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Abstract—This paper presents a novel approach for face
recognition (FR) based on a new multiscale directional approach,
called Shearlet Network (SN), and on a recently emerged
machine learning paradigm, called Multi-Task Sparse Learning
(MTSL). SN aims to extract anisotropic features from an image
in order to efficiently capture the facial geometry (shearface);
MTSL is used to exploit the relationships among multiple shared
tasks generated by changing the regularization parameter to
make the optimization convex. We compare our algorithm, called
Sparse Multi-Regularized Shearlet Network (SMRSN), against
different state-of-the-art methods on different experimental
protocols with AR, ORL, LFW, FERET, FRGC v1 and Lab2
databases. Our tests show that the SMRSN approach yields a
very competitive performance and outperforms several standard
methods of FR.

Keywords—Shearlet, Sparsity, Multi-Regularized Shearlet
Network, Face Recognition.

I. INTRODUCTION

Face recognition (FR) is among the most challenging
problems in pattern recognition and is a task of major
relevance in applications of computer vision and machine
learning. Many sparsity-based methods have been recently
proposed such as the successful Sparse Representation-based
Classification (SRC) introduced by Wright et al. [1]. In the
SRC approach, the testing face image is represented as a
sparse weighted combination of the training samples and the
classification is based on assessing which class yields the
minimal representation error. Recently, Yang et al. [2] [3]
have proposed another powerful method, the Regularized
Robust Coding (RRC) approach, which could robustly regress
a given signal (image) with regularized regression
coefficients. By assuming that the coding residual and the
coding coefficient are respectively independent and identically
distributed, the RRC seeks for a maximum a posterior solution
of the coding problem. An iteratively reweighted regularized
robust coding algorithm was proposed to solve the RRC model
efficiently.

Among the methods remerged in the machine learning
literature, the Multi-Task Learning (MTL) originally proposed
by Caruana [4] has been especially influential. MTL attempts
to learn classifiers for multiple tasks jointly and works under
the assumption that all tasks should share some common
features. Many variants of MTL were proposed, including the

multi-stage multi-task feature learning (MSMTFL) introduced
by Gong et al. [5], who defined a non-convex formulation for
multi-task sparse feature learning based on a novel non-

convex regularizion, called capped- 1 , 1 regularized model

for multi-task feature learning. This approach aims to
simultaneously learn the features specific to each task as well
as the common features shared among tasks. Related to this,
the approach proposed by Zhang [6] [7] uses a multi-stage
convex relaxation scheme for solving problems with non-
convex objective functions. For learning formulations with
sparse regularization, an analysis of the behavior of a specific
multistage relaxation scheme was obtained.

In this paper, we propose a method called Sparse Multi-
Regularized Shearlet Network (SMRSN), which combines
sparsity, regularization theory and MTL. Sparsity, in
particular, is based on the use of the shearlet representation, a
powerful multiscale framework that is especially effective to
capture directional and anisotropic features with high
efficiency [8]. Our method includes a multi-regularization step
inspired from multi-stage convex relaxation [6] to upgrade
from a non-convex optimization to a convex relaxation. As
part of this work, we have assessed the performance of the
SMRSN approach for FR and successfully compared it against
state-of-the-art algorithms.

The rest of this paper is organized as follows. In Sec. 2, we
briefly describe the necessary background on shearlets. Sec. 3
presents the proposed Sparse Multi-Regularized Shearlet
Network algorithm. In Sec. 4, we present several numerical
experiments to demonstrate the efficacy of the proposed
algorithm and compare it against competing algorithms.
Finally, Sec. 5 concludes this paper.

II. SHEARLET

The shearlet transform, introduced by one of the authors
and his collaborators in [9], is an approach where the
analyzing filters are designed to capture information across
several scales and efficiently encode anisotropic features such
edges and other elongated discontinuities. To achieve optimal

sparsity, shearlets are scaled according to a shear matrix sB ,

s   , and an anisotropic dilation matrix aA , 0a  , defined 

by:
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Thanks to their properties, shearlets have been successfully
employed in a number of image processing application
including denoising, edge detection and feature extraction
[10][11][12].

Unlike the classical wavelet transform which only depends
on scales and translations, the shearlet transform is a function
of three variables: the scale a, the shear s and the translation t.
One of the most remarkable properties of the Continuous
Shearlet Transform is its ability to detect very precisely the

geometry of the singularities of a 2-dimensional function f by

using highly directional filters as those shown in Figure1.

Fig. 1. Directional filters of shearlet.

