‘fine-scale’ shearlets together with

a coarse scale system, associated with the low frequency region.1 That is, we define a shearlet system

for L2(R2) as {
ψ̃−1,k : k ∈ Z2

}
∪
{
ψ̃j,`,k,ν : j ≥ 0, |`| < 2j , k ∈ Z2, ν = 1, 2

}
where ψ̃−1,k = Φ̌(· − k) and ψ̃j,`,k,ν = ψ

(ν)
j,`,k. With compact notation, we denote this system as

{ψ̃µ, µ ∈M}, (3)

where M = MC ∪MF are the indices associated with coarse-scale and fine-scale shearlets, respectively;

that is, MC = {(j, k) : j = −1, k ∈ Z2}, MF = {(j, `, k, ν) : j ≥ 0, |`| < 2j , k ∈ Z2, ν = 1, 2)}. We

have the following result from [29]:

Theorem 1: The system of shearlets (3) is a Parseval frame for L2(R2). That is, for any f ∈ L2(R2),

we have the reproducing formula

f =
∑
µ∈M
〈f, ψ̃µ〉 ψ̃µ,

with convergence in the L2-norm. All elements {ψ̃µ, µ ∈ M} are C∞ and compactly supported in the

Fourier domain.

By combining multiscale analysis and high directional sensitivity, shearlets can provide highly sparse

representations for a large class of multidimensional data, outperforming conventional multiscale repre-

sentations. In particular, for cartoon-like functions2, a simplified model of images with edges, they are

(nearly) optimally sparse [30].

Theorem 2: Let f ∈ E2, the class of carton-like functions in R2, and fN be its N -term approximation

obtained by taking the N largest coefficients in the shearlet representation of f . Then:

‖f − fN‖22 ≤ C N−2(logN)3.

Ignoring the log factor, this result yields the optimal decay rate (no other basis or frame can achieve

faster decay rate than N−2) and it outperforms, in particular, wavelet approximations whose error rate is

only of order N−1. We remark that curvelets achieve the same type of approximation rate [28].

1To ensure that all elements of this combined shearlet system are C∞
c in the Fourier domain, the elements whose supports

overlap the boundaries of the cone regions in the frequency domain are slightly modified [29].
2Roughly speaking, this is the class of functions that are C2 regular away from C2 edges [30].



B. Combined Dictionaries and Morphological Separation

While shearlets and curvelets provide optimally sparse approximations for cartoon-like images, they

may be not as efficient when dealing with images of natural scenes acquired on the ground or through

remote sensing platforms.

Data found in many applications (including HSI) are often complex and there is no single representation

system that can optimally approximate all the features of interest. One powerful strategy to address

this situation is based on the principles of morphological component analysis (MCA), whose central

idea (pioneered in [25], [31]) is to use multiple dictionaries to break up an image into its elementary

geometric constituents. For this strategy to be effective, the various dictionaries are chosen to be mutually

incoherent. That is, each dictionary leads to sparse representations for its intended image type, while

yielding nonsparse representations on the other image type.

In this paper, we consider an approach that applies the MCA framework to sparsely represent an image

x with respect to a combined dictionary. The method we present here is adapted from an application

to data denoising in [24]. We assume that the discrete image x is a superposition of two geometrically

distinct components

x = xp + xt, (4)

where xp is the piecewise smooth component of the data and xt its textured component. To represent x,

we use a dictionary D built by amalgamating two subdictionaries Dp and Dt that are ‘incoherent’. That

is, each component of x has a sparse representation in one subdictionary but its representation in the

other subdictionaries is not sparse. In particular, for the subdictionary associated with texture component

of the data we choose a local discrete cosine dictionary, which is sparse for locally periodic patterns.

