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Abstract

Accurate segmentation of 3D vessel-like structures is a major challenge in
medical imaging. In this paper, we introduce a novel approach for the de-
tection of 3D tubular structures that is particularly suited to capture the ge-
ometry of vessel-like networks, such as dendritic trees and vascular systems.
Even though our approach relies on a system of isotropic multiscale analyzing
atoms, we prove that their interaction via convolution with a tubular struc-
ture is equivalent to a set of directional atoms at various scales, automatically
oriented along any possible direction and with cylindrical symmetry. This
result sets the theoretical groundwork for the design of efficient discrete al-
gorithms aiming at extracting the geometry of vessel-like structures in 3D
medical images.
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1. Introduction

This paper presents a new method for the detection and geometric char-
acterization of tubular structures in 3D images. This study is motivated by
the problem of segmenting and reconstructing the morphological properties
of vessel-like structures in medical images, such as vascular networks in the
lungs or the liver, dendritic arbors and axons in brain tissues and neuronal
cultures.
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Processing these types of images presents several challenges, due to the
complex 3D topology and the significant variations in size, orientation and
intensity contrast of the vessel-like structures that need to be detected in
images. Due to large variations in size of objects of interest, a number of
ideas based on multiscale analysis have been proposed for the analysis and
the preprocessing of such data. Koller at al. [16], in particular, introduced
a multiscale filter based on the eigenvectors of the Hessian matrix of the
image, to detect highly elongated objects. Following this work, other suc-
cessful studies have focused on the eigenvalues of the Hessian matrix to detect
tubular structures (cf. [17] and references therein).

During the last decade, the emergence of more sophisticated multiscale
methods has further expanded the range of tools available for the analysis
of geometric features of multidimensional data. Among these methods there
are several ‘directional’ representations where the analyzing functions are
defined not only across several scales but also at several orientations, such
as beamlets [6], ridgelets [3], curvelets [4] and shearlets [8, 21]. Thanks to a
combination of multiscale analysis and directional sensitivity, these methods
can provide highly sparse representations of images with edges [4, 8, 19].
Indeed, directional multiscale transforms derived from these representations
can be especially effective at capturing the geometry of multidimensional
singularities through their asymptotic decay at fine scales [5, 18]. These
properties can be very useful in the analysis of biomedical images containing
highly elongated structures as illustrated by recent applications to fluorescent
images of brain tissue and neuronal cultures [20, 23, 24].

Remarkably, in this paper we show that it is to possible capture the geo-
metric characteristics of a 3D tubular structure, regardless of its spatial ori-
entation, using rather conventional multiscale 3D isotropic Laplacian filters.
As we prove in this paper, when applied to tubular structures these filters
act as two-dimensional Laplacians at the direction of the gradient of the in-
tensity level of the image. In other words, the interaction via convolution of
a set of isotropic multiscale atoms with a tubular structure is equivalent to
the action of a set of directional multiscale 3D atoms, aligning themselves to
the tubular structure and with cylindrical symmetry. Hence, the convolution
of these atoms produce rotationally covariant outputs obeying very simple
covariance rules (cf. Theorem 1 in Sec. 2), although the analyzing atoms
of the underlying representation are not intrinsically steerable, in the sense
that there is no external mechanism to steer them. They act as self-steerable
atoms when they interact with tubular structures.
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This finding is quite reminiscent of Marr’s claim that low-level vision is
based on the detection of intensity changes of luminosity modeled by fil-
tering an image with an isotropic Laplacian operator windowed by a two-
dimensional isotropic Gaussian [22, p. 54]. Such models are supported by
neurophysiological findings according to which the retinal photoreceptors are
spatially organized ([7], Ch. 1, also see [22], pp. 64–65, and [25]) so that:

(a) “They provide high or low spatial and temporal resolution images of
every scene depending on the prevailing conditions of observation; the
temporal resolution equips the eyes with the perception of motion and
the capability of detecting sudden stimulus onsets, while the spatial
resolution primarily contributes to object recognition ([7], Ch. 1);

(b) edges (boundaries where the luminosity abruptly changes) are observed
regardless of their orientation or topology.”

