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Abstract 

During the last decade, sparse representations have been successfully applied to design high-

performing classification algorithms such as the classical sparse representation based 

classification (SRC) algorithm. More recently, collaborative representation based 

classification (CRC) has emerged as a very powerful approach, especially for face 

recognition. CRC takes advantage of sparse representation based classification through the 

notion of collaborative representation, relying on the observation that the collaborative 

property is more crucial for classification than the l1-norm sparsity constraint on coding 

coefficients used in SRC. This paper follows the same general philosophy of CRC and its 

main novelty is the application of a virtual collaborative projection (VCP) routine designed to 

train images of every class against the other classes to improve fidelity before the projection 

of the query image. We combine this routine with a method of local feature extraction based 

on high-order statistical moments to further improve the representation. We demonstrate 

using extensive experiments of face recognition and classification that our approach performs 

very competitively with respect to state-of-the-art classification methods. For instance, using 

the AR face dataset, our method reaches 100% of accuracy for dimensionality 300. 

Keywords  Statistical binary pattern ∙ virtual projection ∙ twin collaborative 

representation ∙ face recognition ∙ image categorization ∙ action recognition 

 

1 Introduction  

 

One of the main challenges of current research in pattern recognition (PR) is to improve the 

robustness of exiting algorithms with respect to confounding factors including noise, rigid 

transformations, changes in viewpoint, illumination, etc. Recent advances from statistical 

learning [1] have brought attention to the notion of sparsity to extract the salient image 

features in such a way to obtain more accurate and robust classification. Wright et al. [18], in 

particular, introduced a very influential framework called Sparse Representation based 

Classification (SRC) for face recognition (FR) and successfully applied this method to 

identify human faces with varying illumination changes, occlusion and real disguise. In their 

method, a test sample image is coded as a sparse linear combination of the training images 

and classification is achieved by identifying which class yields the least residual. Several 



other methods were inspired by SRC including: the FR method based on sparse 

representation of facial image patches by Theodorakopoulos et al. [4]; Kernel Sparse 

Representation for image classification and FR, which applies a sparse coding technique in a 

high dimensional feature space via some implicit feature mapping [39]; the Gabor occlusion 

dictionary for SRC by Yang and Zhang which reduces the computation cost by using Gabor 

feature [5]; a robust regularized coding model to enhance the robustness of face recognition 

to confounding factors [6] [7]; the method based on maximum correntropy criterion for 

robust face recognition by He et al. [8]. An alternative point of view was proposed by Zhang 

et al. [9] who argued that rather than sparsity ―the collaborative representation mechanism 

used in SRC is much more crucial to its success of face classification‖. Based on this 

observation, they introduced a method called Collaborative Representation based 

Classification with regularized least square (CRC) [9] which was shown to perform very 

competitively against SRC with a lower computational cost. As a further refinement of CRC, 

some of the authors proposed a method called Relaxed Collaborative Representation (RCR) 

which is designed better capture the similarity and distinctiveness of different features for the 

classification [10]. An alternative approach is the two-phase test sample representation 

method [54] and relies on detecting first the training samples located away from the test 

sample (assuming they have negligible effect on classification); next the test sample is 

represented as a linear combination of the M nearest neighbors and the representation result is 

used for classification. Another method proposed in [55] consists in partitioning face images 

into blocks and then creating an indicator to remove the contaminated blocks and choose 

the nearest subspaces; SRC is finally used to classify the occluded test sample in the new 

feature space. 

We also recall the Fisher Discrimination Dictionary Learning (FDDL) algorithm by Yang 

et al. [11] which embeds the Fisher criterion in the objective function design. The FDDL 

scheme has two remarkable properties. First, dictionary atoms are learnt to associate the class 

labels so that the reconstruction residual from each class can be used in classification; second, 

the Fisher criterion is imposed on the coding coefficients so that they carry discriminative 

information for classification. To improve this method, Feng et al. [12] propose to learn 

jointly the projection matrix for dimensionality reduction and the discriminative dictionary 

for face representation JDDLDR. The joint learning combines more effectively the learned 

projection and the dictionary with the result of improving FR performance. Within the 

general framework of the discriminative dictionary learning (DDL), the Projective Dictionary 

Pair Learning (DPL) algorithm [56] learns a synthesis dictionary and an analysis dictionary 

jointly to achieve the goal of signal representation and discrimination. The vector guided 

dictionary learning (SVGDL) method is proposed in [57] as a special case of the Fisher 

discrimination dictionary learning (FDDL) method; here the weights are determined by the 

numbers of samples of each class and a parameterization method is used to adaptively 

determine the weight of each coding vector pair. Compared with FDDL, SVGDL can 

adaptively assign different weights to different pairs of coding vectors. Yet another DDL 

approach recently proposed is the Locality Constrained and Label Embedding Dictionary 

Learning (LCLE-DL) algorithm [58], where locality information is preserved using the graph 

Laplacian matrix of the learned dictionary rather than the conventional one derived from the 

training samples; next, the label embedding term is constructed using the label information of 

atoms instead of the classification error term; the coding coefficients derived by combinig 

locality-based and label-based reconstruction are shown to be very effective for image 

classification. Very recently, it was proposed a probabilistic interpretation of the collaborative 



classification mechanism to explain the classification mechanism of CRC and following this 

analysis it was introduced a method called probabilistic collaborative representation based 

classifier (ProCRC) which jointly maximizes the likelihood that a test sample belongs to each 

of the multiple classes [48]. 

On other hand, a class of algorithms described as Local Feature based methods [13], [14], 

[15], [16], [17], [19], [20], [21], [22], [23] also demonstrated very promising results in 

problems of object recognition and texture classification. For instance, some of these methods 

use Gabor filters to extract local directional features on multiple scales and have been 

successfully applied in FR [14], [15]. Compared to more conventional methods such as 

Eigenface [2] and FisherFace [3], Gabor filtering is less sensitive to image variations. 