For the piecewise smooth component of the data, we choose a shearlet dictionary, which is known to

be sparse for this type of data. The incoherence of the two dictionaries has been verified heuristically

in [31] (using DCT and curvelet dictionaries) and more recently and rigorously in [21], [22]. Clearly,

when we write x with respect to the overcomplete dictionary D, as

x = Dα =

K∑
k=1

αk dk,

there are many possible expansions. In order to minimize the number of non-negligible coefficients, we

can set up the minimization problem [32]

α̂ = min‖α‖1 subject to ‖x−Dα‖2 ≤ σ, (5)



where σ is the standard deviation of the noise, and so compute x̂ = Dα̂. Note that, for an appropriate

parameter η, the solution of (5) is exactly the solution of the unconstrained optimization problem3

min
α

η‖α‖1 +
1

2
‖x−Dα‖22. (6)

To better exploit the geometric structure of the data, we can look for an expansion that takes advantage

of the sparsity of the two subdictionaries. This is achieved by setting the minimization problem:

{α̂t, α̂p} = min
αt,αp

η (‖αt‖1 + ‖αp‖1) +
1

2
‖x−Dt αt −Dp αp‖22, (7)

where Dp, Dt are the dictionary associated with the piecewise smooth component and textured component

of the data, respectively. The restored value of x is then found by adding together the two components

obtained as x̂p = Dpα̂p and x̂t = Dtα̂t. Note that, since our subdictionaries are tight frames, then Dp is

the Moore-Penrose pseudo inverse of the analysis operator Wp associated with piecewise smooth data, i.e.

Dp = W
†
p and, similarly, Dt is the Moore-Penrose pseudo inverse of the analysis operator Wt associated

with texture data, i.e., Dt = W
†
t .

Following the approach in [24], rather than using a sparsity-based synthesis model as in (7), we adopt

a sparsity-based analysis model leading to the minimization problem

{x̂p, x̂t} = argmin
xp,xt

η‖Wpxp‖1 + η‖Wtxt‖1 + 1
2‖x− xp − xt‖

2
2 (8)

While in the synthesis formulation signals are modeled as sparse linear combinations of dictionary atoms,

the analysis formulation emphasizes the zeros in the analysis side (rather than the non-zeros), leading

to better performance. Another advantages of using the formulation (8) rather than (7) is that it requires

searching lower dimensional vectors rather than longer dimensional representation coefficient vectors. To

further improve the performance, we also included a total variation regularization term, which is effective

at reducing possible ringing artifacts near the edges [31]. Thus, we finally have the optimization problem:

min
xp,xt

η‖Wp xp‖1 + η‖Wt xt‖1 + γ TV (xp)

+ 1
2‖x− xp − xt‖

2
2, (9)

where TV is the Total Variation. To solve this optimization problem, we use the iterative shrinkage

algorithm introduced by J. Starck et al. [31]. Once the separate estimates x̂p and x̂t are obtained as a

solution of (9), the final estimator of x is x̂ = x̂p + x̂t. With multi-channel imagery such as HSI, we can

carry out this separation independently per channel (per individual frame corresponding to each spectral

wavelength).

3This last formulation is known in statistics as penalized least square estimation problem.



C. Multi-Task Joint Sparse Representation

Variants of the sparse representation based classifier have been developed for use with data with multiple

dictionaries [33] — this work has been motivated by applications such as multi-modality data fusion,

where different views generate different dictionaries that represent the same underlying classification task.

We will employ a recent variant of this approach, the multi-task joint sparse representation classifier

as our backend classifier to demonstrate the efficacy of morphologically decoupled multi-scale sparse

representation. In this approach, multi-source data are jointly represented by a sparse linear combination of

the training data across the multiple dictionaries in the ensemble. To learn the joint sparsity of coefficients,

the goal is to obtain a row-sparse coefficient matrix which can be modeled as an `1/`q-regularized least

square problem. For a test sample yj from source j, given the dictionary {Aj}Mj=1 for M sources, the

joint sparse coefficient S = [β1, β2, ..., βM ] ∈ Rn×M can be estimated by

Ŝ = arg min
S

M∑
j=1

∥∥yj −Ajβj
∥∥2
2

+ λ‖S‖1,q, (10)

where ‖S‖1,q is the `1/`q norm defined as ‖S‖1,q =
∑n

k=1

∥∥rk∥∥
q
, where rk are the row vectors of S. To

make the function convex, q is often set to be greater than 1 (typically 2). Solving the resulting `1/`q

optimization problem results in a sparse coefficient matrix has common support at the column level.

The problem in (10) is convex but non-smooth. An alternating direction method of multipliers (ADMM)

[34], [35] is used to solve this optimization problem. The problem in (10) can be reformulated via the

variable splitting technique, i.e., splitting S into two variables by introducing an auxiliary variable V as

arg min
S,V

L(S) + λ‖V‖1,2 s.t. S = V, (11)

where L(S) =
M∑
j=1

∥∥yj −Ajβj
∥∥2
2
. The resulting constrained optimization problem leads to a more

tractable solution to the non-smooth problem.