By no means we claim that our collection of isotropic atoms yields a direc-
tional representation in the sense of a ‘true’ directional multiscale systems,
where the analyzing atoms range over a set of prescribed orientations. In
fact, the directional sensitivity of our isotropic atoms only arises in the pres-
ence of tubular structures and we consider these atoms as analyzing elements
only (they cannot be used for synthesis). Another difference is that ‘true’
directional multiscale transforms are able to detect location and orientation
of edge singularities through their asymptotic decay at fine scales, while our
approach does not detect edges (see also the related discussion in the last
section) neither can it identify the local orientation of the tubular structure,
but it is effective at capturing the geometry of tubular structures at a specific
range of scales.

With respect to directional multiscale representations, isotropic multi-
scale filters have lower redundancy, leading to discrete implementations with
lower computational cost. This can be a significant advantage especially for
the processing of 3D data.

2. Directional filtering of tubular structures using isotropic atoms

We begin by introducing a generic class of tubular structures in R3 that
can be used to model dendritic branches of neurons, blood vessels and similar
biological structures.
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2.1. Modeling tubular structures

To define such tubular structures, we start by considering the tubular
segments defined as tensor products of the form:

fl,L,r(x, y, z) = gl,L(x)gr(y, z), x, y, z,∈ R, r > 0, (1)

where gl,L is even, non-increasing on the positive half axis and satisfies

gl,L(x) = 1 if 0 ≤ x ≤ l
gl,L(x) > 0 if l < x < L
gl,L(x) = 0 if L ≤ x;

the second factor satisfies gr(y, z) ≥ 0 and gr(y, z) = 0 when y2 + z2 ≥ r2.
In (1), the term gl,L controls the length of the structure, which extends

along the x-axis, while the second factor controls the decay of the image
intensity values in a cross-section. In the following, we will assume that
the first and second-order derivatives of gl,L and of gr are both absolutely
integrable, so gl,L and g′l,L and g′r are both absolutely continuous. In order
to allow more flexibility in the shape of “tubular” cross sections, we make no
special symmetry assumptions on the term gr.

Clearly, the tubular segments given by (1) can be translated via the action
of translation operators Txk , xk ∈ R3, defined by Txkf(x) = f(x − xk)
and re-oriented by means of rotations Rk ∈ SO(3). For any such a 3D
rotation matrix Rk, we define the rotation operator Rk by Rkf(x, y, z) =
f(Rk(x, y, z)). Therefore, we define a tubular structure I as finite sum of the
form

I =
K∑
k=1

ak TxkRkflk,Lk,rk , (2)

where the terms flk,Lk,rk are tubular segments and the quantities ak are
strictly positive constants controlling the image intensity in each tubular
segment.

This model of tubular structures is adequate, in particular, to model
dendritic branches in neurons where the centerline can be approximated by
a polygonal curve. In our model, the intensity value along the centerline of
any component TxkRkflk,Lk,rk is constant. Even though in typical fluorescent
images of neurons the fluorescent signal intensity is not constant, it is rea-
sonable to assume that the intensity value does not vary too rapidly so that
we can assume it to be constant along the centerline of a tubular segment, if
this is sufficiently short.
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2.2. Analysis of tubular segments

We start by examining the action of a simple family of isotropic trans-
formations on the tubular segments TxkRkflk,Lk,rk , for generic xk ∈ R3,
Rk ∈ SO(3).