Another type of local feature widely used in FR is Statistical Local Feature (SLF), such as 

histogram of Local Binary Pattern (LBP) [16], whose main principle is to model a face image 

as a composition of micro-patterns [23]. By partitioning the face image into several blocks, 

the statistical feature (e.g., histogram of LBP) of these blocks is extracted, and finally the 

description of the image is formed by concatenating the extracted features in all blocks. For 

example, Zhang et al. [19], [20] proposed to use Gabor magnitude or phase map instead of 

the intensity map to generate LBP features. New coding techniques on Gabor features have 

also been proposed, e.g., Zhang et al. [21] extracted and encoded the global and local 

variations of the real and imaginary parts of the data using a multi-scale Gabor 

representation. Borgi et al. [24] [49] [1] proposed two algorithms that apply a sparse 

multiscale representation based on shearlets to extract the essential geometric content of 

facial features, one called Regularized Shearlet Network (RSN) and another one Sparse 

Multi-Regularized Shearlet Network (SMRSN). Finally, we recall that Meng et al. [25] 

proposed a kernel based representation model to fully exploit the discrimination information 

embedded in the statistical local features (SLF_RKR) and applied a robust regression method 

handle occlusions in face images. 

In this paper, we adopt the same general philosophy of CRC and our main novel 

contribution is to integrate this method with a virtual collaborative projection (VCP) routine 

designed to train images of every class against the others classes with the goal to improve 

fidelity before projecting the query image. Additionally, inspired by the remarkable results 

obtained from the recent literature in Local Feature based method, our algorithm includes a 

routine to compute high-order statistical moments (SM) in order to extract highly 

discriminative local features and improve data representation. To validate our algorithm, 

which is called Statistical Binary Pattern with Virtual Competitive Representation 

(SBP_VCP), we have tested it on multiple datasets for problems of face recognition, gender 

classification, handwritten digit recognition, object categorization and action recognition. 

Experimental results show that our method consistently achieves very competitive results as 

compared to classical and state-of-the-art algorithms. 

The rest of this paper is organized as follows. Section 2 introduces the main idea of 

statistical binary pattern and high order moments for feature extraction. Section 3 describes 

the proposed virtual collaborative projection applied to trained faces. Section 4 reports 

extensive numerical experiments to validate the proposed method and compare it against 

state-of-the-art methods on problems of face recognition under different confounding factors 

as well as image categorization, handwritten digit and action recognition. Finally, Section 5 

concludes this paper. 

 



2 Statistical binary pattern and high order moments 

The Statistical Binary Patterns (SBP) representation is an extension of Local Binary Patterns 

(LBP) and it aims at enhancing the expressiveness and discrimination power of LBP for 

image modelling (especially texture) and recognition, while reducing sensitivity to small 

perturbations, e.g., noise. The main idea of this method, which was introduced by one of the 

authors and their collaborator in [26], consists in applying a rotation invariant uniform LBP 

to a set of images corresponding to the local statistical moments associated to a given spatial 

support. The resulting code forms the SBP and an image is then represented by joint or 

marginal distributions of SBPs. 

2.1  Moment images 

 

A real valued 2d discrete image f is modelled as a mapping from 2 to  . The spatial 

support used to calculate the local statistics is modelled as 2B   , such that O B  , where 

O is the origin of 2  . The r-order moment image associated to f and B is also a mapping 

from 2 to  , defined as: 
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Where z  is a pixel from 2 , and B  is the cardinality of the structuring element B. 

Accordingly, the r-order centered moment image (r > 1) is defined as: 
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Where 
1

( , ) ( )f Bm z is the average value (1-order moment) calculated around z. Finally the r-

order normalized centered moment image (r > 2) is defined as: 
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where
2

( , ) ( )f B z is the variance (2-order centered moment) calculated around z. 

 

2.2  Statistical Binary Patterns 

 

Let R  and P  denote the radius of the neighborhood circle and the number of values sampled 

on the circle, respectively. For each moment image M, one statistical binary pattern is formed 

as follows: 

 one (P +2)-valued pattern corresponding to the rotation invariant uniform LBP 

coding of M: 



                                                             
     2
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 one binary value corresponding to the comparison of the centre value with the mean 

value of M: 

                                          

    
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                                        (5) 

where s denotes the pre-defined sign function, and 
~

M  the mean value of the moment 

M on the whole image. Hence , ( )P RSBP M represents the structure of the moment M 

with respect to a local reference (the center pixel), and ( )CSBP M  complements the 

information with the relative value of the center pixel with respect to a global 

reference (
~

M ). As a result of this first step, a 2( 2)P  - valued scalar descriptor is 

then computed for every pixel of each moment image. 

 

2.3  Image Descriptors 

 

Let  
1 M

i i n
M

 
 be the set of Mn  computed moment images.  iM

SBP  is defined as a vector 

valued image, with Mn
 
components such that for every 2z  , and for every i  , 

 
( )iM

iSBP z

is a value between 0 and 2(P + 2). If the image f contains texture, the descriptor associated to 

f is made by the histogram of the values of  iM
SBP . We consider two kinds of histograms. 

First we consider the joint histogram H  defined as follows: 
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Depending on the size of the texture images, the joint distribution may become too sparse 

when the dimension (i.e., the number of moments) increases. 

Next, we consider the marginal histograms{ }
Mi i nh   defined as: 
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An image descriptor can then be defined using the joint histogram H or the concatenation 

of the Mn marginal histograms{ }ih . The length of the descriptor vector is[2( 2)] Mn
P  in the 

first case and 2 ( 2)Mn P   in the second case. 

 

2.4  Higher order moments 

 

The SBP model on higher order moments is evaluated next. The objective of the SBP 

framework is to extend the LBP texture image descriptors from the local level, represented by 

the pixel z , to the regional distribution level of z B  by approximating the distribution to a 



set of statistical moments. It is known that the mean and variance describe faithfully a 

statistical distribution only in special cases, e.g., when it is a normal distribution. This 

assumption may fail for natural texture images. Therefore, higher order moments are needed 

to obtain an accurate description of a general distribution and capture the relevant 

information.  

Regarding the size of the image descriptor, it clearly increases as the number of moments 

increase. When we use joint histograms, the descriptor size is (2( 2))nP  where P  is the 

number of neighbours used in LBP and n  is the number of moment images. When we use 

marginal histograms, the size is only 2 ( 2)n P   but this comes at the price of a significant 

loss of information. Hence we propose a trade-off between descriptor size and information 

loss based on the concatenation of joint histograms corresponding to pairs of moment images. 

Formally, we can recursively define the higher order SBP  hybrid image descriptor as 

follows.  

Let 1M and 2M be moments or combinations of moments by their joint or concatenated 

histogram. We shall denote as 1 2M M
SBP (resp. 1 2_M M

SBP ) the image descriptor made by the 

joint (resp. concatenated) histograms constructed from 1M
SBP and 2M

SBP . In our 

experiments for higher order moments below, we have only considered pairs of moments for 

joint histograms. The algorithm below summarizes the high order binary statistical moment

SBP : 

 

The SBP  Algorithm 

Input: f - a 2D image, 
2B - the spatial support used to calculate the local 

moments, P – the number of neighbours, R – the radius neighbouring circle. 

