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ABSTRACT

Deep neural networks have achieved impressive performance in problems of object detection and object
category classifications. To perform efficiently though, such methods typically require a large number
of training samples. Unfortunately, this requirement is highly impractical or impossible in applications
such as hyperspectral classification where it is expensive and labor intensive to generate labeled data
for training. A few ideas have been proposed in the literature to address this problem such as transfer
learning and domain adaptation. In this work, we propose an alternative strategy to reduce the number of
network parameters based on Structured Receptive Field Networks (SRFN), a class of convolutional neural
networks (CNNs) where each convolutional filter is a linear combination from a predefined dictionary.
To better exploit the characteristics of hyperspectral data to be learned, we choose a filter dictionary
consisting of directional filters inspired by the theory of shearlets and we train a SRFN by imposing
that the convolutional filters form sparse linear combinations in such dictionary. The application of our
SRFN to problems of hyperspectral classification shows that this approach achieves very competitive
performance as compared to conventional CNNs.
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1. INTRODUCTION

Hyperspectral imagery (HSI) is an imaging modality that collects hundreds of contiguous wavebands
from the electromagnetic spectrum with wavelengths that can range from 400 to 2500 nm and spatial
resolutions of 1 m or less. By including wavelengths beyond the visible range, the rich information
provided by such imagery has the potential to facilitate robust object recognition and characterization.
For this reason, HSI is widely used and has gained increasingly more prominence in applications ranging
from remote sensing for ground cover analysis and urban mapping through environmental monitoring
and mineral resource exploitation.

Traditional approaches to hyperspectral classification such as kernel based methods [1, 2] typically
operate by mapping data into a feature space followed by design and optimization of a classifier. Tak-
ing advantage of spatial information has been also widely exploited to improve classification accuracy.
Neighboring pixels in HSI data are highly correlated since spatial structures such as buildings and roads
are often larger than pixel size so that presence of a material at one pixel affects the likelihood of the
same material being present in a neighboring pixel. For this reason, methods designed to jointly assess
spatial and spectral properties of pixels have also become very successful [3, 4].

In recent years, deep neural networks (DNNs) have emerged in a wide range of data classification
problems including HSI classification. Compared with conventional methods from machine learning
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where features are manually selected, DNNs are designed to learn hierarchical features from raw input
data by feeding low-level features extracted by the bottom layers into a sequence of layers extracting
increasingly more abstract and higher-level features [5, 6]. As a result, this approach has the ability
to generate very robust and discriminative features for classification. In contrast to linear transforms
and kernel methods that generate features by convolution with fixed filters, the filters of a DNN are
learned from training data and a large number of labeled samples are typically required to achieve high
classification performance. However, this requirement is impractical or impossible in HSI applications
where it is very laborious and expensive to collect and label data. For this reason, a number of strategies
have been proposed to apply DNNs for HSI classification despite the limited number of labeled training
samples. Among such strategies, transfer learning – where the network or a section of the network is
pre-trained on a different dataset – is a popular solution to facilitate the training process. Even though
the performance of the classifier tends to decrease when moving away from the type of data where it was
trained, this approach has shown promising result in HSI classification [7–9]. Another method proposed
in the literature to deal with the scarcity of labeled data is active learning – an iterative procedure that
involves selecting a small set of the most informative unlabeled samples. Some researchers have recently
proposed interesting methods based on active learning to perform highly efficient training of DNNs for
hyperspectral classification [10, 11]. Finally, other studies have proposed clever domain adaptation and
semi-supervised learning techniques for a similar task [12,13].

In this paper, we propose a new strategy to generate deep features for hyperspectral classification with-
out the need of extensive training data. Our method is based on Structured Receptive Field Networks
(SRFN) [14], a class of convolutional neural networks (CNNs) where convolutional filters are expressed
as linear combinations from a predefined dictionary and only the coefficients of the linear combination
are learned during training. We will apply this framework to reduce significantly the number of training
parameters of a network by imposing that the convolutional filters of our SRFN are sparse in an appro-
priate dictionary D. A major novelty of our approach is that our filter dictionary D consists of a recently
proposed collection of discrete directional filters inspired by the theory of shearlets. The main advantage
of our design strategy is to impose a geometric bias on the convolutional filters with the result of facili-
tating the training process while learning more efficiently the fundamental structures of the input data.
To illustrate and validate our approach, we run numerical experiments of hyperspectral classification
using the University of Houston dataset. Our results show that our method provides very competitive
classification performance and outperforms conventional CNNs while training with a significant lower
number of parameters.