To solve this equality constrained problem, the augmented Lagrangian method can be applied as follows

arg min
S,V

L(S) + λ‖V‖1,2 +
ν

2
‖S− V +

1

ν
B‖2F , (12)

where B is the Lagrangian multiplier, and ν is a positive penalty parameter which is used as the step

size during updates.

The problem in (12) can be solved in an alternating fashion [36] — update one variable while fixing

the others. In other words, it updates S while fixing V and B. In the next iteration, V is updated while

S and B are fixed, and so on for B. This process is terminated when an appropriate stopping criterion



is met (in our implementation, when the change in objective function with successive iteration becomes

smaller than a preset threshold).

Once Ŝ is obtained, the class label associated with a test sample is decided by the total minimal residual

ω = arg min
l=1,2,...,c

M∑
j=1

∥∥∥yj −Ajδl(β̂
j)
∥∥∥2
2

(13)

where δl denotes an indicator function for the lth class — it ensures that only coefficients β̂j that

correspond to atoms from the lth class contribute to the residual. Henceforth, we assume that we have

c classes in our dictionary and the image. We remark that this approach is particularly suitable to the

proposed morphologically decoupled multi-scale framework wherein the image is partitioned into key

texture and cartoon components, resulting in M sub-dictionaries {Aj}Mj=1 for the hyperspectral image

being analyzed. We note that in principle, the proposed framework can utilize (and will be effective for)

any sparse representation based classifier at the backend, not just this approach that we chose to validate

our framework in this paper.

III. PROPOSED APPROACH

A. Morphologically Decoupled Multi-Scale Sparse Representations (MDSR)

In this section, we describe our proposed MDSR approach in detail. Let j and ` denote the scale and

direction in the shearlet transform, and ja and jf further denote the coarse and fine scales respectively.

m denotes the image dimensionality (number of spectral channels) and N1 represents the number of

available training samples. The proposed algorithm is described in Algorithm 1. In the first step, the

MCA operation is undertaken independently on each spectral channel of the hyperspectral image. This

provides two types of dictionaries for SRC based classification: Dictionaries corresponding to shearlet

coefficients at different scales and orientations, representing the cartoon like properties of the image, and

dictionaries corresponding to texture features (derived from the recovered DCT image). We would like

to point out that our use of analysis coefficients for shearlet coefficients, and synthesized texture images

is deliberate. By working with shearlet coefficients directly for classification, we can potentially obtain

orientation invariance in classification (in addition to noise robustness) with an appropriate design of the

classifier. On the contrary, with regards to the texture part of an image, the synthesized texture image

contains image specific texture descriptors as opposed to the raw DCT coefficients which do not carry

any information that spatially correlates with information in the original image, thereby being unsuitable

in the proposed approach.



From MCA, one builds an ensemble of dictionaries — At representing texture components, and {Ap}j`

representing cartoon like components via shearlet coefficients at scale s and orientation d respectively.

This sets up our multi-task joint-sparse representation model, where a test sample is simultaneously

represented in each of these decoupled components individually, resulting in a weighted global residual

over these views. The min operation, r̃ljf = mind( r
l
jf `) that minimizes residuals across all orientations `

at each fine scale jf is crucial to imparting orientation invariance in the proposed framework. The overall

class membership function computes a weighted sum of residuals across the texture and approximation

dictionaries, and the minimal residual across orientations at each scale for the fine-scale components. The

weighting factors for each dictionary {wja , wjf `, wt} are estimated as a Fisher’s like ratio of between

class to within class reconstruction errors

E
(w)
j =

1

N1

c∑
l=1

∑
i∈class-l

‖ai −Ajδl(β̂)‖2,

E
(b)
j =

1

N1(c− 1)

c∑
l=1

∑
i∈class-l

∑
z 6=l
‖ai −Ajδz(β̂)‖2,

wj =
E

(b)
j

E
(w)
j

. (14)

where ai is i-th atom in the dictionary A and c is the number of classes. These weights scale the residual

associated with SRC from each dictionary such that dictionaries that are more discriminative are given

preference in the overall decision function.