By sampling the Continuous Shearlet Transform on an
appropriate discrete grid, one obtains the corresponding
Discrete Shearlet Transform. In this case, the discrete shearlets
are functions of the form:
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are the shear matrix and the

anisotropic dilation matrix, respectively. Note that, by
choosing the generator function appropriately, the discrete
shearlets form a tight frame of well-localized waveforms
defined at various scales, orientations and locations.

III. SPARSE MULTI-REEGULARIZED SHEARLET NETWORK

(SMRSN)

Our proposed SMRSN scheme for FR is defined as a
cascade of a feature extraction module followed by a
recognition module. We will implement this scheme by the
use of multi-stage regularization, where the extraction of
directional features is controlled by the Shearlet Network
(SN), as shown in Figure 2.

Fig. 2. SMRSN face recognition schema.

A. Multi-Stage Regularization based Convex Relaxation

We can model the FR problem using a standard statistical

method such as Subset Selection ( 0L regularization) [7],

which consists in computing the following estimator:
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where  is a tuning parameter, y is a normalized test face

and X is a matrix representing a gallery of faces.

FR can be framed as a regression problem aimed at
approximating a multivariate function from sparse data. This
is an ill-posed problem and a classical way to solve it is
though regularization theory [13] [14]. In practice, rather than
looking for an exact solution, it is sufficient to compute an
approximate one. The most popular approximation method is
the regularization method which is often referred to as Lasso
[15] and is given by:
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where 0  is an appropriately chosen regularization
parameter. However, as described in [6], this formulation is
non-convex for classification problems (FR in particular). One
major difficulty with non-convex formulations is that the
global optimal solution cannot be efficiently computed, and
the behavior of a local solution is difficult to analyze.

Convex relaxation has been commonly adopted to remedy
this problem. The choice of convex formulation makes the
solution unique and efficient to compute. The multi-stage
convex relaxation [6] is defined as:
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where X is an n d matrix, y an 1n matrix,
(0)
j  ,

1, 2,... and 1,...,j d . In this paper, we will adopt this

formulation to assess the performance of the SMRSN
approach for FR.

B. SN for Features Extraction

Our proposed SMRSN approach is initialized by training a
shearlet network (SN) [16] [35] to models the faces. The



Gallery faces are approximated by a shearlet network to
produce a compact biometric signature. A test (Probe) face is
projected on the shearlet network of the Gallery face and new
weights specific to this face are produced. The family of
shearlets remains unchanged (this is the Gallery face).

Fig. 3. Overview of SN for features extraction.

Recall that the collection of shearlets forms a tight frame,
meaning that, for any image in the space of square integrable
functions we have the reproducing formula:
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We use this formula to define the Shearlet Network
approach, similar to the wavelet network [17], as a
combination of the RBF neural network and the shearlet
decomposition. In the optimization stage, a shearlet coefficient
from the library is processed through the hidden layer of the
network or used to update the weights. The calculation of the
weights connection in every stage is obtained by projecting the
signal to be analyzed on a family of shearlets. In our approach,

the mother shearlet used to construct the family  , ,j l k is the

second derived of the Beta function [18].

Algorithm 1: SN learning

Input: image f

Output: reconstructed image recf

1. Select a shearlet  , ,j l k as activation function of the shearlet

network:
 Choose the mother shearlet.
 Build a library formed by the shearlets which

form a shearlet frame.
 Set as a stop-learning condition (number of

shearlets) and iterate the following steps:
2. Calculate the weights by direct projection of the image on the

shearlet: ,
, ,

w f
i j l k

  .

3. Calculate the output of the network recf .

4. Stop if the number of shearlets reaches the stop-learning condition,
otherwise add another shearlet and return to 2.

C. SMRSN Algorithm

We indicated in Sec. III.A. that the problem given by
formula (3) is non-convex and can be relaxed using a multi-
stage convex optimization as in formulation (4).

We recall that many successful optimization methods have
been proposed in the literature, including the popular Lasso
[19] and the iteratively reweighted least square [20], which
achieves a sparse solution as in [2][3].

In our SMRSN approach, we adopt the recursive least
square algorithm (RLS) [21] and the initial value of the weight

initw is chosen using the logistic function [22]:

21/ (1 1/ exp( ))init initw e     

where  and  are positive scalars and the initial residual inite
is given by: 

2( ( ))inite y mean X  ; 

here X is the aligned gallery of faces (an n d matrix) and

y a normalized test face (an 1n matrix). Note that, after

optimization by RLS, we can update the residual e and then

the weight iw .

Regarding the choice of the parameter
( )
j


, we have

adopted the formula in [6]:
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where 1,...,j d and

 ln /d n  ;   

with 1, 2, 4,8,16,...  and 0.5,1, 2,... 