Output: 1 2

,

m

P RSBP 
– texture descriptor of f . 

Calculate moment images: 

1. Calculate the first order moment image 1m (or  
1

,f B
m ) associated to f and

B using the formula (1). 

2. Calculate the second order centred moment image 2 (or  
2

,f B
 ) associated 

to f and B using the formula (2). 

Statistical Binary Patterns: 
 

1. Calculate statistical binary patterns  , 1P RSBP m and  1CSBP m from the 

first order moment images 1m , using the formulas (5) and (6). 

2. Calculate statistical binary patterns  , 2P RSBP  and  2CSBP  from the 

second order moment images 2 , using the formulas (5) and (6). 

3. Calculate 1 2

,

m

P RSBP 
as joint histogram of  , 1P RSBP m ,  1CSBP m , 

 , 2P RSBP   and   2CSBP  . 

 

 

Figures 1 and 2 compare the recognition rate of the algorithms LBP, CLBP [53] and SBP. 

For this comparison, we used the Outex database [52], a large and comprehensive texture 

database which includes 24 classes of textures collected under three illuminations and at nine 

angles. To measure the dissimilarity between the two histograms, we used the nearest 



neighborhood classifier with the chi-square distance. We considered different configurations 

of SBP: in Figure 1 we set the (P,R) value equal to (24,3);  in Figure 2 we used values (8,1), 

(16,2) and (24,3). 

 

 
Fig.  1 Classification rate (%) of  LBP, CLBP and SBP with the value (P,R) = (24,3) using the Outex texture 

database. 

 
Fig.  2 Classification rate (%) of  LBP, CLBP and SBP with the values (P,R) = (8,1), (P,R) = (16,2) and (P,R) = 

(24,3) using the Outex texture database. 

3 Virtual collaborative projection 

Zhang et al. [9] investigated the role of collaboration between classes in representing the 

query sample. In order to collaboratively represent the query sample 
my  using X (all the 



gallery images where each column is a training sample) with low computational cost, they 

introduced a method called Collaborative Representation based Classification with 

Regularized Least Square method (CRC_RLS). A general model of collaborative 

representation is: 

                                                  
~

2 2

2 2
arg min y X                                              (8) 

where   is the coding vector ( 1[ ,..., ,...]i   and y X  ) and   is the regularization 

parameter. 

The algorithm is described below: 

 

The CRC-RLS Algorithm 

1. Normalize the columns of X to have unit l2-norm. 

2. Code y over X by 
~

Py   

where  
1

T TP X X I X


  . 

3. Compute the regularized residuals 
~ ~

2

i i i ir y X     

4. Output the identity of y as 

 iidentity   argmi( ) n iy r  

 

where 
~

i  is the coding vector associated with class i . 

The method proposed in this paper improves this algorithm by increasing the fidelity of 

the training images and enhancing the collaboration between classes by representing not only 

the query sample y but also all gallery images ix of every class i based on the idea of virtual 

collaborative projection (VCP).  

Using this idea, we can compute the average images iC  from every class i over X , 

defined as: 

                                                                 1

tr

i i trC x N                                                   (9) 

where trN represents the number of training images of a class i. 

Next by computing P as: 

                                                                              
 

1
T TP X X I X


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(10)  

then the resulting virtual coefficient
~

virtual is calculated as follows: 

                                                                                    

~

virtual iPC 
                                                               

(11) 

 

This virtual coefficient is used as a weight for every class i and reconstruct a new gallery 

images 
icd : 

                                                                     

~

2
i

virtualc id C                                                (12) 



A new dictionary D  (the update of X ) is then obtained by combining all images 
icd
        

( 
1
,..., ,...

ic cD d d    ). 

Next, when a query sample y  is presented to be classified, we follow the same procedure 

as CRC_RLS by computing the regularized residuals ir  but we utilize the new dictionary D : 

                                                  

~ ~

2

i i virtual virtualr y D                                            (13) 

where iD represents the images of a class i. The identity of a query sample y is computing by:  

                                                     
   arg min( ) i iidentity y r                                        (14) 

 

Below we present our virtual collaborative projection (VCP) algorithm when a query 

image y is presented to be classified: 

 

The VCP Algorithm 

1. Normalize the columns of X to have unit l2-norm. 

2. Compute the average images iC of every class i using the formula (9). 

3. Compute the virtual coefficient
~

virtual using the formulas (10) and (11). 

4. Compute 
icd using the formula (12). 

5. Combining all the 
icd in a dictionary D .  

6. Compute the regularized residuals ir  using the formula (13). 

7. Return the identity of y using the formula (14). 

 

 

In order to investigate the efficiency of VCP versus CRC, we conducted some 

experiments using the AR face dataset [27] with different dimensionality. Note that PCA is 

used to reduce the dimensionality of original face images, and the Eigenface features are used 

for this first experiment with three dimensions 54, 120 and 300. 

For this comparison, we selected a subset from AR dataset that contains 50 male subjects 

and 50 female subjects with only illumination and expression changes. For each subject, the 

seven images from Session 1 were used for training and the other seven images from Session 

2 were used for testing. The images were cropped and resized to 60×43. Table 1 shows that 

VCP performs slightly better than CRC_RLS [9]: 

Table 1 Comparison VCP vs. CRC using AR data set with different dimensionality. 

Dimension 54 120 300 

CRC_RLS [9] 

VCP 

80.5% 

80.8% 

90.0% 

91.1% 

93.7% 

94.3% 

 

Additional experiments are conduct in Section 4 with object categorization and action 

recognition where we use features provide by state-of-the-art methods and not the high order 

statistical moments. 



We conclude this section by presenting our algorithm of high order Statistical Binary 

Pattern with Virtual Collaborative Projection (SBP_VCP) obtained by adding the step of high 

order statistical moments features extraction (cf. Section 2) to the VCP algorithm. This 

additional step is performed for the training images X resulting in a new training set and for 

every query sample y . 

The SBP_VCP Algorithm 

1. Extract the statistical binary patterns 1 2

,

m

P RSBP 
of X using the SBP

Algorithm. 

2. Extract the statistical binary patterns 1 2

,

m

P RSBP 
of y using the SBP

Algorithm. 

3. Call VCP algorithm. 

 

In the next section we illustrate the performance of the SBP_VCP approach. 