The rest of the paper is organized as follows. In Section 2, we recall the construction of SRFNs and
present our strategy that uses a new class of discrete filters to build a SRFN with special geometric bias.
In section 3, we illustrate the application of our approach to problems of hyperspectral classification and
compare it to a conventional CNN. We have final remarks in Section 4.

2. GEOMETRIC-BIASED CONVOLUTIONAL NEURAL NETWORKS

We present a new deep learning approach for hyperspectral classification that exploits the strategy of
SRFNs to reduce the number of parameters of the network. In order to ensure that the network can
efficiently learn the spatial characteristics of the data, we impose a geometric bias on the filters learned
by the network. We start by recalling the properties of a SRFN below.

2.1. Structured Receptive Field Networks

The idea of applying structured receptive fields in CNNs was first proposed by Jacobsen at al [14] with
the aim of reducing the number of parameters of a CNN while maintaining its “capacity to learn general
variances and invariances in arbitrary images”. This idea was inspired by the Scattering Transform [15,16],
a method devised to provide efficient and stable data representations using a convolutional network



implemented through a cascade of wavelet filters and modulus operators over multiple layers. Unlike
a CNN, the convolutional filters of the Scattering Transform are fixed from the beginning and chosen
according to design principles from wavelet theory. A SRFN by contrast is a CNN that adopts the
Scattering Transform idea of selecting fixed filter bases as a prior in the network, but maintains the CNN
design of learning the filter parameters from the data. In practice, in a SRFN it is assumed that any
L×L convolutional filter W is expressed as linear combinations of basis filters taken from an appropriate
dictionary D = {Hi ∈ RL×L, i = 1, . . . L2}, that is,

W =

L2∑
i=1

αiHi, (1)

where the expansion coefficients αi are learned during training. Jacobsen et al [14] choose the dictionary
D to consist of a family of Gaussian filters and its smooth derivatives, similar to the filters used in the
Scattering Transform, for which it is known that 3-rd or 4-th order is sufficient to capture most local
variation found in natural images.

In this work, we adopt the general strategy of SRFNs where only the coefficients αi in (1) are learned
during training with the following critical modifications.

1. We select the filter dictionary with particular criteria that guarantee completeness and high direc-
tional sensitivity. To build such dictionary, we use a new construction of 2-dimensional discrete
directional Parseval frames with compact support recently introduced by one of the authors [17].
These filters are designed to provide efficient representations for image patches of small support
(e.g., 5× 5 pixels) as required for processing HSI.

2. We require that any (matricial) filter of our network is sparse in our dictionary by imposing that
the linear combination (1) contains very ‘few’ elements. For instance, we impose below that any
5 × 5 filter is a linear combination of at most 5 basis elements. In our applications below, the 5
basis elements are randomly selected out of the 25 elements in the dictionary and we repeat the
random selection of 5 basis elements at each node of the network independently. With this choice,
we reduce the total number of network parameters by a factor of 5 with respect to a conventional
neural network with the same architecture. In addition, since our filters are highly directional, this
constraint effectively imposes that any 5× 5 filter has a geometric bias. Note that, since there are
several convolutional node in each layer (32 or 64 in our scheme below), potentially all filters can
be used by the network.

In the following, we will denote a modified CNN where we adopt the type of filter assignment strategy
described above as a Geometric-Biased CNN (GBCNN).