Let φ ∈ L2(R3) be a radial function such that all its derivatives up second
order are absolutely integrable and such that ξ 7→ ||ξ||2φ̂(ξ) is also absolutely
integrable and bounded. Let h be defined by

ĥ(ξ) := ||ξ||2φ̂(ξ), ξ ∈ R3. (3)

Using a change of variables and the radiality of h, we observe that

(TxkRkflk,Lk,rk ∗ h)(x) =

∫
R3

flk,Lk,rk (Rk(x− xk)− s)h(RT
k s)ds

= flk,Lk,rk ∗ h (Rk(x− xk)) . (4)

Clearly, the same equality is also valid with φ instead of h:

(TxiRkflk,Lk,rk ∗ φ)(x) = flk,Lk,rk ∗ φ (Rk(x− xk)) . (5)

The continuity of flk,Lk,rk and the integrability of ĥ imply that

flk,Lk,rk ∗ h (Rk(x− xk)) =

∫
R3

f̂lk,Lk,rk(ξ) φ̂(ξ) ||ξ||2e2πiξ·(Rk(x−xk))dξ

= ∆(flk,Lk,rk ∗ φ) (Rk(x− xk)) .

Therefore, we conclude that

(TxkRkflk,Lk,rk ∗ h)(x)

= ∆(flk,Lk,rk ∗ φ) (Rk(x− xk))

=
∂2

∂x2
(flk,Lk,rk ∗ φ)(x0) +

(
∂2

∂y2
+

∂2

∂z2

)
(flk,Lk,rk ∗ φ)(x0), (6)

where x0 = Rk(x − xk). Equation (6) shows that the 3D Laplacian of
the filtered output of the tubular segment has two components: the axial
and the cross-sectional 2D Laplacian. In Theorem 1 we prove that, if x
is sufficiently far from the endpoints of the tubular segment, the first term
in (6) is negligible whereas the second term is practically equal to the 3D
Laplacian. This shows that the action of the isotropic filters on the tubular
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structure is essentially equivalent to the action of cylindrically symmetric
directional filters. We also remark that, in the derivation of (6), we did not
assume any symmetry in the cross-sections of the tubular structure fl,L,r. We
use the term ‘tubular’ for such structures without necessarily implying any
type of symmetry (e.g., radial symmetry) in the cross section.

Before stating our main theorem, we need some preparation.
We pick an accuracy threshold ε > 0 and we assume that x0 is sufficiently

away from both ends of the support of the tubular segment flk,Lk,rk . This
implies that the support of φ is relatively smaller than the support of the
tubular segment, so that |x0 · e1|+r0 < l. Therefore, with no loss of generality
we can shift the axial center of the tubular segment from the origin to another
point on the x-axis so that x0 = (0, y0,1, z0,1). Now, the integrability of

ξ 7→ ||ξ||2φ̂(ξ) and the Riemann-Lebesgue lemma imply that there exists
r0 > 0 such that |Dαφ(y)| < min{ε/2L, ε}, if ||y|| ≥ r0 and |α| ≤ 2.

On the other hand, the integrability of the partial derivatives of φ up to
second order allows us to select r0 so that

∫
|x|>r0 |D

αφ| < ε for all |α| ≤ 2.

These two observations are summarized in the following lemma.

Lemma 1. Let ε > 0 and φ ∈ L1(R3) be a radial function such that ξ 7→
||ξ||2φ̂(ξ) is absolutely integrable and Dαφ ∈ L1(R3) for all |α| ≤ 2. Then
there exists r0 > 0 such that:

1. |Dαφ(y)| < min{ε/2L, ε} if ||y|| ≥ r0 and |α| ≤ 2;

2.
∫
|x|>r0 |D

αφ| < ε.

In other words, we can choose a filter φ with sufficient smoothness and
spatial localization. In practical situations, like the numerical examples
which will be considered further below, we don’t use a single filter φ but
a set of filters ranging over different scales, from fine to coarse, provided that
we maintain the requirement |x0 · e1| + r0 < l. Filters with bigger r0 are
suitable for thicker and longer tubular segments while filters with smaller r0
are fit for short and thin tubular segments. This heuristic statement will be
formalized in Proposition 1.