4 Experiments 

To demonstrate the performance of our SBP_VCP algorithm, we conducted extensive 

experiments on multiple benchmark databases for face recognition, handwritten digit 

recognition, gender classification, image categorization and action recognition.  

4.1  Parameter settings 

 

We first describe how we set the parameters in the SBP_VCP algorithm. A part from the 

choice of moments and their combinations, two additional parameters need to be set in the 

calculation of the SBP: 

 The spatial support B for calculating local moments. 

 The spatial support {P;R} for calculating the LBP. 

Although those two parameters are relatively independent, it must be noticed that B has to 

be sufficiently large to be statistically relevant. Regarding {P;R}, this quantity is supposed to 

be relatively small in order to represent local micro-structures of the (moment) images. 

In the following, due to space constraints, we only show experiments using structuring 

element B ={(1;5); (2;8)} which provides very satisfactory results on the different datasets. 

Regarding {P;R}, the spatial support of the LBP, we have considered the three settings 

commonly found in the literature: {8;1}, {16;2}, and {24;3}. 

Regarding the parameters associated with the virtual collaborative projection and the 

collaborative classification, we used a regularization parameter   which is initialized as 

follows, for: 

 Face recognition (FR) without occlusion: 0.001   

 Face recognition (FR) with occlusion: 0.1   

 Gender classification (GC): 0.001   

 Digit handwritten recognition: 0.1   

 Image categorization: 0.001   

 Action recognition: 0.1   

 

4.2 Face recognition (FR) 



4.2.1 Extended Yale B database 

The Extended Yale B [28], [29] database contains 2,414 frontal face images of 38 

individuals; some samples are presented in figure 1. We used the cropped and normalized 

face images of size 54×48, which were taken under varying illumination conditions. Three 

tests are considered for this dataset. 

 

 

Fig.  3 Selected samples from the Extended Yale B database. 

Test 1 

We randomly split the database into two halves. One half, which contains 32 images for each 

person, was used as the dictionary, and the other half was used for testing. Table 2 shows the 

recognition rates versus feature dimension by nearest neighbours NN, nearest feature line 

NFL [30], support vector machine SVM, sparse representation based classification SRC [18], 

linear regression based classification LRC [31], locality-constrained linear coding LLC [32], 

regularized robust coding RRC [7] methods. SBP_VCP achieves the best recognition rate for 

all dimensions except dimension 300 where it performs slightly worse than RRC_l1 [7] but it 

is still superior to all other methods considered. 

 
Table 2 Face recognition results test 1 of different methods on the Extended Yale B database. 

 

Dimension 84 150 300 

NN 

SVM 

LRC[31] 

NFL[30] 

SRC[18] 

LLC[32] 

CRC[9] 

RRC_l2[7] 

RRC_l1[7] 

SBP_VCP 

85.5% 

94.9% 

94.5% 

94.1% 

95.5% 

96.4% 

95.0% 

94.4% 

98.0% 

98.5% 

90.0% 

96.4% 

95.1% 

94.5% 

96.8% 

97.0% 

96.3% 

97.6% 

98.8% 

99.1% 

91.6% 

97.0% 

96.0% 

94.9% 

98.3% 

97.6% 

97.9% 

98.9% 

99.8% 

99.7% 

 

Test 2 

For each subject, Ntr samples are randomly chosen as training samples and 32 of the 

remaining images are randomly chosen as the testing data. Here the images are resized to size 

96×84 and the experiment for each Ntr runs 10 times. For comparison, we used robust kernel 

representation with statistical local features SLF-RKR [25] and we used the same features 

extraction; statistical local features SLF with NN, LRC, SVM, CRC and SRC based methods. 



We list in Table 3 the FR performance results, measured as mean recognition accuracy. 

The proposed algorithm SBP_VCP achieves the best performance when Ntr=5 or 20 and it is 

the second best method slightly behind SLF-RKR_l2 when Ntr=10. It can also be noticed that 

methods based on collaborative representation (e.g., SLF-RKR [25], SLF+CRC, SLF+SRC 

and original SRC) perform better than other kinds of linear representation methods (e.g., 

SLF+LRC, SLF+NN). 

Table 3 Face recognition results test 2, of different methods on the Extended Yale B database. 

 

Ntr 5 10 20 

Original SRC[18] 

SLF+NN 

SLF+LRC 

SLF+HISVM 

SLF+CRC 

SLF+SRC 

SLF-RKR_l1[25] 

SLF-RKR_l2[25] 

SBP_VCP 

        80.0% 

        59.7% 

        59.0% 

        72.0% 

        83.0% 

        82.8% 

        85.6% 

        85.8% 

        86.3% 

91.4% 

76.8% 

78.9% 

91.6% 

95.5% 

95.5% 

97.4% 

97.5% 

97.0% 

97.3% 

89.7% 

93.3% 

99.0% 

99.2% 

99.3% 

99.5% 

99.5% 

99.6% 

 

Test 3 

In the third test, we randomly selected between 2 and 7 images from each person as training 

set and used the remaining images as testing set. Similarly, all the samples were projected 

into a subspace of 550 dimensions (Samples in LDA+SRC and LDA+CRC schemes are 

projected into a subspace of 37 dimensions), in addition to SRC and CRC we compare our 

method with JDDLDR [12], FDDL [11] and PDL [56] based approach. The FR results are 

shown in Table 4. 

 
Table 4 Face recognition results test 3, of different methods on the Extended Yale B database. 

 

Ntr 2 3 4 5 6 7 

JDDLDR [12] 

DR-SRC 

MFL-SRC 

PCA+SRC 

LDA+SRC 

PCA+CRC 

LDA+CRC 

FDDL [11] 

PDL [56] 

SBP_VCP 

54.9% 

53.0% 

53.4% 

53.5% 

46.2% 

53.2% 

46.0% 

44.1% 

49.7% 

54.9% 

65.3% 

63.6% 

63.1% 

64.1% 

53.2% 

64.4% 

53.5% 

53.8% 

58.3% 

65.8% 

67.4% 

65.6% 

65.7% 

65.2% 

60.3% 

65.0% 

60.9% 

63.6% 

60.2% 

74.1% 

68.2% 

67.1% 

66.8% 

67.0% 

66.5% 

67.1% 

66.2% 

67.5% 

62.8% 

80.1% 

69.6% 

68.9% 

69.0% 

68.7% 

68.1% 

68.5% 

67.9% 

69.3% 

66.9% 

85.4% 

70.5% 

69.8% 

69.2% 

69.0% 

68.1% 

69.2% 

68.2% 

70.1% 

69.4% 

90.5% 

 

Table 4 shows that SBP_VCP gives the best results for all values of Ntr. We remark that 

the improvement in performance is significant as compared to all others methods 

demonstrating the advantages of combining the statistical features with this twin competitive 

(collaborative) classification.   