Below we present the pseudocode of our SMRSN

algorithm, where X represents the reconstructed gallery of
faces after extraction of the features by training SN and y is

the reconstructed test face with the features extracted after
projection of the real test face on the frame of shearlets
produced by the gallery faces.

Algorithm 2: SMRSN

Input: - y : normalized test face f :  / , 2y f norm f

- X : aligned gallery faces: / *X X X X 
- Iter: max of iteration

Output: w ; ( )Identity y

1. Compute the residual inite , refer to formula 



2. Compute initw , refer to formula

3. Initialize
(0)
j  and

(0)
j  (as in formula (

4. For  = 1,2,…
For j = 1,…,Iter

- Compute the formula (4) using RLS:
( 1)( , , , , )i init jw RLS X y w   

- Update the residual e :
2( )ie Xw y 

- inite e (used for initw )

- Update initw , refer to formula 

End

- Update
( )
j


and  (as in formulas () -(

- init iw w
End

- *rec iy X w

- iw w

5. For k = 1,…, Classnum
21/2

2
( ) ( )k kerror k w y X w 

End

6. ( ) arg min( )Identity y error

Above, Classnum denotes the classes’ number of X where

Classnum d ; if Classnum d then we have the
situation of single sample per person (SSPP).

The condition init iw w is one of the novelties of our

SMRSN algorithm. In fact, for each new value of
( )
j


, RLS

will use the term iw from the previous stage (previous
( )
j


),

a common assumption in MTL.

In the next section will describe the experimental results
using our SMRSN approach.

IV. EXPERIMENTAL RESULTS

We have used the ORL, AR [23], Lab2 [24], FERET [25]
and FRGC version 1 [32] databases in controlled
environments and the LFW database [26] in uncontrolled
environments to test the FR performance of the proposed
method. We have used the Lab2 database for controlled
different illumination environments and FERET, FRGC v1
databases for the case of single sample per person SSPP, one
of the most challenging problem in FR.

We have used for comparison the SVM and NN methods,
and several state-of-the-art FR methods including BHDT [27],
MetaFace [28], RKR [29], RRC [3] and CRC [30]. For all
these methods, we have used the codes provided by the
authors with no change. All the face images were resized to
32×27.

A. AR and ORL Databases

In this set of experiments, we have selected a subset of 50
males and 50 females with only illumination and expression
changes from the AR dataset [23]. For each subject, seven
images from Session 1 were used for training, while other
seven images from Session 2 were used for testing. The face
images were resized to 32×27.

The ORL database contains 10 different images of each of
40 distinct subjects (400 images). For some subjects, the
images were taken at different times, varying the lighting,
facial expressions and facial details (glasses/no glasses). For
each subject, we have randomly selected five images for
training and other five images for testing. The face images
were resized to 32×27.

The recognition accuracy on the AR and ORL database is
shown in Table I. Our SMRSN method shows to a significant
improvement in FR rate compared with the other methods
considered.

TABLE I. RECOGNITION ACCURACY ON THE AR & ORL

DATABASE.

Method AR ORL
NN 0.7010 -
SVM 0.8729 0.8700
BHDT [27] 0.5714 0.8000
MetaFace [28] 0.8814 0.8350
RKR [29] 0.9329 0.8100
RRC [3] 0.9257 0.8850
CRC [30] 0.9071 0.9000
SMRSN 0.9500 0.9250

B. Lab2 Database

The Lab2 database [24] contains visible light images and
near-infrared images of the subjects. There are 50 subjects.
Each subject provides twenty visible light face images (1000
images) and the same number of near-infrared face images.
These images were acquired under four different illumination
conditions (4 sessions). The face images also have variation in
facial expression and pose. From the set of near-infrared faces,
we have randomly chosen 5~15 samples from the first three
sessions for training and 5 additional samples from the fourth
session for testing. The face images were resized to 32×27.

Fig. 4. Two subjects from Lab2 database [24].

The recognition accuracy on the Lab2 database is shown in
Table II. The proposed method shows superior performance



with respect to all the other methods considered using 5 images
and with RKR using 15 images, while the RRC achieves the
best accuracy with 10 images and SMRSN achieves the second
best results.

