Chapter 1

Continuous and discrete reproducing systems
that arise from translations. Theory and
applications of composite wavelets.

Demetrio Labate and Guido Weiss

Abstract Reproducing systems of functions such as the wavelet and Gabor systems
have been particularly successful in a variety of applications from both mathematics
and engineering. In this chapter, we review a number of recent results in the study
of such systems and their generalizations developed by the authors and their collab-
orators. We first describe the unified theory of reproducing systems. This is a simple
and flexible mathematical framework to characterize and analyze wavelets, Gabor
systems and other reproducing systems in a unified manner. The systems of interest
to us are obtained by applying families of translations, modulations and dilations
to a countable set of functions. As the reader will see, we can rewrite such systems
as a countable family of translations applied to a countable collection of functions.
Building in part on this approach, we define the wavelets with composite dilations,

a novel class of reproducing systems which provide truly multidimensional gen-
eralizations of traditional wavelets. For example, in dimension two, the elements
of such systems are defined not only at various scales and locations, as traditional
wavelet systems, but also at various orientations. The shearlet system is a special
case of a composite wavelet system which provides optimally sparse representation
for a large class of bivariate functions. This is useful for a number of applications

in image processing, such as image denoising and edge detection. Finally, we dis-
cuss some related issues about the continuous wavelet transform and the continuous
analogues of composite wavelets.
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1.1 Introduction

These lectures present an overview of a program of research developed by the au-
thors and their collaborators at Washington University in St.Louis during the past
10 years, which is devoted to the study of reproducing systems of functiorne: By
producing systems of functignse refer to those families of functiods; : i € .7}

in L2(R™) which are obtained by applying a countable collections of operators to

a countable set of “generating” functions and have the property that any function

f € L2(R") can be recovered from the reproducing formula

f= Z<f»'~l’|>¢’n

ey

with convergence in the—norm. Thewavelet system$or example, have received

a great deal of attention in the last 20 years, since their applications in mathemat-
ics and engineering have been especially successful. In dimemsiah they are
defined as those collections of the form

W= {yjx=2"2p2 K : jkez}, (1.1)

wherey is a fixed function irL?(R). As the expression above showsjs obtained
by applying dyadic dilations and integer translations to the generating fungtion
For particular choices of the generatpy the wavelet systeri# is an orthonormal
basis or a Parseval frame fiof(R), in which case any < L?(R") can be recovered
as

f= f, W) Wik (1.2)
jéz( j.k) Wik

with convergence in the?—norm. Other important classes of reproducing systems
are the Gabor systems, which are obtained by applying translations and modula-
tions to a fixed generator, and the wave packet systems, which involve translations,
dilations and modulations.

One main theme developed in these lectures is that there is a general framework
which allows us to describe and analyze wavelet systems, Gabor systems and many
other reproducing systems by using a unified approach. Indeed, for a large class of
reproducing systems of the form

{gp(-—Cpk) : ke Z",pe 2}, 1.3)

whereZ is countable andCp} is a set of invertible matrices, there is a relatively
simple set of equations which characterizes those generating fundtighs- »»

such that the corresponding system (1.3) is an orthonormal basis or, more generally,
a Parseval frame fdr?(R"). For example, it was discovered by Gripenberg [14] and
Wang [41] independently, in 1995, that a functigre L?(R) is the generator of an
orthonormal wavelet system if and onlyjfify||, = 1,
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S PP =1 fora. e €R, (1.4)
JEZ
and S
tq(¢) = 20‘1/(215)11’(2](5 +q))=0 fora.e.f €R, (1.5)
=

whenever is an odd integer. It is remarkable that a similar set of characterization
equations holds not only for wavelet systems in higher dimensions, but also for
many other reproducing systems. This topic, and the correspondifigd theory

of reproducing systemaill be presented in Section 1.2.

Parallel to the unified theory mentioned above, there is another “unifying” per-
spective to the study of reproducing systems which are provided by representation
theory and, more specifically, by the study of the continuous wavelet transform
and its generalization. In Section 1.3, we introduce the continuous analogues of the
wavelet systems (1.1), which are obtained by applying dilations (with respect to a
dilation group) and continuous translations to a functipr L?(R"). For example,
in dimensiom = 1, the continuous wavelet system is a system of the form

{Wa =a 2@ (-—t)): a> 0t e R},

and the (one-dimensionatpntinuous wavelet transforia the mapping
o {1 ) =22 [P - D1dy: (a0) R xR},
0

Then, provided thai satisfies a certain admissibility condition, ahy L?(R) can
be expressed using ti@aldedn reproducing formula

© da
f= /]R /0 (F, ) e (1.6)

The close relationship between the discrete and continuous framework is apparent
by comparing the last expression with formula (1.2). A number of observations
concerning this relationship, as well as several multidimensional extensions of the
continuous wavelet transform are discussed in Section 1.3.

