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Abstract

Background. Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quan-
titative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify
multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological
applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image
stacks of neuronal cultures.
New Method. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent
images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our
method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters
to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new
construction of multiscale anisotropic filters that is implemented by separable convolution.
Results. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably
detects somas, accurately segments them, and separates contiguous ones.
Comparison with Existing Methods. We include a detailed comparison with state-of-the-art existing methods to demon-
strate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency.
Conclusions. Our algorithm will facilitate the development of automated platforms for high content neuron image
processing. A Matlab code is released open-source and freely available to the scientific community.

Keywords: Confocal microscopy, Fluorescence microscopy, Image analysis, Multiscale analysis, Neuronal morphology,
Soma detection

1. Introduction

Structure-function relations are central to many ques-
tions concerning the study of biological systems. This is
particularly true in the study of the central nervous system
whose main functional units, the neurons, are highly spe-5

cialized cells consisting of a cell body called soma, multiple
tree-like processes called dendrites and a long thin process
called axon. The remarkable morphological diversity of
neurons found within and across brain regions shows the
importance of structural characteristics for neuronal func-10

tion.
Historically, the modern study of neuroanatomy can

be traced back to the seminal work of Ramón y Cayal,
around the end of 19th century. By adapting a staining
technique discovered by Golgi in 1873, Cayal produced an15

impressive amount of highly detailed hand-drawn recon-
structions of neuronal morphology. During the following
century, in parallel with advances in microscopy and the

∗Corresponding author. Tel. +1 713 7433492; fax +1 713
7433505.

Email addresses: kayasa89@math.uh.edu (Cihan Bilge
Kayasandik), dlabate@math.uh.edu (Demetrio Labate)

development of more efficient and sensitive staining tech-
niques, several methods were introduced to make neuronal20

reconstruction easier and more accurate, eventually replac-
ing hand drawings with images generated via computer in-
terface (see [1] for a detailed history). During the last two
decades, several software toolkits were developed aiming
at providing digital reconstruction of neurons from im-25

age acquired using bright field or fluorescent microscopy
[2]. Even though most such methods require a significant
component of manual intervention [3, 2] and algorithms
tend to perform inconsistently with different types of data,
a huge effort is still under way in the scientific commu-30

nity to create fully automated algorithms for problems of
neuronal reconstruction. The impact of these methods in
neuroscience is expect to be very significant. With respect
to early manual reconstruction, digital reconstruction of
neurons enables to quantify morphological properties in a35

way which was not previously possible. Results from dig-
ital reconstructions can be used to extract a multiplicity
of morphometric measures, generate computational mod-
els, and carry out statistical analyses to investigate struc-
tural changes during development or induced by genetic40

or chemical perturbation.
The aim of this paper is to introduce a fully automated
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and computationally efficient algorithm for the accurate
identification of soma location and morphology in fluores-
cence images of networks of neurons in culture. It is known45

that neuronal characteristics including soma volume and
surface morphology are fundamental features for discrimi-
nating different types of neurons [4]. Detecting somas also
plays a major role in extracting the connectivity and tree
structure in a neuronal network as each soma location is50

identified with the root of a tree associated with the cor-
responding cell [5, 6].

In applications of high-content screening (HCS), mul-
tiple morphological properties of neurons need to be iden-
tified including soma location and shape characteristics.55

This information is usually collected from large sets of
multi-channel fluorescence images so that automated pro-
cessing methods are often necessary to handle such large
data. However the automated analysis of confocal images
of neuronal cultures presents a number of challenges. In60

cultures, somas are usually visible in the channel marked
by the Microtubules Associated Protein 2 (MAP2) an-
tibody staining or by a nucleus marker (e.g., DAPI or
TROPO-3), neither of which is soma-selective. Hence fur-
ther processing is needed to identify somas. An additional65

difficulty is that such confocal images typically consist of
stacks containing 10-25 images. As a result, only 10-25 pix-
els are available along the z-direction as compared with the
x and y directions which contain many more pixels (typ-
ically 512 or more). Due to this large difference in pixels70

number, it may be inefficient or even impossible to process
such data using conventional 3D filters.

Automated or semi-automated methods for soma and
cell detection found in standard image analysis packages
frequently rely on binary masks generated by contrast en-75

hancement and image intensity thresholding [7, 8]. While
these methods can be very effective in phase-contrast mi-
croscopy [8, 9], they are often unreliable when applied to
the analysis fluorescent images since high intensity values
are commonly found outside somas. To deal with images80

where somas and other structures exist in the same fluores-
cence channel, a number of alternative methods proposed
in recent years combine smoothing filters to regularize flu-
orescence intensity and classical morphological operators
(e.g., morphological opening) to separate somas from con-85

necting neurites [5, 10, 11, 12].
The main drawback of these methods is that they are

very sensitive to the parameters of the algorithm so that
they typically require a significant manual intervention to
perform efficiently. In addition, many such methods have90

proven to be impractical or inefficient in the 3D setting,
even though some recent studies have shown a clever way
to process 3D information by projecting the original image
stack onto its the three orthogonal planes [13].