We are now ready to state the main result of this work establishing that
the isotropic filters φ and h act as directional filters when they are applied
to a tubular segment.

In the following, we use the convention e1 = (1, 0, 0), e2 = (0, 1, 0) and
e3 = (0, 0, 1) and we denote by x(x0), y(x0) and z(x0) the various coordinates
of the vector x0 = R(x− xk).
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Figure 1: Left: Volume rendering of the anisotropic function ωgr0,r1 corresponding to the
action of the filter φ on a tubular segment, as in Theorem 1. Right: Cross-section of φ.

Theorem 1. Let ε > 0, φ ∈ L1(R3) be a radial function such that ξ 7→
||ξ||2φ̂(ξ) is absolutely integrable and Dαφ ∈ L1(R3) for all |α| ≤ 2 and set

ω(y, z) =

∫
R
φ(x, y, z) dx. (7)

We have the following facts.

(i) If
∣∣(x− xk) · (RT

k e1)
∣∣+ r0 < l, then

|(TxkRfl,L,r ∗ φ)(x)− gr ∗ ω (y(x0), z(x0))| ≤ ||gr||1ε.

(ii) For every x as in the previous item we have that

|(TxkRfl,L,r ∗ h)(x)− gr ∗∆y,zω (y(x0), z(x0))| < 3||gr||1ε

where, ∆y,z = ∂2

∂y2
+ ∂2

∂z2
.

(iii) If 0 < r0 < r1, where
∣∣(x− xk) · (RTe1)

∣∣+ r1 < l, then∣∣∣∣(TxkRfl,L,r ∗ φ)(x)− 1

C
TxkRfl,L,r ∗ R(ωgr0,r1)(x)

∣∣∣∣ ≤ ||gr||1ε, (8)

and∣∣∣∣(TxkRfl,L,r ∗ h)(x)− 1

C
TxkRfl,L,r ∗ R ((∆y,zω)gr0,r1) (x)

∣∣∣∣ < 3||gr||1ε,

(9)
where C =

∫
R gr0,r1(x)dx.
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Before presenting the proof of Theorem 1, we will make some remarks to
highlight the significance of the theorem.

Part (ii) of the theorem states that filtering the tubular segment using
the 3D Isotropic Laplacian filter h is equivalent to applying the 2D Laplacian
on the cross-section of the tubular structure TxiRfl,L,r. Part (iii) states
that filtering using the 3D isotropic filters φ and h is equivalent to applying
directional filters that automatically align themselves with the axis of the
tubular structure (see Fig. 2.2). The orientation of the tubular segment is
determined by the rotation Rk which orients its main axis along the direction
RT
k e1. According to (iii), the main axis of the directional filters Rk(ωgr0,r1)

and Rk ((∆y,zω)gr0,r1) is also parallel to RT
k e1. This is why we claim that

filtering with the radial filters φ and h is equivalent to filtering with the
directional filters 1

C
Rk(ωgr0,r1) and 1

C
Rk ((∆y,zω)gr0,r1), respectively, which

are automatically aligned with the tubular structure locally at the point
x. The former of the two filters acts as a directional lowpass, bandpass
or highpass filter depending on the frequency selectivity of φ. The latter
filter acts as a 2D Laplacian on a plane perpendicular to the direction of the
tubular structure as (ii) shows.

Note that the outcome of the filtering process of the tubular segment
using φ and h depends only on the relative position of the point x with re-
spect to the cross-section of the tubular containing x and on the properties
of this cross-section. The similarity of the action of the filters φ and h to
truly directional filters is due solely to the geometry of the tubular segment,
as one can verify by the proof of Theorem 1 below. Thus, our result es-
tablishes that a seemingly directionally insensitive system of atoms acts as
a directional filter in certain conditions and is able to detect the geometric
content associated with highly anisotropic objects. This ability to detect
the geometry of elongated features is somewhat reminiscent of the properties
of directional multiscale transform such the continuous shearlet transform,
which was recently applied to detect the geometry of singularities of functions
and distributions of several variables [9, 10]. However, there is an important
difference here: the shearlet result for the detection of singularities is valid
only asymptotically, when the scale variable tends to zero, whereas the re-
sult we derive here is valid over a range of scale associated with the spatial
dimensions of the objects of interest.