Traditional multidimensional wavelet systems are obtained by taking tensor
products of one-dimensional ones and, as a result, they have a very limited capabil-
ity to deal effectively with those directional features which typically occur in images
and other multidimensional data. To overcome such limitations, several extensions
and generalizations have been proposed in applied harmonic analysis during the last
10 years. One such approach is theory of wavelets with composite dilations
which was originally introduced by the authors and their collaborators, and pro-
vides a very flexible and powerful framework to construct “truly” multidimensional
extensions of the wavelet approach.

An example of a composite wavelet system, in dimengier2, is the collection:

{Wjk = |detA[ 2 W(BIA - —K) : i, j € Z,k € 7%}, 1.7)
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whereA = (g \%) andB = (é 1) The elements of such systems are defined
not only at various scales and locations, as traditional wavelet systems, but also at
various orientations, associated with the powers ofghearing matrixB. In ad-
ditions, for appropriate choices gf, the elementgl;jx have the ability to provide
very efficient representations for data containing directional and anisotropic features
(see Section 1.5). There are a variety of systems of the form (1.7) forming Parseval
frames or even orthonormal bases, for many choices of matieaslB. Indeed,
the theory of wavelets with composite dilations encompasses the theory of wavelets,
and there is a generalized Multiresolution Analysis associated with this theory. As
in the case of the classical MRA, this framework allows one to obtain a variety of
constructions with many different geometric and analytic properties. An outline of
this theory is presented in Section 1.4.

In Section 1.5, we examine a generalization of the wavelet transform associated
with the affine group

G={(M,t): M€ Zq,t € R?},
where, for eacl) < a < 1, 25 C GLx(R) is the set of matrices:

a—-a’s
@a: M:Masz 3 a>O,S€R
0 a“

Associated with this is theontinuous shearlet transforr#j, defined by
f— {7 f@ast)=(f gus):a>0seRt R},

which is mappingf € L?(R?) into a transform domain dependent on the seale
the shearing parameteand the location. The analyzing elementg,s;, forming a
continuous shearlet systeare the functions

Wast(X) = | detMag =2 (M (x— 1)), (1.8)

with Mas € 2. One remarkable property is that the continuous shearlet transform
of a functionf has the ability to completely characterize both the location and the
geometry of the set of singularities &f

A discrete shearlet systeisiobtained by appropriately discretizing the functions
(1.8). Indeed, such a discrete system can be designed so that it forms a Parseval
frame and it provides us with a special case of wavelets with composite dilations
(1.7). In addition, the generatay can be chosen to be a well-localized function;
that is, has fast decay both in the space and the frequency domains (see [19, 21]).
As a result, the elements of the discrete shearlet systsm form a collection of well-
localized waveforms at various scales, locations and orientations and provide opti-
mally sparse representations for a large class of bivariate functions with distributed
discontinuities. Only the curvelets introduced by Casmdnd Donoho have been
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proved to have similar properties; however, the curvelets do not share the simple
affine-like structure of wavelets with composite dilations. To illustrate the advan-
tages of the shearlet framework with respect to wavelets and other traditional repre-
sentations, we describe a number of useful applications of shearlets to the analysis
and processing of images, including some representative applications of feature ex-
traction and edge detection.

1.2 Unified Theory of Reproducing Systems

In order to describe the types of reproducing systems that we will consider in this

study, it will be useful to introduce the following definitions. We adopt the conven-
X1

tion thatx € R" is a column vector, i.ex= [ : |, and tha& € R"is a row vector,

Xn

i.e., & =(&,...,&n). A vectorx multiplying a matrixM € GL,(R) on the right is
understood to be a column vector, while a vedamultiplying M on the left is a
row vector. ThusMx € R"andéM < RN

Let f € L2(RM). Fory € R", thetranslation operatorTy is defined byTy f(x) =
f(x—y); for M € GL,(R), the dilation operator Dy is defined byDy f(x) =
|detM|~1/2f (M~1x); for v € R", themodulation operatoM, is defined by(M, f)(x) =
VX (x).

We will use the Fourier transform in the form

f(&)= [ fooe™dx

for f € LY(R") NL2(R"). Thus the inverse Fourier transform is given by

f(x) :/@n (&) €2mexdeE,
We remark that(Ty )" (&) = (My f)(&) and (Dmf)" (&) = (Dwf)(&), where
(Dm )" (&) = (Bmf)(&) = [detM[/2 f(EM).