To overcome the limitations of existing methods es-95

pecially in the context of neuronal cultures, one of the
authors introduced an innovative approach that relies on
a novel multiscale descriptor called Directional ratio to
separate somas from dendrites [14]. By quantifying the

degree of local isotropy in images, this method was shown100

to detect somas very accurately and reliably in 2D images.
However it is computationally intensive as it require the
computation of multiple directional filters at various scales
and the application of the level set algorithm. In addition,
since more directions and larger filters are needed in 3D,105

the direct application of this method in 3D is impractical.
One major aim of this paper is to introduce and demon-
strate a major improvement of this method which relies
on two novel ideas: (i) the application of a new class of
multiscale directional filters which can be implemented by110

separable convolution to detect soma locations very effi-
ciently; (ii) the application of the fast marching method to
extract the soma regions and separate contiguous somas.
Using these ideas we are able to speed up the extraction
of somas in 2D image by over 20 times with respect to115

the results in [14] while keeping the same excellent level of
accuracy and reliability. Remarkably, our method can de-
tect somas even more efficiently than algorithms based on
conventional morphological operators (known to be very
fast) and much more accurately. Another contribution of120

this work is the algorithmic implementation of our new ap-
proach based on Directional Ratio to the 3D setting. The
performance of our 2D and 3D algorithms is extensively
validated on multiple confocal images of neuronal cultures
and brain tissue, and successfully compared against state-125

of-the-art methods from the literature.
Our algorithms are implemented in Matlab and re-

leased open source under the GNU General Public Licence
and freely available to the scientific community.

2. Materials and Methods130

We consider the problem of detecting soma locations in
fluorescent image stacks of neuronal cultures or neuronal
tissue both in the 2D and 3D settings.

Our algorithm for soma detection and extraction –
whether in 2D or 3D – consists of the following steps.135

1. Preprocessing. It is designed to remove noise and im-
prove image quality.

2. Segmentation. It separates neurons from background.

3. Soma detection. It is designed to find somas.

4. Soma extraction. It is designed to identify the entire140

soma regions and split somas that are clustered to-
gether.

In the following, we describe the methods we develop
and apply to address each processing step, with most em-
phasis on the last two steps which contain our main origi-145

nal contributions.

2.1. Preprocessing

Preprocessing is designed to take full advantage of the
capabilities of instrumentation by reducing sources of im-
age degradation such as blurring and noise.150
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A common denoising routines found in biomedical ap-
plications is Gaussian smoothing [15], which consists in
convolving an image with a Gaussian function g(x) =

1
2πσ2 exp (−‖x‖

2

2σ2 ), where σ2 is a variance parameter. This
operation has the effect of smoothing the image with a155

smoothing level controlled by σ2. While this method is
simple to implement and computationally efficient, it has
the undesirable effect of blurring edges with the consequent
loss of spatial information.

To avoid the above limitation, we adopt instead wavelet160

shrinkage which consists in: (i) transforming the image
using the wavelet transform; (ii) filtering the resulting
wavelet coefficients using a shrinkage function whose pa-
rameters are automatically determined from the data; (iii)
applying the inverse wavelet transform to the shrinked co-165

efficients to obtain a restored image. Wavelet shrinkage de-
noising was theoretically proven to be optimal with respect
to the mean-squared error for estimating piecewise smooth
signal corrupted by additive Gaussian noise [16, 17] and
was shown to perform very competitively with fluorescence170

microscopy imaging data [18, 19, 20, 14].

2.2. Segmentation
A widely used image segmentation strategy is inten-

sity thresholding, consisting in setting to 0 all pixels whose
intensity value is below a certain threshold, and setting175

to 1 those pixels above or equal the threshold. To auto-
matically set a threshold, a classical approach is Otsu’s
method [15], which assumes that the intensity distribu-
tion is bimodal and calculates the optimum threshold sep-
arating the two classes. The main downside of intensity180

thresholding is that it considers only the pixel intensity
and ignores any relationships between pixels, with the re-
sult that pixels identified in the region of interest may fail
to be contiguous. This performance issue is more severe
as the noise level increases.185

To ensure a more faithful preservation the geometry of
data, we adopt in this paper a segmentation strategy based
on Support Vector Machines (SVM) originally introduced
by one of the authors [21, 22] and whose main novelty is
the use of features generated by a set of multiscale Lapla-190

cian and multiscale directional filters designed to capture
tubular structures in neuronal images. As for many algo-
rithms of this type, the proper classification stage of the
algorithm is preceded by a training stage of the classifier
which may be computationally intensive. For the training195

stage, we selected 2 images out of 20, containing a total of
11 neurons (out of 71 neurons in the 20 images). Feature
vectors were generated using 10 filters comprising Lapla-
cian and directional filters at multiple scales. We remark
that the training stage needs to be run only once as long200

as the segmentation algorithm is applied to images of the
same type (e.g., same cell type and image acquisition set-
ting). Fig. 1 illustrates the segmentation of a 2D image
of a neuronal culture using different strategies. The result
reported in the figure suggests that the SVM approach is205

more effective at capturing the true data structure.

2.3. Soma detection

Our method for soma detection relies on the Direc-
tional Ratio, an approach recently introduced by one of
authors to quantify the degree of local isotropy in an im-210

age [18, 23] and shown to be very effective for separating
somas from neurites in fluorescent images of neurons [14].

2.3.1. Directional Ratio

Given a collection of multiscale orientable filters {φj,`},
where the indices j, ` are associated with a range of scales
and orientations, respectively, the Directional Ratio of an
image f at the j-th scale and at location p is the quantity

Djf(p) =
min`{|f ∗ φj,`(p)|}
max`{|f ∗ φj,`(p)|}

. (1)

For instance, in dimension 2, the simplest choice of filters
φj,` are the functions

φj,`(x) = χSj,`
(x),

where χA is the indicator function of A and the sets Sj,`
are the scaled and rotated rectangles Sj,` = 2jRθ`S, where215

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
and S is a fixed rectangle. Clearly,

the same idea applies in the 3D setting if one replaces 2D
rectangles with 3D rectangles and uses 3D rotations.