In Section 3, we will briefly discuss the implications of these theoretical
observations for the segmentation of tubular structures in biomedical images.
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2.3. Proof of Theorem 1

We can now prove Theorem 1.
(i) Without loss of generality, we can take x0 = (0, y0,1, z0,1). A direct

calculation gives that

fl,L,r ∗ φ(x0) =

∫
R

∫
R
gr(y, z)

(∫
R
gl,L(x)φ(−x, y0,1 − y, z0,1 − z)dx

)
dydz.

Using (7) it follows that

fl,L,r ∗ φ(x0)− gr ∗ ω(y0,1, z0,1)

=

∫
R2

gr(y, z)(

∫
R
gl,L(x)φ(−x, y0,1 − y, z0,1 − z)dx− ω(y0,1 − y, z0,1 − z))dydz.

We can split the above integral by integrating over two complementary radial
regions:∫

R
gl,L(x)φ(−x, y0,1 − y, z0,1 − z)dx =

∫
|x|≤r0

(. . . ) +

∫
|x|>r0

(. . . ).

Consequently, using the fact that gl,L(x) = 1 for all |x| ≤ r0, we have

fl,L,r ∗ φ(x0)− gr ∗ ω(y0,1, z0,1)

=

∫
R

∫
R
gr(y, z)

[∫
|x|>r0

[gl,L(x)− 1]φ(−x, y0,1 − y, z0,1 − z)dx

]
dydz.

Observing that 0 ≤ gl,L(x) ≤ 1 for all x and
∫
|x|>r0 |φ| < ε (Lemma 1), we

conclude that

|fl,L,r ∗ φ(x0)− gr ∗ ω(y0,1, z0,1)| ≤ ||gr||1ε.

This inequality combined with (5) proves part (i).
(ii) We begin by showing that the first term of the sum in the right-hand

side of (6) is less than 2ε:

∂2

∂x2
(gl,Lgr ∗ φ)(x0)

=

(
gr

∂2gl,L
∂x2

)
∗ φ(x0)

=

∫
R

∫
R
gr(y, z)

(∫
R

∂2gl,L
∂x2

(x)φ(−x, y0,1 − y, z0,1 − z)dx

)
dydz (10)
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and again we write∫
R

∂2gl,L
∂x2

(x)φ(−x, y0,1 − y, z0,1 − z)dx =

∫
|x|≤r0

(. . . ) +

∫
|x|>r0

(. . . ).

The first of the two terms in the integral above vanishes because gl,L(x) = 1
for all |x| < l. To estimate the second term we apply twice integration by
parts using gl,L(±L) = g′l,L(±r0) = g′l,L(±L) = 0 and gl,L(±r0) = 1:∫

|x|>r0

∂2gl,L
∂x2

(x)φ(−x, y0,1 − y, z0,1 − z)dx

=

∫
|x|>r0

∂2φ

∂x2
(−x, y0,1 − y, z0,1 − z)gl,L(x)dx+

∂φ

∂x
(r0, y0,1 − y, z0,1 − z).

Thus we have that:∣∣∣∣∫
|x|>r0

∂2gl,L
∂x2

(x)φ(−x, y0,1 − y, z0,1 − z)dx

∣∣∣∣ < 2ε.