B. Rotational Invariance

Next, we show that shearlet coefficients are shear-covariant and approximately rotation-covariant. This

property is useful to construct features that are approximately rotation-invariant, and plays a key role in

the proposed approach where the minimum residual over all orientations is retained at the fine shearlet

scales.

Recall that a representation T of a function f is covariant to the action of a group G if the action of

any g ∈ G produces a corresponding shift in the coefficients, that is,

T (g · f) = g · T (f).

Let DM denote the dilation operator with respect to an invertible matrix M , that is

(DM )f(x) = |detM |1/2f(Mx).



A direct calculation (using the notation from Sec. II-A) gives the following equalities

〈(D`′

Bν )f, ψ
ν
j,`,k〉 = 〈f, (D−`′Bν

)ψνj,`,k〉

= 〈f, (D−`′Bν
Dj
Aν
D`
Bν )ψ

ν〉

= 〈f, (Dj
Aν
D`−2j`′
Bν

)ψν〉

= 〈f, ψνj,`−2j`′,k〉,

showing that the shearing of f produces a shift of the shearing parameter ` of the shearlet coefficients.

Hence shearlet coefficients are shear-covariant.

For relatively small angles, a rotation is well approximated by a shearing transformation. In fact, as

shown in Sec. II-A, the shearlet transform is defined by restricting the shearing transformation over two

cones in such a way to produces directional filters arranged over a pseudo-polar grid, a common approach

to approximate a polar grid in the discrete setting [37], [38]. It follows that the shear-covariant shearlet

coefficients are also approximately rotation-covariant.

The shear-covariance of the shearlet coeffients can be used to defined a shear-invariant feature of f

such as the quantities

max
`
〈f, ψνj,`,k〉 or min

`
〈f, ψνj,`,k〉.

By the observation above, these features are also approximately rotation-invariant. This insight leads us

to design the classifier such that at each fine scale, the minimum residual over all orientations is retained

(c.f. line 7 of Algorithm 1).

To provide insights on the robustness of MDSR to rotational variations between training and testing

data with real hyperspectral image data, we show results in Fig. 2 with a commercial building class (that

has many different orientations throughout the scene) from a benchmarking hyperspectral dataset — the

University of Houston hyperspectral image (described in sec. IV). Throughout the wide-geographic scene,

the building class appear in many different orientations. Fig. 2 depicts class-specific residual (c.f. line

7 of Algorithm 1) for the building class. The figure depicts the true-color image of the building, class-

specific residuals for the building class using individual dictionaries comprised of each of the 6 shearlet

directions, i.e., rljf `, and class specific residual for the building class using r̃ljf = min`( r
l
jf ` ). We note

that the approach we propose (minimizing residuals across all orientations) accurately characterizes the

structure of the building even though the training data was only comprised of 10 pixels from each class

gathered (by randomly sampling) from other locations in the scene (with different orientations for this

class).



C. Effect of noise

The sparsity of a signal representation entails the ability to capture the fundamental geometric content

of the data and, as a result, to more efficiently remove noise [39]. This principle is widely applied in many

successful denoising schemes, such as the celebrated shrinkage-based denoising developed by Donoho

and Johnstone [40]–[42], which exploits sparsity by observing that when signals are well approximately

using a relatively small number representation coefficients then most of the noise is effectively removed

by thresholding the representation coefficients.

Let fn be a noisy image, that is, fn = f+n, where n is a mean-zero Gaussian white noise of variance

σ2. When using the shearlet transform to represent fn as

fn =
∑
µ

〈fn, ψ̃µ〉ψµ,

each shearlet coefficient cµ = 〈f, ψ̃µ〉 is affected by mean-zero Gaussian white noise of a variance

E[|cµ|2]− |E[cµ]|2 = σ2‖ψ̃µ‖2

and a covariance between shearlet coefficients cµ and cµ′ of

E[cµcµ′ ] = σ2〈ψ̃µ, ψ̃µ′〉.

Since the shearlets ψ̃µ are normalized, the variance of each shearlet coefficient is a constant, independent

of the scale. This is similar to what already observed for wavelets [43]). However, due to shearlets’

ability to provide (nearly) optimally sparse approximations for images with edges, the larger-magnitudes

shearlet coefficients (those associated with edges and other data structures) are relatively less affected by

the noise. This property leads to features with better signal-to-noise ratio than those derived from more

conventional function representations, e.g., wavelets. We refer to [44] for a more detailed theoretical

analysis of the properties of sparse overcomplete dictionaries with noisy data.