The Directional Ratio ranges between 0 and 1, and it
measures the degree of directional coherence of an image f220

at given scale and location. It is proved in [18, 23] that, if f
is an image containing blob-like and vessel-like structures,
then, for an appropriate range of scales controlled by j,
there exists a threshold T significantly less than 1 such that
the Directional Ratio does not exceed T when p is located225

inside a vessel-like structure; by contrast, when p is located
strictly inside a blob-like structures then the Directional
Ratio is close to 1 (See Fig. 2). Note that the Directional
Ratio is not guaranteed to be close to 1 near the boundary
of a blob-like structure. Nevertheless it was shown that230

one can reliably detect somas in a segmented image of a
neuron f by computing the Directional Ratio Djf(p) at
an appropriate scale controlled by j and discarding those
points p for which Djf(p) < T . Specifically, j is chosen
so that the filter length is larger than the radius of the235

neurites and close to the radius of the somas.
The practical implementation of (1) requires comput-

ing multiple filtered images f ∗φj,` for various orientations
` (at a fixed scale j). For a 2D image f of size N ×N the
computation of each filtering step f ∗ φj,` using FFT to240

implement convolution requires O(N2 logN) operations.
Using L orientations, this brings the total number of op-
erations to O(LN2 logN). Applying the same reasoning
in 3D, with the same density of orientations, the compu-
tational cost would be O(L2N3 logN) operations. This245

shows that the computational cost of directly implement-
ing (1), as it was carried out in [14], is already significant
in 2D and would be unacceptable in the 3D setting. A test
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Figure 1: Comparison of segmentation routines. (A): Denoised image of a neuronal culture. (B-D): Image segmentation results using
our SVM-based method (B); intensity thresholding, Otsu’s method (C); intensity thresholding, threshold based on median of the image (D).

Figure 2: Directional Ratio and directional filters. Left: Due
to the different behavior of orientable filters, for an appropriate range
of scales, the Directional Ratio is much smaller than 1 at p1 inside
a vessel, and it is about 1 at p2, inside a blob structure. Right: A
rotated anisotropic Gaussian can be decomposed along its main axes
u and v or alternatively along the non-orthogonal axes x and t. The
second choice enables fast implementation by separable convolution.

on a 512 × 512 × 512 image stack run on a standard lap-
top (2.4GHz processor) with a Matlab code requires about250

103 hours to compute the Directional Ratio with L2 = 40
directional filters. In this paper, we develop a new con-
struction and implementation of directional filters based
on multiscale orientable filters implemented by separable
convolutions. Using this new approach, we can signifi-255

cantly reduce the computational cost both in the 2D and
3D settings. As shown in the Results section below, us-
ing the same laptop we can process the same 3D stack in
about 1 minute.

2.3.2. Anisotropic Gaussian filters260

Several constructions of orientable anisotropic filters
were proposed in the literature such as the classical ro-
tated Gaussians by Perona [24] and the shearlet filters
[25, 26]. Many such constructions aim at providing addi-
tional properties, e.g., shearlet filters are particularly sen-265

sitive to edges. For our application to the computation of
the Directional Ratio (1), our requirements are very mild
as we only need orientable waveforms with anisotropic sup-
port. Since we are mostly concerned with reducing the
computational cost of the Directional Ratio, in this paper270

we will focus on a class of anisotropic Gaussian filters that
can be implemented and computed very efficiently.

In 2 dimensions, an anisotropic Gaussian function is
obtained by scaling a 2D Gaussian using different factors
σx and σy (say, σx = 10σy) in the x and y directions,

respectively:

g0(x, y;σx, σy) =
1

2πσxσy
exp

(
−1

2

(
x2

2σ2
x

+
y2

2σ2
y

))
.

By rotating the coordinate axes by an angle θ, one obtains
the oriented anisotropic Gaussian functions

gθ(x, y;σx, σy) =
1

2πσxσy
exp

(
−1

2

(
(x cos θ + y sin θ)2

σ2
x

+
(−x sin θ + y cos θ)2

σ2
y

))
.

Geusebroek et al [27] introduced a very efficient method
to separate the convolution with the anisotropic Gaussian
gθ(x, y;σx, σy) as the composition of a 1D convolution with
a Gaussian filter in the x direction followed by another
1D convolution with a Gaussian filter in a non-orthogonal
direction, that is

gθ(x, y;σx, σy) =
1

2πσxσφ
exp

(
−1

2

x2

σ2
x

)
∗ exp

(
−1

2

t2

σ2
φ

)
,

where t = x cosφ + y sinφ and φ is an appropriate func-
tions of θ. An illustration of this decomposition is shown in
Fig. 2. Using a recursive approximation to implement 1D275

Gaussian convolutions, this method yields an implemen-
tation that is very accurate and faster than a FFT-based
2D convolution, as it requires only O(1) multiplications
per pixel. We adopt this implementation to compute our
Directional Ratio. In this case, the scale of the filters is280

controlled by σx and σy.
The same idea extends to the n-dimensional case, as

shown by Lampert and Wirjadi [28]. In particular, simi-
lar to the 2D case we can represent any 3-dimensional ro-
tated anisotropic Gaussian filters as the composition of 3 1-285

dimensional Gaussian filters aligned along non-orthogonal
directions. Again these filters have fast implemention us-
ing separable convolution.

2.4. Soma extraction

As we observed above, the Directional Ratio of the290

segmented image of a neuron is expected to be close to
1 inside a soma but its value may be much lower near its
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boundary. Hence, by thresholding the Directional Ratio,
we will only find a region strictly inside the soma (see
Fig. 3). To identify the entire soma including the region295

near its boundary, we need to grow the initial soma region.
In this paper we develop an approach based on the Fast
Marching method.