4.2.2 AR database 

Test 1 

 

As in [18], we selected a subset (with only illumination and expression changes) containing 

50 male and 50 female subjects from the AR database [27]; some samples are shown in 

Figure 4. For each subject, the seven images from Session 1 were used for training and the 

other seven images from Session 2 were used for testing. The images were cropped to 60×43. 

The FR rates with baseline comparison reported in Table 5 show that the proposed approach 

yields the best performance among all methods considered for all dimensions, even when the 

dimension is 30 and competing methods perform rather poorly. As expected, all methods 

achieve their maximal recognition rates at dimension 300. 

 

 

Fig. 4 Selected samples from the AR database. 

Table 5 Face recognition results test 1, of different methods on the AR database. 

 

Dimension 30 54 120 300 

NN 

SVM 

LRC[31] 

NFL[30] 

SRC[18] 

LLC[32] 

CRC[9] 

RRC_l2[7] 

RRC_l1[7] 

SBP_VCP 

62.5% 

66.1% 

66.1% 

64.5% 

73.5% 

70.5% 

64.2% 

61.5% 

70.8% 

82.4% 

68.0% 

69.4% 

70.1% 

69.2% 

83.3% 

80.7% 

80.5% 

84.3% 

87.6% 

93.7% 

70.1% 

74.5% 

75.4% 

72.7% 

90.1% 

87.4% 

90.0% 

94.3% 

94.7% 

98.9% 

71.3% 

75.4% 

76.0% 

73.4% 

93.3% 

89.0% 

93.7% 

95.3% 

96.3% 

100% 

 

Test 2 

 

For each subject, the seven images with illumination change and expressions from Session 1 

were used for training, and the other seven images with only illumination change and 

expression from Session 2 were used for testing. The size of the original face image is 83×60. 

The recognition rates versus the number of training samples Ntr are reported in Table 6, 

showing that SBP_VCP achieves the highest recognition rates, followed in order by SLF- 

RKR [25] and SLF+ SRC.  

 

 
Table 6 Face recognition results test 2, of different methods on the AR database. 

 

Ntr          2        3     4      5      6        7 

SRC [18] 

SLF+NN 

67.0% 

88.1% 

70.1% 

88.7% 

77.9% 

92.3% 

87.4% 

97.0% 

93.7% 

98.0% 

93.1% 

98.3% 



SLF+LRC 

SLF+HISVM 

SLF+CRC 

SLF+SRC 

SLF-RKR_l1[25] 

SLF-RKR_l2[25] 

SBP_VCP 

83.3% 

86.7% 

87.9% 

87.6% 

90.1% 

90.6% 

91.1% 

82.7% 

87.0% 

87.4% 

88.0% 

91.0% 

91.1% 

91.1% 

85.0% 

90.6% 

88.0% 

89.9% 

92.4% 

92.0% 

94.4% 

90.0% 

94.1% 

93.9% 

95.7% 

97.0% 

97.4% 

8.4% 

93.7% 

96.6% 

98.3% 

98.7% 

99.4% 

99.4% 

100% 

94.3% 

96.6% 

98.3% 

98.8% 

99.4% 

99,4% 

100% 

 

4.2.3 MPIE database 

The CMU Multi-PIE database [33] contains images of 337 subjects captured in four sessions 

with simultaneous variations in pose, expression, and illumination. Among these 337 

subjects, all the 249 subjects in Session 1 were used for training. To make the FR more 

challenging, four subsets with both illumination and expression variations in Sessions 1, 2 

and 3, were used for testing. We conducted two tests with this experimental protocol. 

 

Test1 

 

In the first test, for the training set, as in [18], we used the 7 frontal images with extreme 

illuminations {0, 1, 7, 13, 14, 16, and 18} and neutral expression (refer to Fig. 5(a) for 

examples). For the testing set, 4 typical frontal images with illuminations {0, 2, 7, 13} and 

different expressions (smile in Sessions 1 and 3, squint and surprise in Session 2) were used 

(refer to Fig. 5(b) for examples with surprise in Session 2, Fig. 5(c) for examples with smile 

in Session 1, and Fig. 5(d) for examples with smile in Session 3). Here we used Eigenface 

with dimensionality 300 as the face feature for sparse coding. Table 7 reports the recognition 

rates found in four testing sets. 

 

 
Fig. 5 A subject in the Multi-PIE database. (a) Training samples with only illumination variations. (b) Testing 

samples with surprise expression and illumination variations. Panels (c) and (d) show the testing samples with 

smile expression and illumination variations in Session 1 and Session 3, respectively. 

 
Table 7 Face recognition results of different methods on the MPIE database. 

 

Algorithms  Smi-S1  Smi-S3 Sur-S2 Squ-S2 

NN 

SVM 

LRC[31] 

NFL[10] 

SRC[18] 

LLC[32] 

CRC[9] 

RRC_l2[7] 

88.7% 

88.9% 

89.6% 

90.3% 

93.7% 

95.6% 

90.3% 

96.1% 

47.3% 

46.3% 

48.8% 

50.0% 

60.3% 

62.5% 

54.6% 

70.2% 

40.1% 

25.6% 

39.6% 

39.8% 

51.4% 

52.3% 

41.1% 

59.2% 

49.6% 

47.7% 

51.2% 

52.9% 

58.1% 

64.0% 

47.9% 

58.1% 



RRC_l1[7] 

SBP_VCP 

97.8% 

98.2% 

76.0% 

72.7% 
68.8% 

62.5% 

65.8% 

69.7% 

 

Table 7 shows that SBP_VCP gives the best results using the sets smile-S1 and Squint-S2 

and the second best results with the sets surprise-S2 and smile-S3. Since smile-S1 is in the 

same class (intra-class) as the training set, that’s why we have a good result, regarding smile-

S3 and surprise-S2 sets we have the second best accuracy by 72.7% and 62.5% respectively. 

Test2  

In the second test, we analyzed the impact of statistical binary pattern (SBP) on different 

state-of-the-art methods with the same experimental protocol as Test1. We considered nearest 

neighbours NN, linear regression LRC [31], sparse representation SRC [18], collaborative 

representation CRC [9] and relaxed collaborative representation RCR [10] based 

classification. Table 8 reports the recognition rates found on the different methods with and 

without SBP. 
 