IV. EXPERIMENTAL SETUP AND RESULTS

We validate the proposed methods and compare their efficacy with traditional hyperspectral classifica-

tion approaches using two real world hyperspectral datasets. The first image is acquired using an aerial

ITRES-CASI (Compact Airborne Spectrographic Imager) 1500 hyperspectral imager over the University

of Houston campus and the neighboring urban area. This geospatial image has spatial dimensions of

1001 × 281 pixels with a spatial resolution of 2.5m per pixel. There are 13 classes and 144 spectral

bands over the 380− 1050nm wavelength range, representing common urban classes. Parking lot-1 and



Parking lot-2 represent parking lots with and without cars respectively. This dataset was released by us

to the research community via the IEEE data fusion contest1 and covers a wide geographic area over

the city of Houston — as a result, it is a challenging dataset with spectral and spatial variability of the

various material classes in the scene.

The second dataset represents a unique “forward looking hyperspectral image” of a natural scene, where

we seek to classify typical material classes in a natural scene acquired at the University of Houston

campus. The image represents a natural scene with different material types, and is acquired from a

Headwall photonics Micro Hyperspec VNIR camera. The image size is 1004 × 1601 pixels, with 163

spectral bands that densely sample the spectrum over the visible and near infrared spectral range 400nm

through 1001nm. With recent technological advances, portable hyperspectral imagers that would be

able to be deployed for natural image analysis would become prevalent, and a first step to better image

understanding with such imagers would entail robust material classification. With that in mind, we extract

9 material classes from this dataset and setup a hyperspectral classification problem over these 9 classes.

The scene contains buildings, vehicles, bicycles, roads, vegetation and sky. In a more general setup, such

a library could involve common material types that are specific to the scene understanding task at hand.

Material with such images can be particularly useful for emerging for image understanding tasks that

involve hyperspectral and multispectral images.

Fig. 3 depicts the datasets along with the mean spectral reflectance profiles of the key material

types/classes identified in each dataset. With both datasets, we varied the number of training pixels

per class (to study the sensitivity to sample size) as indicated in the various results, while the number

of test pixels was fixed to 100 pixels. We randomly sample training and test pixels 10 times from the

labeled pool, and report average accuracies over these 10 trials.

We next summarize key algorithmic parameters used in this paper. We used a two scale shearlet

decomposition (each with six orientations) per spectral channel. A Grey Level Co-occurence Matrix

(GLCM) based texture feature extractor was utilized for ϕ in step 2 of Algorithm 1. Specifically, texture

features (contrast, entropy, correlation, energy, homogeneity and variance) are extracted over a window

around each pixel, with a window size (determined empirically to be the best window size for each

dataset) of 11×11 for the University of Houston aerial data, and 19×19 for the forward looking ground

data respectively (the forward looking hyperspectral image has much finer spatial resolution). The values

of λ and ν in (12) are set to 0.01, and γ in (9) is set to 500, determined empirically via cross-validation.

1http://hyperspectral.ee.uh.edu/?page_id=459



A. Class Dependent Texture

In this experiment, we demonstrate the benefit of morphologically decoupled ensemble of dictionaries,

by comparing classification performance of the proposed system with and without the texture component.

Specifically, we provide class-specific accuracies of MDSR with and without the texture specific dictionary

in the ensemble in Table I. We note that classes with a significant texture contribution (e.g. trees, residential

buildings, etc.) see a substantial benefit when the texture component is included in the ensemble of

dictionaries. This further underscores the premise of this work — that decomposing an image into texture

and cartoon components and building appropriate dedicated dictionaries for each component results in a

very robust representation with regards to image classification.