2.5. Level Set and Fast Marching methods

The Level Set and Fast Marching methods are varia-300

tional approaches introduced to track evolution of curves
and shapes without having to parametrize these objects [29,
30]. In [14], we used the Level Set approach with the
boundary curve of the region found by the Directional Ra-
tio inside the soma as the initialization curve Γ of the level305

set evolution equation. Even though this method provides
excellent results, it is computationally intensive and its
direct extension to the 3D setting is impractical.

As an alternative faster approach for tracking a moving
boundary, we apply here the Fast Marching method which310

is designed for problems in which the speed function never
changes sign, so that the front is always moving forward
or backward. This assumption allows one to convert the
evolution problem to a stationary formulation, which has
much faster implementation (about N logN operations for315

an N size grid) than Level Set method, even though the
latter one is more flexible.

Fast marching method builds the evolving curve Γ by
computing the arrival time T (p), as the time when the
curve crosses a location p, by using a speed map F given320

by the user. The selection of F is the critical factor in the
application of this method.

In our situation, taking again the boundary curve of
the initial soma region as the initialization curve, we want
the speed map F of the evolving curve to decrease as it
approaches the boundary of the soma and to finally stop
at the boundary. This suggests that the Directional Ratio
of the segmented image could be a good candidate for the
velocity map as its values are larger inside the soma and
decrease at the boundary. However, the Directional Ratio
does not vanish near the boundary of the soma and at the
connected neurites, so that the curve Γ would continue
to evolve outside the soma and inside the neurites. To
deal with this problem, we use the following strategy. To
generate a sharper decrease away from the interior of the
soma, we set F (p) equal to the modified Directional Ratio

min`{|f ∗ φj,`(p)|3}
max`{|f ∗ φj,`(p)|}

.

Due to the power introduced in the numerator, this quan-
tity decreases faster than the Directional Ratio away from
the soma. Additionally, this function is thresholded by325

setting to 0 very small values (below 0.00001 in our ex-
periments) to ensure that the evolution will stop when Γ
reaches the soma’s boundary.

For our numerical implementation of the Fast Marching
method, we adapted the Fast Marching Matlab toolbox by330

G. Peyré which is based on [31, 30].

2.5.1. Separation of clustered somas

Our method to extract somas may detect multiple con-
tiguous somas as a single one. To address this issue, we
use the following approach developed by one of the au-335

thors in [14]. After applying our method based on Direc-
tional Ratio at the default scale, we check the extracted
soma area. If this area differs from the expected area more
than three times the estimated standard deviation, then
we conclude that it contains more than one soma. Next,340

we compute again the Directional Ratio at a coarser scale,
that is, using twice as long directional filters; the appli-
cation of a threshold on the Directional Ratio will now
produce a smaller initial set inside each true soma region.
Finally, we apply again the Fast Marching routine using345

the new boundary curves for each initial set. This method
is run automatically and, as shown by numerical tests in
the Results section, reliably separates contiguous somas.

2.6. Specimen preparation and imaging

Images used in this paper are primary hippocampal350

neuronal cultures that were prepared in Dr. Laezza’s Lab-
oratory at the Department of Pharmacology & Toxicology
of the University of Texas Medical Branch.

Confocal images were acquired with a Zeiss LSM-510
Meta confocal microscope with either a 63X or a 40X oil355

immersion objective (1.4 NA). Multi-track acquisition was
done with excitation lines at 488 nm for Alexa 488, 543 nm
for Alexa 568 and 633 nm for Alexa 647. Respective emis-
sion filters were band-pass 505-530 nm, band-pass 560-615
nm and low-pass 650. Stacks were collected at z-steps of 1360

µm with a frame size of 512 × 512, pixel time of 2.51 µs,
pixel size 0.28 × 0.28 µm (63X objective) or 0.44 × 0.44
µm (40X objective) and a 4-frame Kallman averaging.

Banker’s style hippocampal neuron cultures were pre-
pared from embryonic day 18 (E18) rat embryos as de-365

scribed in [32]. Briefly, following trituration through a
Pasteur pipette, neurons were plated at low density (105
× 105 cells/dish) on poly-L-lysine-coated coverslips in 60
mm culture dishes in MEM supplemented with 10% horse
serum. After 24 h, coverslips (containing neurons) were370

inverted and placed over a glial feeder layer in serum-free
MEM with 0.1% ovalbumin and 1 mM pyruvate (N2.1 me-
dia; Invitrogen, Carlsbad, CA) separated by approx. 1 mm
wax dot spacers. To prevent the overgrowth of the glia,
cultures were treated with cytosine arabinoside at day 3375

in vitro (DIV).
Hippocampal neurons (DIV14) were fixed in fresh 4%

paraformaldehyde and 4% sucrose in phosphate-buffered
saline (PBS) for 15 min. Following permeabilization with
0.25% Triton X-100 and blocking with 10% BSA for 30380

min at 37 ◦C, neurons were incubated overnight at room
temperature with the following primary antibodies: mouse
anti-FGF14 (monoclonal 1:100; Sigma Aldrich, St Louis,
MO), rabbit anti-PanNav (1:100; Sigma, St Louis, MO)
and chicken anti-MAP2 (polyclonal 1:25000; Covance, Prince-385

ton, NJ) diluted in PBS containing 3% BSA. Neurons were
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Figure 3: Soma extraction. Starting from the segmented image of a neuron (A), we compute the Directional Ratio in (B); whose values
range from 0 (blue) to 1 (red). By thresholding those pixels in (B) was value in above 0.85, we detect an initial soma region in (C). We apply
the Fast Marching algorithm to evolve the boundary of the initial soma region in (C) until it finds the entire soma region in (D).

then washed 3 times in PBS and incubated for 45 min at
37 ◦C with appropriate secondary antibodies as described
for brain tissue staining. Coverslips were then washed 6
times with PBS and mounted on glass slides with Prolong390

Gold anti-fade reagent.
All the animal procedures were performed in accor-

dance to the University of Texas Medical Branch at Galve-
ston IACUC approved protocols.