Table  8 Face recognition results of different methods with SBP on the MPIE database. 

 

Algorithms  Smi-S1  Smi-S3 Sur-S2 Squ-S2 

NN 

SBP-NN 

LRC[31] 

SBP-LRC 

SRC[18] 

SBP-SRC 

CRC[9] 

SBP-CRC 

RCR[10] 

SBP-RCR 

88.7% 

94.5% 
89.6% 

96.5% 

93.7% 

98.0% 

90.3% 

97.4% 

89.6% 

96.2% 

47.3% 

58.1% 
48.8% 

69.9% 

60.3% 

72.1% 

54.6% 

61.7% 

48.5% 

69.1% 

40.1% 

51.0% 

39.6% 

57.9% 

51.4% 

62.2% 

41.1% 

59.2% 

38.1% 

64.5% 

49.6% 

63.4% 

51.2% 

64.1% 

58.1% 

67.2% 

47.9% 

64.2% 

40.0% 

74.6% 

 

Results in Table 8 show that SBP consistently increases the performance of different 

approaches, especially when the classes are different from session 1. The improvement in 

performance is significant for collaborative classification based methods CRC and RCR; for 

example the recognition rate of RCR with the set square-S2 increases from 40% to 74.6%, 

and with the set surprise-S2 from 38.1% to 64.5%. 

4.2.4 AR database, disguise 

In this experiment, we considered a subset from the AR database consisting of 2,599 images 

from 100 subjects (26 samples per class except for a corrupted image w-027-14.bmp), 50 

males and 50 females. We performed three tests: the first one follows the experimental 

settings in [18]; the other two, described below, are more challenging. The images were 

resized to 83×60 in the first and third test and to 42×30 in the second test; four representative 

samples of two persons are shown in figure 6. 

 



 
Fig. 6 Testing samples with sunglasses and scarves from theAR database. 

 

Test1 

In the first test, 799 images (about 8 samples per subject) of non-occluded frontal views with 

various facial expressions in Sessions 1 and 2 were used for training, while two separate 

subsets (with sunglasses and scarf) of 200 images (1 sample per subject per Session, with 

neutral expression) were used for testing. The FR results are listed in Table 9 and show that 

the SBP_VCP method achieves a much higher recognition rates than CRC_RLS [9], RRC [7] 

(with scarf), SRC [18], Gabor Feature based Sparse Representation with Gabor Occlusion 

Dictionary GSRC [5] and Maximum correntropy criterion CESR [8].  

Table 9 Test 1: Face recognition results using images with real disguise from the AR database. 

 

Algorithms  Sunglass  Scarf  

SRC [18] 

GSRC[5] 

CESR[8] 

CRC_RLS [9] 

RRC_l2[7] 

RRC_l1[7] 

SBP_VCP  

87.0% 

93.0% 

99.0% 

68.5% 

99.5% 

100% 

100% 

59.5% 

79.0% 

42.0% 

90.5% 

96.5% 

97.5% 

99.5% 

 

Test 2 

In the second test, we considered FR with a more complex disguise including variations of 

illumination and longer data acquisition interval. 400 images (4 neutral images with different 

illuminations per subject) of non-occluded frontal views in Session 1 were used for training, 

while the disguised images (3 images with various illuminations and sunglasses or scarves 

per subject per Session) in Sessions 1 and 2 for testing. The results, reported in Table 10, 

show that the SBP_VCP methods achieves better performance than CRC_RLS [9], SRC [18], 

GSRC [5] and CESR [8], except for sunglass-S1, where it achieve the second best result after 

RRC [9]. 

 
Table 10 Test 2: Face recognition results using images with real disguise from the AR database. 

 

Algorithms   Session 1 session 2 

Sunglass  Scarf  Sunglass Scarf 

SRC [18] 

GSRC [5] 

CESR [8] 

CRC_RLS [9] 

RRC_l2[7] 

RRC_l1[7] 

89.3% 

87.3% 

95.3% 

66.3% 

99.0% 

99.0% 

32.3% 

85.0% 

38.0% 

62.0% 

94.7% 

93.3% 

57.3% 

45.0% 

79.0% 

29.0% 

84.0% 

89.0% 

12.7% 

66.0% 

20,7% 

42.0% 

77.3% 

76.3% 



SBP_VCP  98.7% 98.7% 89.7% 84.7% 

 

Test 3 

In this test, a subset of 50 males and 50 females were selected from the AR database. For 

each subject, 7 samples without occlusion from session 1 are used for training, with all the 

remaining samples with disguises used for testing. These testing samples (including 3 

samples with sunglass in Session1, 3 samples with sunglass in Session 2, 3 samples with 

scarf in Session 1 and 3 samples with scarf in Session 2 per subject) not only have disguises, 

but also variations of time and illumination. Table 11 reports the FR results on the four test 

sets with disguise.  

Table 11 Test 3: Face recognition results using images with real disguise from the AR database. 

 

Algorithms  Sunglass-S1 Scarf-S1 Sunglass-S2 Scarf-S2 

Robust SRC[18] 

RSC [6] 

SLF+NN 

SLF+LRC 

SLF+HISVM 

SLF+CRC 

SLF+KCRC 

SLF+SRC 

SLF+KSRC 

SLF_RKR_l1[25] 

SLF_RKR_l2[25] 

SBP_VCP  

83.3% 

94.7% 

98.7% 

96.7% 

97.0% 

99.7% 

100% 

100% 

100% 

100% 

100% 

100% 

48.7% 

91.0% 

98.0% 

92.0% 

95.7% 

98.7% 

98.3% 

99.0% 

98,3% 

100% 

100% 

99.3% 

49.0% 

80.3% 

82.3% 

68.7% 

70.3% 

80.3% 

82.7% 

85.0% 

84.0% 

93.0% 

91.3% 

97.0% 

29.0% 

72.7% 

88.7% 

68.7% 

78.7% 

86.7% 

88.0% 

90.7% 

86.7% 

97.6% 

96.0% 

97.0% 

 

Table 11 shows that the proposed method achieves the best recognition rate with 

sunglasses in Session 2 and achieves 100% accuracy with Session 1 (as some others methods) 

and the second best accuracy in the sessions with scarf  (SLF_RKR is ranked first). We 

remark that all methods perform better for session 1 (sunglass and scarf) than session 2, as 

session 2 is more challenging due to variations in illumination. 