TABLE II. RECOGNITION ACCURACY ON THE LAB 2 DATABASE

Method 5 10 15
NN - - -
SVM 0.6880 0.7880 0.8480
BHDT [27] 0.5880 0.7360 0.8200
MetaFace [28] 0.7320 0.7920 0.7600
RKR [29] 0.7200 0.8000 0.8640
RRC [3] 0.7360 0.8320 0.8440
CRC [30] 0.6680 0.8040 0.8480
SMRSN 0.7400 0.8080 0.8640

C. LFW Database

The LFW database [26] contains images of 5,749 different
individuals in unconstrained environment. LFW-a is a version
of LFW after alignment using commercial face alignment
software [31]. We have extracted a dataset with 158 subjects
from LFW-a. For each subject, we have randomly chosen 2~5
samples for training and another 2 samples for testing. The
images are firstly cropped to 121×121 and then resized to
32×32 [34]. The FR rates on the LFW dataset are listed in
Table III. The table shows that our SMRSN approach
outperforms the other methods for two tests (3 and 5 images)
while RKR give the best result with the others tests.

TABLE III. RECOGNITION ACCURACY ON THE LFW DATABASE

Method 2 3 4 5

NN 0,1100 0.1320 0.1470 0.1620
SVM 0.2152 0.2468 0.3038 0.3544
BHDT [27] 0.0791 0.1203 0.1361 0.1772
MetaFace [28] 0.1582 0.2152 0.2405 0.2563
RKR [29] 0.3038 0.3607 0.4113 0.4525
RRC [3] 0.2690 0.3449 0.3956 0.4462
CRC [30] 0.1899 0.2595 0.3322 0.3607
SMRSN 0.2785 0.3681 0.3734 0.4589

D. FERET and FRGC v1 Databases: SSPP

The FERET dataset contains a large number of subjects
(single image per subject) in the gallery and the probe sets
exploit differences in illumination, facial expression
variations, and aging effects [25]. The frontal faces in the
FERET database are divided into five sets: fa (1196 images, 
used as gallery set containing one image per person), fb (1195
images, taken with different expressions), fc (194 images,
taken under different lighting conditions), dup1 (722 images,
taken at a later date), and dup2 (234 images, taken at least one
year apart). To test the SSPP problem, we have randomly
chosen 100~200 images from fa for training and similarly
100~200 images from fb. The FR rates on the FERET dataset
are listed in Table IV and show that our SMRSN algorithm
achieves the best recognition accuracy compared to the others
methods considered.

TABLE IV. RECOGNITION ACCURACY ON THE FERET DATABASE

Method 100 150 200
SVM 0.7700 0.7333 0.7150
BHDT [27] 0.5000 0.4200 0.3350
MetaFace [28] 0.8900 0.8933 0.8950
RKR [29] 0.8900 0.8533 0.8500
RRC [3] 0.8800 0.8800 0.9050
CRC [30] 0.8700 0.8400 0.8750
SMRSN 0.9600 0.9400 0.9550

FRGC v1 contains faces acquired under uncontrolled
conditions [32]. We have used this dataset to test the
challenging SSPP problem. Experiment 1 contains a single
controlled gallery image and a probe with one controlled still
image per subject (183 training images, 152 gallery images,
and 608 probe images). Experiment 2 considers identification 
of a person given a gallery with four controlled still images per
subject (732 training images, 608 gallery images, and 2432
probe images). Finally, experiment 3 considers a gallery with
one controlled still image per subject and multiple uncontrolled
probe images per subject (366 training images, 152 gallery
images, and 608 probe images) [33]. We have randomly
selected 152 images for training and 152 images for testing.
The images were cropped and resized to 27×18 for the first
experiment and resized to 32×27 for the second.

The recognition accuracy on the FRGC v1 database with
two image sizes is shown in Table V. The proposed method
shows superior performance with respect to all the other
methods considered.

TABLE V. RECOGNITION ACCURACY ON THE FRGC V1 DATABASE

Method 27×18 32×27
NN - -
SVM 0.6053 0.6974
BHDT [27] 0.2697 0.2829
MetaFace [28] 0.6842 0.7171
RKR [29] 0.6316 0.6316
RRC [3] 0.7303 0.7697
CRC [30] 0.6513 0.7039
SMRSN 0.7763 0.8158

V. CONCLUSION

This paper has presented a novel high-performing face
recognition method called Sparse Multi-Regularized Shearlet
Network (SMRSN). One main novelty of our approach is that
sparsity is achieved through the use of the shearlet
representation, a method that combines multiscale analysis and
directional selectivity. We have uses multi-task learning to
learn features and ensure that the recognition problem is
convex. Our approach is further refined by the recursive least
square method (RLS) in the optimization step. Our
experimental results on controlled and uncontrolled face
databases show that our SMRSN algorithm is very competitive
and outperforms state-of-the-art methods for face recognition,
including the single sample per person situation.
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