3. Results and Discussion395

In this section, we illustrate the application of our im-
proved soma detection and extraction algorithm on multi-
ple fluorescent images of neurons both in the 2D and 3D
settings. Imaging data, as indicated above, were provided
by Dr. Laezza at the Department of Pharmacology & Tox-400

icology of the University of Texas Medical Branch. Our
numerical code is written in Matlab and includes the rou-
tine for the computation of anisotropic Gaussian filters and
Fast Marching propagation described above. All numerical
experiments were run using a MacBook with Intel Core i5405

2.4GHz processor and 16 GB RAM. Data and open source
code used to generate our results are publicly available at
https://github.com/cihanbilge/SomaExtraction.

3.1. Performance metric

To assess the performance of our algorithm on soma ex-
traction, we adopt the following standard statistical mea-
sures of the performance of a binary classification test [33].
The True Positive Rate TPR (or Sensitivity) measures the
proportion of correctly identified soma pixels with respect
to the total number of true soma pixels, which are manu-
ally identified by a domain-expert (without knowledge of
the algorithm results). Denoting by TP (= true positive)
the number of correctly identified soma pixels and by FN
(= false negative) the number of true soma pixels incor-
rectly rejected, we define:

TPR =
TP

TP + FN
.

The False Positive Rate FPR (this is the complement of
the Specificity) measures the proportion of pixels incor-
rectly identified as soma pixels with respect to the total

number of true soma pixels. That is, denoting by FP (=
false positive) the pixels incorrectly selected as soma pix-
els, we define

FPR =
FP

TP + FN
.

This rate is a penalty akin to wrong soma pixel detec-
tions. When our FPR is compared with the traditional
definition (FP )/(TN + FP ), one notices that this last ex-
pression would be very close to zero in our neuronal images
since false soma detections are much less than the number
of background pixels, due to the low neuronal density in
our images. Hence, we adopted a new modified definition
which describes false soma detections as a percentage of
soma volume measured in pixels. Finally, the Dice Coef-
ficient DC is used to compare the similarity between two
samples or measures and is given by

DC =
2TP

2TP + FN + FP
.

Note that the denominator 2TP +FN +FP = TP +FP +410

FN + TP is the sum of the detected pixels and the true
soma pixels. DC can be considered as a measure of the
overall effectiveness of the soma extraction algorithm.

3.2. 2D soma analysis

Due to the difficulty of processing an image stack in 3D415

resolution, in several studies stacks are converted into 2D
images by computing projections along the axis perpen-
dicular to the image plane (the z axis). The maximum in-
tensity projection (MIP) for instance maps an image stack
into a 2D image where each pixel contains the maximum420

value over all images in the stack at that pixel location.
For our 2-dimensional tests, we considered 20 MIP

images obtained from 20 standard field-of-view confocal
image stacks of low-density neuronal cultures, as com-
monly used in phenotypic screenings of analytes for drug-425

discovery or biomarker identification (cf. [34, 35, 36, 32]).
Each image stack comprises between 10 and 25 images
and contains between 1 and 10 neurons, for a total of
71 somas in the 20 data sets we considered. According
to the processing pipeline described in the Materials and430

Methods section, images were first preprocessed and seg-
mented; the Directional Ratio was computed; an initial
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region was obtained by thresholding the Directional Ratio
with threshold = 0.85; finally, by applying the Fast March-
ing algorithm to the initial region, somas were extracted435

and contiguous somas separated, if needed.

Figure 4: Sensitivity on scale parameter. Plots illustrate the
soma extraction performance, according to the Dice Coefficient, as
a function of the filter length for our algorithm (above) and as a
function of the radius of the structuring element for an algorithm
using the morphological opening operator (below).

For the implementation of the Directional Ratio, we
considered the two types of directional filters described
above, i.e., rectangular and anisotropic Gaussian filters.
As this method requires filtering an image at multiple ori-440

entations and at appropriate scale, we need to select the
scale parameter and the number of orientations.

According to the theory, the scale parameter must be
selected such that filter length is close to the radius of the
somas, say 85% of it. Our data include images acquired at445

magnification 40X and 63X, and on such data the expected
radius of a soma is about 32 and 48 pixels, respectively.
This estimate is based on randomly selecting 5 somas in
each set of images and averaging the diameters measured
on the images.450

Hence, setting the filter length L of our rectangular fil-
ters to 85% of the estimated soma radius, we have L = 27
and L = 40 pixels for our two types of images, respec-

Figure 5: Sensitivity on the number of orientations. The plot
illustrates the sensitivity of our algorithm performance, according to
the Dice Coefficient, as a function of the number of orientations of
the directional filters.

tively. Similarly, for the anisotropic Gaussian filters, we set
σx equal to 9 and 13 pixels, respectively (here we assume455

that the length of the filter is approximately 3σx). Fig. 4
shows that the performance of our algorithm is clearly de-
pendent on the selection of the scale parameter but not too
sensitive to its value. Even though, for the image consid-
ered here, our method performs better when filter length460

is near 40 pixels, yet the algorithm performance is overall
very consistent in the range 5-45 pixels. By contrast, the
figure shows that a method based on conventional mor-
phological operators is typically much more sensitive to
the scale parameter.465