 

4.2.5 Georgia Tech data base with block occlusion 

The Georgia Tech (GT) [51] Face Database contains 750 color images of 50 subjects (15 

images per subject), as shown in Figure 7(a). These images have large variations in pose and 

expression and some illumination changes. Images were converted to gray scale, cropped and 

resized to 90×68. The first eight images of all subjects were used in the training (400 

images), the remaining seven images for testing (350 images). For block occlusion, were 

placed a randomly located rectangle of all the testing images using an unrelated image, as 

illustrated in Figure 7(c).  

 

 

 



 

 

 

 

 

(a)                                                         (b)               (c) 

Fig. 7 (a) Original images of the same subject from Georgia Tech. (b) Original test image. (c)Test image with 

random block occlusion (30%). 

 

Performance results reported in Table 12 compare the algorithms SBP_VCP, SBP-CRC, 

SBP-SRC, SBP-LRC, and SBP-NN in the presence of block occlusion ranging from 0% to 

50% of the image. Table 12 shows that SBP_VCP achieves the best accuracy. Our 

interpretation is that this remarkable performance is due mostly to the VCP approach which 

efficiently takes advantage of the twin collaborative representation in the training and testing 

steps.  
 

Table 12 Face recognition results using the GT databasewith block occlusion. 

Occlusions (%) 0 10 20 30 40 50 

SBP-NN 

SBP-LRC 

SBP-SRC 

SBP-CRC 

SBP_VCP 

48.0% 

64.0% 

66.8% 

66.5% 

67.1% 

28.9% 

62.8% 

64.3% 

63.1% 

66.3% 

18.8% 

58.5% 

60.6% 

60.6% 

61.4% 

10.6% 

48.6% 

55.1% 

57.3% 

58.6% 

7.1% 

39.1% 

46.0% 

49.4% 

51.1% 

5.1% 

26.9% 

32.2% 

34.3% 

37.1% 

 

4.2.6 FRGC data base with block occlusion and single sample per person (SSPP) 

The FRGC database [50] contains faces acquired under uncontrolled conditions as shown in 

Figure 8(a). Using single sample per person (SSPP) protocol as another challenging problem 

in FR, we randomly selected 152 images for training, 152 images for testing and replaced a 

randomly located block of the test image with an unrelated image, as illustrated in Figure 

8(c). The images were cropped and resized to 90×68 pixels. The recognition accuracy on this 

dataset is reported in Table 13. 

 

 

(a)                                                                       (b)              (c) 

Fig.  8 (a) Original images of four different subjects from FRGC. (b) Original test image. (c)Test image with 

random block occlusion (30%). 

 



The table 13 shows that also in this test with block occlusion ranging from 10% to 50% 

of the image our algorithm SBP_VCP achieves the best performance, as it exhibits as lightly 

better accuracy than all the other methods considered. Note that all methods, except SBP-NN 

and SBP-LRC, achieve the same recognition rates without occlusion, while their performance 

is different in the presence of occlusion. This shows that SBP_VCP performs remarkably 

well in the challenging SSPP problem.  

 
Table 13 Face recognition results of different methods with block occlusion and SSPP using the FRGC 

database. 

Occlusions (%) 0 10 20 30 40 50 

SBP-NN 

SBP-LRC 

SBP-SRC 

SBP-CRC 

SBP_VCP 

74.3% 

82.2% 

83.5% 

83.5% 

83.5% 

69.1% 

80.9% 

80.3% 

80.3% 

83.5% 

56.8% 

75.6% 

77.6% 

76.9% 

78.2% 

42.4% 

71.1% 

68.4% 

68.4% 

71.7% 

25.7% 

62.5% 

53.9% 

61.2% 

63.8% 

11.2% 

45.4% 

38.2% 

45.1% 

46.1% 

 

4.3 Gender classification (GC) 

 

4.3.1 AR database 

We selected a non-occluded subset (14 images per subject) of AR [16] consisting of 50 male 

and 50 female subjects. Images of the first 25 males and 25 females were used for training 

and the remaining images were used for testing. The images were cropped to 60×43. PCA 

was used to reduce the dimension of each image to 300. Table 14 reports the comparison of 

SBP_VCP versus the methods: Regularized Nearest Subspace (RNS) [34], Multi-Regularized 

features Learning (MRL) [35], CRC_RLS [9], SRC [18], SVM, LRC [31] and NN. The table 

14 shows that SBP_VCP outperforms the others methods considered and illustrates that the 

proposed method based on statistical local features is very effective for gender classification. 
 

 

Table 14 Performance results on GC using the AR database. 

SBP_VCP RNS_l1[34] RNS_l2[34] MRL [35] 
CRC_RLS 

[9] 
SRC[18] SVM LRC[31] NN 

97.81% 94.90% 94.90% 92.83% 93.70% 92.30% 92.40% 27.30% 90.70% 

 

4.3.2 FEI database 

There are 14 images for each of 200 individuals with a total of 2800 images [36]. The number 

of male and female subjects is exactly the same and equal to 100. The first nine images of all 

subjects are used in the training (1800 images, 900 per gender) and the remaining five images 

serve as testing images (1000 images, 500 per gender). Figure 9 shows all samples from one 

person. The images were cropped to 60×43. 

 

 



 

Figure 2.One subject from FEI database. 

 

 

 

 

 

 

 
Fig.  9 All samples from the same person from FEI database. 

 

Here we compare SBP_VCP to the MRL [35] and CRC_RLS [9] algorithms on different 

dimensionality. Table 15 shows that SM_VCP outperforms MRL and CRC_RLS with all 

dimensionality except for dimension 30. 

 
Table 15 Performance results on GC using the FEI database. 

Dimension 30 54 120 300 

CRC_RLS [9] 88.2% 90.3% 91.4% 93.1% 

MRL [35] 93.7% 93.4% 94.1% 94.0% 

SBP_VCP 92.6% 93.8% 95.0% 96.9% 

 

4.4  Handwritten digit recognition 

We next considered the problem of handwritten digit recognition on the widely used USPS 

database (Hull, J.J. 1994), which has 7,291 training and 2,007 test images.We used two 

different values of Ntr: 100 and 300 images. Results in the Table 16 below show that 

SM_VCP outperforms all competing methods considered when Ntr is 300 images. When Ntr = 

100, fisher discrimination dictionary learning FDDL [11] is the best performing algorithm but 

our approach has the second best performance. 

Table 16 Handwritten digit recognition results of different methods on the USPS database. 