Using eqs. (6) and (10) we conclude that:

|(TxkRkfl,L,r ∗ h)(x)−∆y,z(fl,L,r ∗ φ)(x0)| < 2||gr||1ε . (11)

Since Dαφ ∈ L1(R3) for all |α| ≤ 2, we have that

∆y,z(fl,L,r ∗ φ)(x0) = fl,L,r ∗ (∆y,zφ)(x0) (12)

and, hence,∫
R

∆y,zφ(−x, y0,1 − y, z0,1 − z)dx = ∆y,zω(y0,1 − y, z0,1 − z),

for all y, z ∈ R. It follows that∫
R

∆y,zφ(−x, y0,1 − y, z0,1 − z)gl,L(x)dx−∆y,zω(y0,1 − y, z0,1 − z)

=

∫
|x|>r0

[gl,L(x)− 1]∆y,zφ(−x, y0,1 − y, z0,1 − z) dx.

Now, arguing as in the proof of part (i) and using eq. (12), we obtain that

|fl,L,r ∗ (∆y,zφ)(x0)− gr ∗ (∆y,zω)(y0,1, z0,1)| ≤ ||gr||1ε .
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Combining the previous inequality with (11), we complete the proof of part (ii).
(iii) Using again the change of variables leading to eq. (4) we have that

TxkRkfl,L,r ∗ Rk(ωgr0,r1)(x) = fl,L,r ∗ (ωgr0,r1)(x0).

Now, let x(x0) be the x-coordinate of x0. Then:

fl,L,r ∗ (ωgr0,r1)(x0) = gr ∗ ω(y0,1, z0,1)

∫
R
gl,L (x(x0)− x) gr0,r1(x)dx(13)

= Cgr ∗ ω(y0,1, z0,1),

since gl,L (x(x0)− x) = 1 for all |x| < r1, due to the observations that∣∣(x− xk) · (RT
k e1)

∣∣ + r1 < l. Combining eq. (13) and part (i) we derive
eq. (8). Eq. (9) can be derived with similar arguments. This completes the
proof of Theorem 1. �

2.4. Other results

The following observation is useful to determine the filter h so that it
can accurately capture the change in the sign of ∆y,zgr. Here we provide a
formal statement on the dependence of the choice of r0 on r. Recall, that
the latter is a metric indicative of the thickness of the tubular structure.
Failure to choose the filter φ with the appropriate bandwidth r0 will result
in aliasing errors that will compromise the detection of the surface of the
tubular structure.

Proposition 1. Assume that the hypotheses of Theorem 1 hold true and

suppose that
∣∣∣1− φ̂(ξ)

∣∣∣ < ε for a.e. ||ξ|| < ρ, where ρ is determined by∫
||(ξ2,ξ3)||>ρ

ĝr(ξ2, ξ3)(ξ
2
2 + ξ23)dξ2dξ3 <

ε

1 + ||φ||1
. (14)

Then, for every xi and rotation Rk, we have that

|(TxiRkfl,L,r ∗ h)(x)−∆y,zgr (y(x0), z(x0))| ≤ (3||gr||1 + 1)ε

for every x that is sufficiently far from the endpoints of the tubular structure
TxiRkfl,L,r, in the sense that

∣∣(x− xi) · (RT
k e1)

∣∣+ r0 < l.
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Proof: A direct computation shows that

|(TxiRkfl,L,r ∗ h)(x)−∆y,zgr (y(x0), z(x0))|

= |(TxiRkfl,L,r ∗ h)(x)− gr ∗∆y,zω (y(x0), z(x0))

−∆y,zgr (y(x0), z(x0)) + gr ∗∆y,zω (y(x0), z(x0)) |

≤ |(TxiRkfl,L,r ∗ h)(x)− gr ∗∆y,zω (y(x0), z(x0))|

+|gr ∗∆y,zω (y(x0), z(x0))−∆y,zgr (y(x0), z(x0))|.