For the selection of the number of orientations, it is
expected that the algorithm performance would improve
(or at least would not worsen) by increasing the number of
orientations since the Directional Ratio would become po-
tentially more able to detect changes in geometry. On the470

other hand, computing time increases with the number of
orientations as more filtered images are being computed;
thus, we wish to keep this number relatively low. The
analysis of the sensitivity of the algorithm as a function of
this parameter, as illustrated in Fig 5, shows that the per-475

formance of the algorithm stabilizes very rapidly when the
number of orientations increases and there is essentially
no performance improvement choosing more than 7 or 8
orientations. Therefore, in all our experiments we selected
10 uniformly spaced orientations.480

Figure 6 illustrates the application of our algorithm
using anisotropic Gaussian filters (with default parameters
σx = 9 and 10 orientations) on a representative MIP image
of a neuronal culture of size 512 × 512 pixels containing
five somas. The figure shows that the algorithm correctly485

detects somas and separates contiguous ones.
To benchmark the performance of our algorithm, we

applied it to our 20 images and compared it against mul-
tiple state-of-the-art algorithms. For the comparison, we
considered: the method based on Directional Ratio and490
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Figure 6: 2D soma detection and extraction. (A) Denoised image obtained using a wavelet-based routine on the MIP of the image
stack. Image size = 512×512 pixels (1 pixel = 0.28×0.28µm). (B) Segmented binary image from SVM based segmentation. (C) Directional
ratio plot; values range between 1, in red color (most isotropic regions), and 0, in blue color (least isotropc regions); the Directional Ratio
is only computed inside the segmented region, i.e., the red region in Panel B. Anisotropic Gaussian filters are used for directional filtering.
(D) Detection of initial soma region obtained by thresholding values below 0.85 in Panel C. (E) Soma segmentation obtained by applying
the fast marching method with the initialization curve determined by the boundary of the initial soma region in Panel D. (F) Separation of
contiguous somas.

level set by Ozcan et al. [14], henceforth denoted as DR-
Lev; the algorithms based on conventional morphological
operator by Vallotton et al. [11] and by Schmitz et al.
[12], henceforth denoted as Morph1 and Morph2, respec-
tively. For our algorithm, we consider two variants where495

the directional filters are rectangular or anisotropic Gaus-
sian functions; henceforth we refer to these two versions of
the algorithm as DR-Rec and DR-Gau, respectively. For
Morph1 and Morph2, we need to set the value of the radius
of the structuring element associated with the morpholog-500

ical opening operator. Based on the indication from the
original papers, for two types of images considered in our
tests, we set this value to 15 and 23 pixels, respectively.
For DR-Rec, DR-Gau, DR-Lev, we used default scale pa-
rameter and number of orientations, as described above.505

The performance of our algorithm and its baseline com-
parison with the various competing methods is reported in
Table 1. The table lists the soma detection rate in terms
of True Positive (TP), False Positive (FP) and False Nega-
tive( FN), the performance metrics FPR, TPR and DC for510

soma extraction, and the computing times for soma detec-
tion and extraction. The table shows that methods based
on Directional Ratio provide overall very competitive per-
formance for both soma detection and extraction. They
have perfect or excellent detection rate and best extrac-515

tion performance. By contrast, the soma detection and
extraction performance of Morph1 and Morph2 is signifi-
cantly lower; Morph2 performs better than Morph1. Con-
cerning computing time, DR-Gau has the fastest comput-
ing time for soma detection, thanks to the implementation520

of directional filters by separable convolution; computing
time is about 4 times longer for all other methods, includ-
ing DR-Rec, where filtering is implemented by regular 2D
convolution. As Morph1 and Morph2 have no separate
routines for detection and extraction, the reported com-525

puting times are the same. These methods exhibit the
fastest computing time for extraction. Among methods
based on Directional Ratio, DR-Gau is the fastest one,
whereas Dr-Lev is about 40 times slower. As argued in
the Materials and Methods section, this difference is due530

mostly to the significant difference in computational cost
between the Level Set and Fast Marching routines. Results
in the table show that, despite the huge difference in com-
puting time, the use of either one of the two routines has
negligible impact on soma extraction performance hence535

it is a major advantage to use the Fast Marching method
in this algorithm.

The performance of each algorithm presented above de-
pends on the combined performances of their segmentation
and soma extraction subroutines. As observed in the Ma-540
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Table 1: Performance Comparison. Performance analysis of different soma detection and extraction algorithms using 20 images containing
71 somas in total. TP=true positive, FP=false positive, FN=false negative, TPR=true positive rate, FPR=false positive rate, DC=dice
coefficient.