2.2. Filter dictionaries for image patches

The dictionary selection is critical for our GBCNN. For that, we adopt a new construction of multidimen-
sional discrete frames with compact support and directional characteristics that was recently introduced
by one of the authors [17]. This construction is inspired by the theory of continuous directional transforms
such as curvelet and shearlet transforms and motivated by their applications to edge detection [18–20]. It
is known that discrete versions of such transforms are very efficient to approximate natural images, due
to their directional sensitivity and ability to represent edges [21–23]. However, such discrete construc-
tions are Fourier-based and not suitable to design filters with short support in space domain. The new
approach by Atreas et al [17] is designed precisely for this task. It can generate discrete multidimensional
Parseval frames that not only have compact support of any prescribed length, but also directional van-
ishing moments to ensure pronounced directional sensitivity. This construction also allows for additional



Figure 1. Two-dimensional discrete dictionaries (frames) with compact support and directional characteristics.
(a) 3 × 3 filter dictionary includes from top left: low-pass filter; 8 first-order finite difference filters. (b) 5 × 5
filter dictionary includes from top left: low-pass filter; 12 first-order finite difference filters; 12 second-order finite
difference filters.

flexibility such as sparsity, in the sense that most filter entries are zeros. This property is helpful to speed
up the training process of our GBCNN.

To construct such a filter dictionary, we can start with any low-pass filter H0 whose Fourier transform
is given by H0(·) =

∑
k∈J αke

2πik· ∈ L2(T2), where |J | = N <∞,

(a) αk > 0 for all k ∈ J and

(b) H0(q) = δ0,q for all q ∈ {0, 1/2}2 where δ0,q denotes the Kronecker delta.

One can prove that, for v ≥ N − 1 and c := (
√
αk)k∈J ∈ R1×N , the rows of

B = D diag(c) ∈ Rv×N

hold the high-pass filter coefficients inducing a Parseval frame for L2(R2) if the rows of ( cD ) form a
Parseval frame for RN and if DT c = 0 [17, Thm. 2.5].

Hence, to generate a set of high pass filters of our filter dictionary H1, . . . ,HL ∈ L2(Ts) where
Hi(·) =

∑
k∈J b

i
ke

2πik·, i = 1, . . . , L, we proceed as follows.

1. We set c :=
(√
ak
)
k∈J and observe that, for any λ ∈ RL and B̂ := (bi,k)k∈J,i=1,...,L, the matrix

D1(λ) = diag(λ)B̂ diag(c)−1 ∈ RL×N

satisfies D1(λ)cT = 0 since the high-pass filters satisfy Hi(0) = 0, i = 1, . . . , L.

2. We solve the optimization problem{
max trace

(
cT c+D1(λ)TD1(λ)

)
subject to

∥∥cT c+D1(λ)TD1(λ)
∥∥ ≤ 1

to obtain λ∗ ∈ RL such that the singular values sν of
( c
D1(λ

∗)

)
∈ R(L+1)×N satisfy sν ≤ 1.



3. One can prove [17, Lemma 3.1] that there exists a completion matrix D2 for which the rows of c
D1(λ∗)
D2

 ∈ R(v+1)×N , v ≥ N − 1

form a Parseval frame for RN provided that the singular values sν of
( c
D1(λ

∗)

)
∈ R(L+1)×N satisfy

sν ≤ 1. Hence, we obtain a high-pass filter matrix by

B =

(
D1(λ∗)
D2

)
diag(c).

4. Finally, we can choose to either keep the full high-pass Parseval frame filter bank B or to omit the
filters obtained by the completion matrix D2. The latter can be done with the aid of [17, Thm.
3.2] when our pre-designed filter bank D1(λ∗) is such that rank

( c
D1(λ

∗)

)
= N . Then the collection

of filters H0, H1, . . . ,HL induces a frame for RN .

As an application of this algorithm, we show in Fig. 1 a Parseval frame of 3 × 3 filters and a Parseval
frame of 5×5 filters. Each Parseval frame includes a b-spline low pass filter and a set of directional finite
difference filters. Note that the high-frequency filters exhibit pronounced responses along 8 orientations
and are highly sparse.

Figure 2. 2D CNN architecture used for our experiments, consisting of 3 convolutional layers followed by a fully
connected layer. With respect to a conventional CNN, our GBCNN uses a different training strategy to determine
the convolutional filters.