By part (ii) of Theorem1 we know that the first term of the sum above does
not exceed 3||gr||1ε. Next, we will show that the second term in the sum is
bounded above by 3ε. By computing the Fourier transform of second term,
we get

(gr ∗∆y,zω−∆y,zgr)
∧(ξ2, ξ3) = ĝr(ξ2, ξ3)(ξ

2
2 + ξ23)ω̂(ξ2, ξ3)− ĝr(ξ2, ξ3)(ξ22 + ξ23).

(15)
We have that:∫

R2

∣∣ĝr(ξ2, ξ3)(ξ22 + ξ23)ω̂(ξ2, ξ3)− ĝr(ξ2, ξ3)(ξ22 + ξ23)
∣∣ dξ2 dξ3

=

∫
R2

ĝr(ξ2, ξ3)(ξ
2
2 + ξ23)|ω̂(ξ2, ξ3)− 1| dξ2 dξ3

≤
∫
||(ξ2,ξ3)||≤ρ

ĝr(ξ2, ξ3)(ξ
2
2 + ξ23)|ω̂(ξ2, ξ3)− 1| dξ2 dξ3

+

∫
||(ξ2,ξ3)||≥ρ

ĝr(ξ2, ξ3)(ξ
2
2 + ξ23)(|ω̂(ξ2, ξ3)|+ 1) dξ2 dξ3.

Now, using the assumption that
∣∣∣1− φ̂(ξ)

∣∣∣ < ε for a.e. ||ξ|| < ρ, (14), (15)

and the fact ω̂(ξ2, ξ3) = φ̂(0, ξ2, ξ3) for a.e. (ξ2, ξ3), we conclude that

|(TxiRkfl,L,r ∗ h)(x)−∆y,zgr (y(x0), z(x0))| ≤ (3||gr||1 + 1)ε (16)

This completes the proof of Proposition 1. �

An example of a filter φ satisfying the assumptions of Proposition 1 is
given by

φ̂(ξ) = Pn
(
Cn,σ‖ξ‖2

)
e−Cn,σ‖ξ‖

2

,
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where Pn is the Taylor polynomial of degree n associated with the exponential
function ex, the constant Cn,σ is

Cn,σ =
2n+ 1

2(Kσ)2
,

and σ is a parameter associated with a notion of scale. This filter belongs to
the class of Hermite Distributed Approximating Functions that were origi-
nally proposed by Hoffman et. al. in [13]. The choice of the constant Cn,σ
places the inflection point of the radial profile of φ̂ firmly at radius Kσ from
the origin, regardless of the value of n. As n increases to ∞ (cf. [1, Remark
3.4]), the width of the radial profile of the transition band of φ̂ is propor-
tional to 1

n
. This transition band also contains the inflection point of the

radial profile of φ̂, for every n. Moreover, as n grows, the values of φ̂ tend
to 1 at every point in the ball centered at the origin with radius Kσ ([1, Th.
3.7]). In a nutshell, φ̂ asymptotically behaves like an isotropic ideal low pass
filter.

So far our analysis was focused on a single segment TxiRkfl,L,r of the
tubular structure I given by (2). The proposed filters φ and h can be applied
to the entire tubular structure I. Recall that, in Theorem 1, we assumed
that the point x is close only to a single tubular segment of I. Due to
the spatial localization of the filters φ and h, each tubular segment can be
processed independently of the others. This observation leads to the following
corollary.

Corollary 1. Under the assumptions of Theorem 1, we have that

|(I ∗ φ)(x)− gr ∗ ω (y(x0), z(x0))| = O(ε) ,

and
|(I ∗ h)(x)− gr ∗∆y,zω (y(x0), z(x0))| = O(ε) ,

where x0 = Rk(x − xi) and where the index i, the cross-section gr and the
rotation Rk correspond to the most proximal segment TxiRkfl,L,r of I to x.
Consequently, we have that

|(I ∗ h)(x)−∆y,zgr (y(x0), z(x0))| = O(ε).
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Figure 2: Left: Dendritic branches from a neuronal tissue acquired using multi-photon
fluorescent microscopy showing spines (courtesy of Professor Tara Keck, King’s College,
London, UK). The tiny round protrusions located at the dendritic branches are called
spines and play a critical role in learning and memory models. Right: Segmentation
obtained using the method in [12] which selects the training regions for the classification
algorithm based on the last assertion of Corollary 1.