DR-Gau DR-Rec Morph1 Morph2 DR-Lev
Soma detection rate:
correct, misidentified, missed 100%, 0%, 0% 100%, 0%, 0% 76%, 10%, 24% 96%, 19% , 3% 99%, 0% , 1%
(TP, FP, FN) (71, 0, 0) (71, 0, 0) (54, 6, 17) (69, 16, 2) (70, 0, 1)
TPR (soma extraction) 0.95 0.99 0.83 0.95 0.95
FPR (soma extraction) 0.28 0.40 1.72 1.15 0.23
DC (soma extraction) 0.86 0.84 0.52 0.77 0.87
Comp. time: detect 0.21 s 0.86 s 0.90 s 0.90 s 0.86 s
Comp. time: detect+extract 4.01 s 4.45 s 0.90 s 0.90 s 157.76 s

terials and Methods section, intensity thresholding is not
expected to perform as effectively as our SVM-based seg-
mentation routine but the former method is significantly
faster than the other one. Similarly, conventional mor-
phological operators as those used in Morph2 to extract545

somas are faster than our method combining Directional
Ratio and Fast Marching routine. To better illustrate the
impact of each subroutine, we report in Table 2 the values
of detection rate, DC and computing time obtained from
various combinations of segmentation (SVM = SVM-based550

segmentation; Thr = intensity thresholding segmentation
as in MORPH2) and soma extraction subroutines (DR =
Directional Ratio and Fast Marching; Morph = morpho-
logical opening operator as in MORPH2).

Table 2: Analysis of computational cost. Computational cost
and performance of different combinations of image segmentation
and soma extraction routines, using 20 images (total somas=71).

SVM + DR SVM + Morp Thr + DR Thr + Morp
Detect. rate: correct, 100% 96% 94% 96%
misidentified, missed 0%, 0% 8%, 3% 0%, 6% 19% , 3%
(TP, FP, FN) (71, 0, 0) (69, 6, 2) (67, 0, 4) (69, 16, 2)
DC (extraction) 0.86 0.77 0.81 0.77
Comp. time 8.21 s 8.9 s 0.91 s 1.6 s

The table shows that our Directional Ratio routine for555

soma extraction consistently improves the algorithm per-
formance. If the segmentation routine is implemented us-
ing our SVM-based segmentation, then a better DC value
(the best overall) and a faster computing time is achieved
using Directional Ratio rather than morphological opening560

operator. Similarly, if the segmentation routine is imple-
mented using the morphological opening operator, again
a better DC value and a faster computing time (the best
overall) is achieved using the Directional Ratio.

Another observation is that the SVM-based segmen-565

tation routine has the largest impact in the overall com-
puting time of the algorithm. By replacing this routine
with a method based on intensity thresholding, the total
computing time decreases from 8.21 to 0.91 s. However,
this comes with a significant downgrade in performance570

as DC decreases from 0.86 to 0.81 and the detection rate
worsens (4 somas are missed). This observation is consis-
tent with the segmentation result shown in Fig 1 using a

representative MIP image of a neuronal culture. The fig-
ure shows that the segmentation result based on intensity575

thresholding may miss regions inside a soma or produce
over-segmented images leading to false positive or false
positives, as in fact is observed in Table 1.

3.2.1. Automated scale selection

As noticed above, the application of our algorithm for580

soma detection requires setting the length of the filter
based on the radius of the soma. In our experiments above,
this quantity was estimated from a statistical analysis of
the data and it could be predicted based on the type of
neurons and magnification setting of the microscope.585

Alternatively, to estimate the radius of somas in an im-
age without any external input from the user, one could try
to apply classical scale-space analysis [37] to automatically
select the image scale. However, due to the irregularity of
soma shapes and the common occurrence of thick neurites,590

we found that the direct application of this method to our
images is very unreliable, as it will frequently misidentify
somas (at locations inside thick neurites) and significantly
underestimate or overestimate their radius (due to their
irregular shapes). To avoid such shortcomings, we devel-595

oped a modified approach to carry over scale-space anal-
ysis using the family of anisotropic multiscale filters we
introduced above. Our scale selection algorithm is applied
to a segmented image and includes the following steps: (1)
the segmented image is filtered using anisotropic Gaussian600

filters at 2 orthogonal directions for a range of scales (e.g.,
σx = 1 to 20 pixels with 1 pixel increment); (2) locations of
local maxima of the filtered image as a function of the scale
are detected, for the two filtered directions; (3) the soma
radius is estimated, for each detected local maximum lo-605

cation, as the smaller of the two scales detected. We found
that this simple method is fast to compute as it relies on fil-
ters that are implemented by separable convolution (com-
puting time is 0.67 s on one of our 512× 512 images) and
performs rather well. Results reported in Table 3 show610

that the DC value computed on our set of images using
DR-Gaus with automated scale selection is slightly lower
than the one found above (DC=0.84 vs. DC=0.86). For
comparison, we also included the performance results us-
ing Morph2 showing that also in this case we find a lower615
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DC value (DC=0.69 vs. DC=0.77). In fact, as expected
due to the higher sensitivity of Morph2 to scale selection,
the performance decrease is more significant in this case.

Table 3: Performance Comparison with automated scale se-
lection. Performance analysis of different soma detection and ex-
traction algorithms using 20 images containing 71 somas in total.
DR-Gau-asl = DR-Gau with automated scale selection; Morph2-asl=
Morph2 with automated scale selection.

DR-Gau-asl DR-Gau Morph2-asl Morph2
Detect. rate: correct 100% 100% 92% 96%
misidentified, missed 0%, 0% 0%, 0% 8%, 28% 19% , 3%
(TP, FP, FN) (71, 0, 0) (71, 0, 0) (65, 6, 20) (69, 16, 2)
TPR (soma extraction) 0.90 0.95 0.86 0.95
FPR (soma extraction) 0.29 0.28 1.16 1.15
DC (soma extraction) 0.84 0.86 0.69 0.77

The lower perfomance found using automated scale se-
lection is due to the difficulty in estimating correctly soma620

radii. For instance, the presence of contiguous somas is not
recognized by our algorithm and introduces significant er-
rors. Addressing this and other limitations of the scale
selection algorithm is however beyond the scope of this
paper.625

3.3. 3D soma analysis

We tested our 3D algorithm for soma detection and
extraction on two sets containing different types of imag-
ing data: Set1 consists of 3 confocal image stacks of brain
tissue, each stack containing 1-2 somas; Set2 consists of 3630

confocal image stacks of neural cultures, each stack con-
taining 7-8 somas.