 

Ntr 100 300 

FDDL [11] 

Simplified FDDL [37] 

CRC_RLS [9] 

SBP-CRC 

SBP_VCP 

94.1% 

94.2% 

89.8% 

90.3% 

93.4% 

94.1% 

95.0% 

90.6% 

92.2% 

95.1% 

 

4.5  Image categorization 

We tested the proposed method on the problem of multi-class object categorization. We used 

one of the two Oxford flower datasets, 17 category data set, [38], some samples of which are 

show in Figure 10. We adopt the default experimental settings provided at the website 

www.robots.ox.ac.uk/˜vgg/data/flowers, including the training, validation, test splits and the 

multiple features. It should be noted that, in this setting, features are only extracted from 

those flower regions which are well cropped by segmentation. This set contains 17 species of 

 



flowers with 80 images per class. As in [40], we directly use the χ 
2
 distance matrices of 

seven features (i.e., HSV, HOG, SIFTint, SIFTbdy, color, shape and texture vocabularies) as 

inputs, and perform the experiments based on the three predefined training, validation, and 

test splits. Performance results (in terms of accuracy) comparing VCP vs. other state-of-the-

arts are presented in Table 17 and show that VCP slightly outperforms all other methods. 

Note that, as we follow [40], we did not use the SBP for the representation in this test. 

 

Fig.  10 Samples from Oxford flower data sets with 17 categories. 

 

Table 17 Categorization accuracy on the 17 category Oxford Flowers data set. 

Methods Accuracy (%) 

SRC combination 

MKL [46] 

CG-Boost [47] 

LPBoost[47] 

MTJSRC-RKHS [40] 

MTJSRC-CG [40] 

RCR-DK [10] 

RCR-CG [10] 

VCP 

85.9 ± 2.2 

85.2 ± 1.5 

84.8 ± 2.2 

85.4 ± 2.4 

88.1 ± 2.3  

88.9 ± 2.9  

87.6 ± 1.8  

88.0 ± 1.6  

89.1 ± 0.9 

 

4.6  Action Recognition 

Finally, we conducted an experiment of action recognition on the UCF sport action dataset 

(Rodriguez et al. [43]) and the large scale UCF50 dataset. The video clips in the UCF sport 

action dataset were collected from various broadcast sports channels (e.g., BBC and ESPN). 

There are 140 videos in total and their action bank features can be found in Sadanand et al. 

[41]. The videos cover 10 sport action classes: driving, golfing, kicking, lifting, horse riding, 

running, skateboarding, swinging-(pommel horse and floor), swinging-(high bar) and 

walking. The UCF50 dataset has 50 action categories such as baseball pitch, biking, driving, 

skiing (figure 11), and there are 6,680 realistic videos collected from YouTube. 

On the UCF sport action dataset, we followed the experimental settings in Rodriguez et 

al. [43] and evaluated VCP via five-fold cross validation, where one fold is used for testing 

and the remaining four folds for training. Since we use the action bank features of [41], we do 

not use SBP as a local feature in this test. 

 



 

Fig.  11 UCF Sports Dataset: sample frames of 10 action classes along with their bounding box annotations of 

the humans shown in yellow. 

We compared VCP against state-of-the-art methods and reported the recognition rate in 

Table 18. Again, results show that VCP performs very competitively, illustrating the impact 

of the collaborative method. 

Table 18  Recognition accuracy on the UCF Sports data set. 

Methods Accuracy 

Hough forest (data A) [42] 

Hough forest (data B) [42] 

Hough forest (data C) [42] 

Rodriguez et al. [43] 

Yeffet & Wolf [44] 

Wang et al. [45] 

VCP  

86.6% 

81.6% 

79.0% 

69.2% 

79.2% 

85.6% 

88.8% 

 

4.7  Running   time 

In practical applications, training is usually an offline stage while recognition (classification) 

is usually an online step. Since we adopted the same classification procedure of collaborative 

representation based classification CRC, the speed-up we achieve is remarkable when 

compared to many other methods due to the significant reduction in computational 

complexity. In fact, after projecting a query sample y  via  
1

T TP X X I X


  , y  is 

classified to the class which gives the minimal 
2

2
( )  where 1 or 2i i n

r y X n        

and i  is the coding vector associated with class i  ( 1[ ,..., ,...]i   and y X  ). 

All experiments were carried out using MATLAB on a 2.20 GHz with Dual-core CPU 

machine with 3.00 GB RAM. Table 19 lists the average computational cost of training step 

on Test1 and Test2 from the AR dataset with real face disguise. The comparison of the LBP 

[16] to SBP algorithms shows that LBP has the least computation time, but SBP is close. 

 
Table 19 Average running time (seconds) of training step using AR dataset with real face disguise. 

Algorithms  Test 1 Test 2 

LBP [16] 

SBP 
0.02 

0.03 

0.005 

0.014 

 



Table 20 lists the average computational cost classification of different methods on Test1 

and Test2 from the AR dataset with real face disguise. SBP_VCP has the least computation 

time followed by RRC while GSRC has the highest computation time. 
 
Table 20 Average running time (seconds) of competing methods using AR dataset with real face disguise. 

Algorithms  Test 1-sunglass Test 1-scarf Test 2-sunglass Test 2-scarf 

CESR[8] 

SRC [18] 

GSRC[5] 

RRC[7] 

CRC [9] 

SBP_VCP  

2.50 

13.98 

119.32 

2.17 

0.13 

0.13 

3.61 

13.73 

118.05 

2.04 

0.17 

0.17 

0.45 

2.34 

12.95 

0.23 

0.04 

0.04 

0.47 

2.35 

12.49 

0.23 

0.04 

0.04 

 

5 Conclusion 

In this paper, we have introduced a novel approach for pattern recognition combining high 

order statistical binary pattern and collaborative projection for robust local representation and 

classification. We have demonstrated that the extraction of statistical features based on the 

high-order moments of the images is particularly effective against images outliers. When this 

is property is combined with our strategy for competitive or collaborative representation 

based on a trained virtual projection, we obtain a method we call SBP_VCP which is a 

powerful refinement of the collaborative representation based classification recently proposed 

in the literature. We have validated SBP_VCP on a wide range of problems from pattern 

recognition and classification which include face recognition, gender classification, object 

categorisation and action recognition. Extensive numerical tests and detailed comparison with 

standard and state-of-the-art methods demonstrate that the proposed SBP_VCP approach 

performs very competitively even on challenging classification tests. Additionally, our 

method can be implemented at a relatively small computational cost as it relies on the same 

efficient framework used in CRC for the classification step. 
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