TABLE I: Average classification accuracy for individual classes in the UH dataset, with and without

texture

Sample Size Training Sample Size 5 Training Sample Size 10

Class Name / Algorithm MDSR MDSR (No texture) MDSR MDSR (No texture)

Grass-healthy 77.1 77.5 87.7 83.9

Grass-stressed 84.1 84.3 87.2 91.3

Grass-synthetic 95.6 89.1 96.5 92.4

Tree 86.7 63.4 94.4 79.3

Soil 98.2 98.3 99.3 99.7

Water 92.4 90.9 93.4 91.4

Residential 81.6 80.1 89.7 83.8

Commercial 51.8 59.8 71.7 76.6

Road 77.3 54.6 89.9 67.8

Parking Lot 1 76.5 65.0 83.2 75.5

Parking Lot 2 97.4 96.7 99.3 99.7

Tennis Court 97.9 99.8 100.0 100.0

Running Track 94.0 93.8 97.4 95.3

Overall Accuracy 85.4 81.0 91.5 87.4

B. Noise Robustness

In this experiment, we validate and quantify the noise robustness of the proposed morphologically

decoupled image analysis approach. Specifically, we simulate noisy hyperspectral imagery at different

signal to noise ratios by adding white Gaussian noise. We then compare the performance of the proposed



classification approach (which does not require any explicit denoising), with traditional SRC classifiers

wherein the data has been denoised with a Wiener filter (along the spectral and spatial dimensions of the

hyperspectral cube respectively). The Wiener filtered accuracies are obtained by employing a Wiener filter

as a preprocessing to the image along the spatial dimensions (independently per spectral wavelength) and

along the spectral dimension (per pixel) — A single SRC classifier is then trained and validated on the

hyperspectral data, with spectral reflectance based features. Results from this experiment are depicted in

Fig. 4. As expected, a spatial Wiener filter outperforms the spectral Wiener filter, while the proposed

approach offers a much more noise robust performance. We note the substantially high classification

accuracy with the proposed approach, compared to a single sparse representation classifier that operates

on Wiener filter based denoised imagery, in addition to the much slower drop in performance as PSNR

decreases.

C. Rotational Invariance and Sensitivity to Sample Size

TABLE II: Classification Accuracy with the University of Houston (airborne) Hyperspectral Image

(average overall accuracies along with standard deviations in parenthesis).

Algorithm / Sample Size 5 10 15 20

Proposed (MDSR)

MD, MS, RI & Weighted 85.43 (1.63) 91.52 (1.44) 93.44 (1.63) 95.12 (1.20)

MD, MS & RI 84.55 (1.72) 90.91 (1.73) 93.28 (1.62) 95.08 (1.10)

MD, MS 77.82 (1.99) 87.68 (2.11) 91.50 (1.50) 93.72 (1.49)

Baseline raw-spectral 81.52 (2.87) 86.31 (1.76) 86.89 (1.14) 86.98 (1.25)

TABLE III: Classification Accuracy with the forward looking Hyperspectral Image of a natural scene

(average overall accuracies along with standard deviations in parenthesis).

Algorithm / Sample Size 5 10 15 20

Proposed (MDSR)

MD, MS, RI, & Weighted 85.81 (2.48) 94.19 (2.06) 96.69 (0.99) 97.30 (0.69)

MD, MS & RI 78.80 (2.61) 89.82 (2.04) 94.80 (1.16) 96.58 (0.82)

MD, MS 65.97 (1.05) 79.61 (2.10) 85.44 (1.81) 88.30 (1.53)

Baseline raw-spectral 82.18 (2.84) 86.80 (1.83) 88.14 (1.38) 87.86 (1.11)



In this experiment, we demonstrate the rotational invariance property of the proposed method, and

illustrate performance as a function of training sample size. Specifically, we show results by adding

the various components in the proposed framework sequentially (morphological decoupling, multi-scale

analysis, rotational invariance and adaptive scaling of residuals). We also provide comparison to a single

SRC classifier that is built on the raw spectral reflectance features. With the proposed framework, we

present results with three variations: Morphologically Decoupled, Multi-Scale (MD, MS), Morphologically

Decoupled, Multi-Scale and Rotational Invariant (MD, MS & RI), and Morphologically Decoupled, Multi-