3. Applications to image segmentation

The ideas presented above provide the theoretical justification for the
development of algorithms of segmentation of vessel-like structures developed
by the authors and their collaborators [15, 14]. In particular, the isotropic
Laplacian filters we presented in Sec. 2 are an essential part in a segmentation
algorithm which was implemented with a Support Vector Machine (SVM)
to process 3D images from the Diadem dataset. The Diadem dataset is
used as a benchmark in the computational neuroscience community to test
segmentation and centerline tracing algorithm on complex dendritic arbors
from images of various areas of the brain [2].

To describe the role of such 3D-isotropic filters for the detection of tubu-
lar structure in these applications, we assume that cross-sectional intensity
profile functions gr have an “inflection point” at which the sign of ∆y,zgr
changes from negative to positive. Here we stress that widely accepted mod-
els of intensity profiles of tubular structures do not identify a “skin”, that
is, a discontinuous boundary of the tubular structure separating the inside
from the outside. Instead, the image intensity values in the tubular structure
gradually drop from a peak value at the centerline of the structure down to
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the range of background values. This principle is reflected in the adopted
model of cross-sectional intensity values in and out of the tubular structure,
formally presented by gr in Sec. 2. Hence, we postulate that the ‘boundary’ of
the tubular structure is located at some intermediate radial distance from the
centerline of the structure, preferably at the radial distance of this “inflection
surface” from the centerline. Then, based on the theoretical predictions of
Corollary 1, we expect I ∗ h to have positive sign right outside the bound-
ary of the tubular structure, because I ∗ h is practically equal to ∆y,zgr, the
2D-Laplacian on the cross-section of I containing x. Further away from this
boundary, the error of the approximation of the values of ∆y,zgr predicted
by Proposition 1 and the response of the application of h to its other prox-
imal segments force the sign of I ∗ h to vary. According to these remarks,
the problem of segmenting a tubular structure from the background is not
posed as an edge detection problem in 3D. Rather, the successful extraction
of the geometric features of the tubular structures can be achieved using a
set of Laplacian isotropic filters with varying bandwidths, as Proposition 1
suggests.

The justification of the adopted model of tubular structure is verified
indirectly by the high accuracy of our segmentations and centerline trac-
ing reported in [15, 14, 11, 12] where the performance of this approach is
compared with state-of-the-art methods from the literature. For example,
the application of our centerline tracing algorithm in [14] to volumes from
the Diadem set yields Miss-Extra-Score (MES) = 0.93 as compared with the
state-of-the-art algorithm of Xie et al. [26] that yields MES = 0.86 (MES
is a standard performance metric, where higher values indicate better per-
formance, cf. [14]). One of the advantages of our theoretical formalization
is to enable the automatization of the selection process for the training sub-
sets of the SVM-classifier used in the segmentation algorithm. We illustrate
an example of application of this algorithm in Fig. 2, showing the segmen-
tation of a complex dendritic network from a brain tissue acquired using
two-photon fluorescent microscopy. These images are acquired in vivo and
are very challenging to segment due to the high level of noise produced dur-
ing data acquisition. Note that the flexibility permitted by our modelling
of tubular structures in Sec. 2 enables us to derive an algorithmic approach
which is effective not only for the detection of the main dendritic branches,
but also for the detection of their fine-scale details. As the figure shows,
the segmentation algorithm is able to capture also the dendritic spines, tiny
protrusions emerging from dendritic branches which play a very significant
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role in many cognitive and pharmacological models of the brain.
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