Computational cost is a major issue for the analysis of
3D data due to the impact of 3D filtering. As discussed
above, the application of our method based on Directional635

Ratio to the analysis of 3D data using conventional 3D
filters would be highly impractical; on an image of size
512× 512× 512, using 40 orientations, it would take over
100 hours. Therefore, in our tests of our algorithm, we only
considered anisotropic Gaussian directional filters which640

are implemented via separable convolution and not rectan-
gular filters. We used 40 orientations for our experiments.

Fig. 7 illustrates the application of our algorithm for
3D soma extraction on representative image stacks.

To assess the performance of our approach, we em-645

ployed the same metrics we adopted in the 2D setting. As
baseline comparison, we implemented a 3D extension of
the method based on the morphological opening operator
proposed by [12] (the method is only applied in 2D in the
original paper). To adapt the method to the different ge-650

ometry of the dataset, for the structuring element we used
either a sphere, when processing Set1, or a cylinder, when
processing Set2. We remark that using a sphere on Set2
would produce very poor results due to the small num-
ber of pixels available along the z direction. On the other655

hand, our method using Directional ratio requires no ad
hoc modifications for the two data sets.

The performance results of our method, denoted as 3D-
DR, and the method based on the morphological opening
operator, denoted as 3D-Mo are reported in Table 4.660

Table 4: Performance comparison. Performance analysis of our
3D soma detection and extraction algorithms (3D-DR) and 3D-Mo,
a method based on morphological operators. Results in the table
are averages from image stacks of brain tissue (Set 1 = 3 stacks, 3
somas) and neuronal cultures (Set 2 = 3 stacks, 16 somas).

3D-DR 3D-Mo 3D-DR 3D-Mo 3D-DR 3D-Mo
Sets 1+2 Sets 1+2 Set 1 Set 1 Set 2 Set 2

Detection rate 100% 100% 100% 100% 100% 100%
TPR (extraction) 0.91 0.89 0.93 0.95 0.89 0.83
FPR (extraction) 0.21 0.20 0.11 0.17 0.18 0.24
DC (extraction) 0.89 0.86 0.90 0.90 0.88 0.81
Comput. time 78 s 20 s 106 s 13 s 35 s 5 s

Table 4 shows that 3D-RD, our method based on Di-
rectional Ratio, provides overall a modest performance im-
provement with respect to 3D-Mo (DC: 0.89 vs. 0.86) at
the expense of a higher computational cost (78 vs. 20 s).
However, a closer examination of the results shows that665

3D-DR exhibits a rather significant better performance
with respect to 3D-Mo when the analysis is restricted to
the image stacks of neuronal cultures (DC: 0.88 vs. 0.81).
As observed above, confocal image stacks of neuronal cul-
tures are more challenging to process since they contain670

a relatively small number of images, typically about 10-
20 images, so that only 10-20 pixels is available along the
z-direction. Unlike conventional morphological operators,
the method based on Directional Ratio performs in this
situation about as efficiently as for the other data. Even675

though, processing time is faster for 3D-Mo, computing
time is very reasonable for 3D-DR.

4. Conclusion

We have introduced and applied a new algorithm for
the automated detection and extraction of somas in in680

vitro 2D/3D fluorescent images of neurons. This method
relies on a novel geometrical descriptor called Directional
Ratio and is designed to process images where somas and
other structures exist in the same fluorescent channel.

Our algorithm achieves highly accurate and ultra-fast685

soma detection by employing a family of multiscale ori-
entable anisotropic filters that are implemented by sepa-
rable convolution. Compared with state-of-the-art meth-
ods based on conventional morphological operators, our
approach offers higher reliability (much fewer somas are690

missed or misidentified), much faster detection and signif-
icantly more accurate soma extraction. In addition, our al-
gorithm is able to automatically separate contiguous soma
in MIP image of neuronal cultures. With respect to an
earlier application of the Directional Ratio, the new ap-695

proach can process 2D images over 40 times faster and
can be applied to process 3D image stacks, while this was
virtually impossible before.

Even though our method is targeted to address chal-
lenges typically found in the analysis of confocal images of700
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Figure 7: 3D soma extraction. Soma detection and extraction using our algorithm based on Directional ratio and anisotropic Gaussian
filters of a confocal image stack of a brain tissue (left) and a neuronal culture (right).

cultured neurons, its methodology also applies to bright
field microscopy as well as to fluorescent images of brain
tissue. In fact our set of numerical experiments includes
‘simple’ brain tissue images containing a single neuron.
Dealing with more general fluorescent images of brain tis-705

sue poses potentially additional challenges as higher neu-
ronal density and lower image contrast may become limit-
ing factors for our algorithm. The extension of our method
to these data will be explored in future studies.

Automated detection and segmentation of somas in flu-710

orescent images of neurons is a critical tool not only for
the identification and discrimination of neurons but also
for the extraction of graph and connectivity properties in
neuronal networks as somas provide ideal seed points for
neuronal tracing algorithms [38]. Additionally, the meth-715

ods based on directional filtering developed in this paper
have potentially wider applicability for profiling morpho-
logical properties of neurons including alignment and spa-
tial organization of neurites [39]. The ideas and results
of this paper will facilitate the development of improved720

high-throughput platforms for the study of neuronal net-
works for HCS applications.
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