Scale, Rotational Invariant and Weighted residuals (MD, MS, RI, & Weighted). MD, MS connotes a

multi-task SRC implementation wherein each scale and orientation of the shearlet coefficients, along with

texture features form a dedicated dictionary, and the final classification decision is made by minimizing

the sum of residuals over all these dictionaries. In the MD, MS & RI approach, instead of accumulating

residuals across all orientations and scales, for each scale, we pick the smallest residual over all possible

orientations. These “minimum residuals over all orientations” across the various shearlet scales (and

texture) are then summed up. In the final variant of the proposed method, MD, MS, RI, & Weighted,

we weigh individual dictionaries by weights that reflect their relative discriminative ability for the

classification task. Results for both datasets are summarized in Table II and Table III. For both datasets,

the proposed MDSR approach substantially outperforms classification using spectral reflectance features

only. The weighted variant of the proposed approach (MDSR: MD, MS, RI, & Weighted), results in

the best overall performance. Picking the minimum residual over all orientations has a profound impact

in the underlying multi-task sparse representation task. This is due to the rotational invariance brought

about by this minimization — we assert that this helps account for objects that possess different relative

orientations in the test samples and the training dictionaries. An appropriate weighting of these residuals

further boosts classification performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to morphologically decoupled multi-scale image classification.

The approach is demonstrated to be very effective for sparse representation based classifiers, and is

particularly suited to hyperspectral data — the high dimensionality of hyperspectral data, coupled with

limited training data make such classifiers particularly suited to such data. The morphological decoupling

and appropriate treatment of orientation-specific dictionaries results in an image classification framework

that is robust to additive noise, limited training sample size, rotational variabilities between training

and test samples. We provided theoretical and intuitive insights into the benefits of such a framework.



We also validated the framework with two datasets — an aerial hyperspectral image, and a forward

looking hyperspectral image representing a natural scene, and results with these datasets demonstrates

the competitive and robust classification performance of the proposed framework. This approach is very

well suited to classify data that can be modeled as a linear superposition of texture and cartoon-like

components — an assumption that fits most natural and geospatial images.
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Algorithm 1 MDSR

1: Input: A vectorized m-dimensional image x ∈ RN2×m, test pixel y ∈ Rm.

{Morphological Separation}

2: for all i ∈ 1, 2, . . . ,m do

• Calculate the shearlet and DCT coefficients for xi (i−th column of x) based on MCA:

{ {α̂ip}j`, α̂it } = MCA ( xi, Dp, Dt ).

• Generate the shearlet coefficient matrix for each scale j and each direction `: {Cip}j` = {α̂ip}j`.

• Recover the DCT texture image: x̂it = Dtα̂
i
t.

• Extract texture features from x̂it: x̃
i
t = ϕ(x̂it), where ϕ denotes a textural feature extractor.

3: end for

{Sparse Representation over Ensemble of Dictionaries}

4: Assume {Ap ∈ RN1×m}j` and At ∈ RN1×m are the training dictionaries generated from {Cp}j` and

x̃t.

5: Obtain representation coefficients ({ {β̂p}j`, β̂t }) corresponding to each dictionary based on (10)

and (12).

{Morphologically Decoupled Classification}

6: Compute residuals: For the test pixel y for l-th class:

rlj` = ‖y − {Ap}j`δl({β̂p}j`)‖2,

rlt = ‖y −Atδl(β̂t)‖2.

7: Rotation invariance: Calculate the minimum residuals of fine scales sf with regard to different

directions d:

r̃ljf = min
`

( rljf ` ).

8: Adaptive weighting of residuals: Use (14) to estimate scaling of residuals corresponding to every

dictionary.

9: Classification: Determine the class label of a test pixel y based on:

ω = argmin
l=1,2,...,c

(wjar
l
ja +

∑
jf `

wjf `r̃
l
jf ` + wtr

l
t).

10: Output: A class label ω.



(a) RGB Image. (b) j = 2, ` = 0

(c) j = 2, ` = 1 (d) j = 2, ` = 2

(e) j = 2, ` = 3 (f) j = 2, ` = 4

(g) j = 2, ` = 5 (h) MDSR

Fig. 2: Residual for the building class for a small cropped portion from the UH dataset, cropped

over one of the many buildings in the scene (shown as a natural color image in a), using dictionaries

comprised of recovered shearlet coefficients (rljf `) across individual directions (b—g), and using

the approach used in MDSR, (r̃ljf = min`( r
l
jf ` )) — finding the minimum residual across all

orientations (h).
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Fig. 3: Illustrating the spectral reflectance signatures for the University of Houston dataset (left),

and the natural scene (right).
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Fig. 4: Illustrating the overall classification accuracy as a function of PSNR (dB) for the University

of Houston dataset (left), and the natural scene (right).