3. RESULTS

We illustrate the application of our deep learning approach to hyperspectral classification and compare
the performance of our GBCNN with respect to a conventional CNN with the same architecture. For
this experiment, we adopt a simple 3-layer 2-dimensional CNN architecture as illustrated in Fig. 2. This
network consists of

1. Layer 1: convolution (filter size 5× 5) + relu + batchnorm, number kernels = 16;

2. Layer 2: convolution (filter size 5× 5) + relu + maxpool + batchnorm, number kernels = 32;

3. Layer 3: convolution (filter size 3× 3) + relu + maxpool + batchnorm, number kernels = 64;

4. Output: fully connected layer with no non-linearity.



Our benchmark data is the University of Houston hyperspectral dataset that was originally released
as part of the 2013 GRSS data fusion contest (hyperspectral.ee.uh.edu). Data was acquired using a
ITRES-CASI sensor - Vis-VNIR and it contains 144 spectral bands between 380-1050 nm; spatial domain
extends over 349× 1905 pixels with a spatial resolution of 2.5m. This data includes both landcover and
urban regions that are labeled into 15 classes as shown in Fig. 3.

3.1. Experimental setup

The input data to the network are hyperspectral image patches of size 7 × 7 × 144 pixels. We have a
total of 9394 such image patches that we split into 3773 of them for training and the remaining 5621
for testing. Note that we did not adopt the same split originally assigned in the 2013 GRSS data fusion
contest: we combined the originally assigned training and testing data and randomly selected 40% for
training and 60% for testing.

The number of training and testing images belonging to each class is listed in Table 1.

Class name Training size testing size

1 Grass healthy 417 609
2 Grass stressed 171 575
3 Grass synthetic 176 489
4 Tree 155 311
5 Soil 565 298
6 Water 111 90
7 Residential 209 266
8 Commercial 239 379
9 Road 234 292
10 Highway 355 517
11 Railway 393 472
12 Parking lot1 317 548
13 Parking lot2 113 142
14 Tennis court 164 222
15 Running track 154 411

Table 1. Number of 7 × 7 image patches per class used for training and testing

The output of the network is a prediction table consisting of integer values between 1 to 15, corre-
sponding to the 15 classes of interest.

3.2. Preprocessing and training

To generate a classification model, data was first normalized by multiplying by 10−4 and subtracting the
mean and standard deviation channel-wise. The experimental setup is as follows: we trained the network
for 300 epochs, with batch size 256, choosing cross entropy softmax with logits as cross function and
using the standard Adam optimizer learning rate 10−3.

As discussed above, during the training phase of our GBCNN, each 5× 5 or 3× 3 convolutional filter
is expressed as a sparse linear combination from our dictionary of discrete Parseval frames with 5× 5 or
3× 3 support and directional vanishing moments described above. We impose that each 5× 5 filter is a
linear combination of 5 basis filters and that each 3× 3 filter is a linear combination of 3 basis filters. By
so doing, the overall number of parameters of the network is reduced from 93391 (conventional CNN) to
24783 (our GBCNN), with a 73.5% reduction in the number of parameters.



Figure 3. University of Houston hyperspectral dataset. This data contains 144 spectral bands and covers a
spatial region of 349 × 1905 pixels with a spatial resolution of 2.5m per pixel. Data includes 15 labeled classes.

3.3. Testing results

Classification results on the University of Houston dataset are reported in Table 2. We show side-by-side
the average accuracy (over 15 classes) and per-class accuracy of our GBCNN and of a CNN with the
same architecture. Each accuracy number in the table is the average over 50 runs of the network and we
include the standard deviation as a measure of the stability of the test.

The classification results show that our GBCNN outperforms a conventional CNN with the same
architecture in terms of average accuracy and yields a significantly lower standard deviation suggesting
that the model is more stable. Examination of the per-class accuracy shows that the improvement of
our approach is especially remarkable in classes associated with strong directional characteristics such as
Road, Highway and Railway. Improvement is negligible or less remarkable for classes such as Grass that
are well separated using spectral characteristics alone.

4. CONCLUSION

In this work, we have introduced a new deep learning network called GBCNN for hyperspectral classifi-
cation that reduces the number of training parameters of the network while imposing a geometrical bias
on the convolutional filters. A major novelty of our approach is that the convolutional filters learned
by our network are sparse linear combination from a predefined dictionary of highly directional filters.
As compared with a conventional CNN, our approach yields a superior classification performance that
can be explained with its improved ability to efficiently learn spatial features from the input data. The
method presented in this paper is expected to have a wider applicability and to be especially promising
for problems of classification with small data size.
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