Virtually all systems of functions which are used in harmonic analysis to generate
subspaces df?(R") are obtained by applying a certain combination of translations,
dilations and modulations to a finite family of functionslif(R"). Let us start by
recalling the definitions of the systems commonly used in many harmonic analysis
applications.

e Gabor Systemd.et ¥ = {¢?,..., ¢} c L2(R"), andB,C € GLy(R). The
Gabor systemare the collections

G =Gac(W) = {MamTeky' : mkezZ" ¢=1,...,L}
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or
G =%pc(W) = {TekMamy’ : mke Z" 1 =1,...,L}.

Notice that¥ is obtained front by interchanging the order of the translation and
modulation operators. Also, it is easy to see that

MemTek @’ = e 2™BMCkT, Memy’.

e Affine System&ivenW = {¢*,... ¢t} c L2(R"), AC GLy(R) andl” C R",
theaffine systemare the collections

F =FIar(W)={DaTy@':acAyecr, =1, L}

Very often we use the notatia#i = {M! : j € Z}, whereM € GL,(R) is expanding
(i.e., each proper valug of M satisfiegA| > 1), and[l is the latticeCZ", where
C e GLy(R).

« Wave Packet Systerfiese include the above two systems. ¥ee {2, ..., ¢},
they consist of those functions

WPr as(W) = {TyDaMyy’: yelac 2,yecSl=1,...,L},

wherel™, Sare countable (or finite) subsetsi®t, A C GL,(R). As will be discussed
below, the order of the three operatdisDa, My can be permuted.

It is easy to see that each of the above systems can be expressed in the following
form.

Let 2 be a countable indexing ségp : p< £} a family of functions inL?(R")
and{C,: pe £} a corresponding collection of matrices@L,(RR). Then each of
the systems we just described has the form:

{TekGp: keZ pe 2}. (1.9)

Indeed, in order to write down the general wave packet system into the form (1.9),
one needs just to use the “commutativity relatiobs; T« = TykDm andMy Ty =
KT, My (notice thae?™X is a constant of absolute value 1).

1.2.1 Unified Theorem for Reproducing Systems

In the theory of wavelets and, more generally, in Harmonic Analysis, it is of
paramount importance to construct such systems that form a reproducing set for
the spacé.?(R") (or more general function spaces). For example, it is of particular
interest to know when a systefw, : j € Z} of functions inL?(R") is an orthonor-

mal basis or, more generally, a frame. Many characterizations of systems that are
Parseval frames have been given in the literature; most often these results concern
themselves with affine systems [14, 24, 25, 32, 38, 41].
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We shall now give necessary and sufficient conditions for the system (1.3) to be
a Parseval frame fdr?(R"). For simplicity, we are letting the lattide to beZ"; our
arguments below can be easily extended to a more gefheral

Recall that a countable collectidm }ic in a (separable) Hilbert spac# is a
Parseval framdsometimes called tight framewith constant 1) for# if

Z\<f,<n>|2=||f||2, forall f € 7.

le

This is equivalent to the reproducing formula= 5;(f, @) @, forall f € 27, where
the series converges unconditionally in the norny&f This shows that a Parseval
frame provides a basis-like representation even though a Parseval frame need not be
a basis in general. We refer the reader to [4, 6] for more details about frames.

We refer to the following result as the “Unifying Theorem for reproducing sys-
tems” [25]:

Theorem 1.Let & be a countable indexing s€fgp} o2 a collection of functions
in L%(R") and {Cp} pe » C GLa(R). Let

&={feL?R"): f € L°(R") and suppf is compac},

and suppose that
~ 1
Z(f) = / JFE+mMCHE——— Go(6)PdE <0 (1.10)
(0= 5 3 Jugei (EF MG (i 100(8)

for all f € &. Then the system (1.3) is a Parseval framelf&(R") if and only if

Gp(&)Gp(é +a) =0 forae.& eR", (1.11)
pez’ﬂa‘detcp| P( ) P( ) a0

for eacha e A = Upe@Z”C,;l, whereZ, = {pe & : aCpec Z"} andd is the
Kronecker delta foiiR".

Before discussing the proof of this theorem, it will be useful to make a few com-
ments about this result, in order to elucidate its context and its impact.

Remark 1ltis relatively well known thatifiy € L?(R), then{j =D, Ta : j, ke

7} is an orthonormal basis fa(R) (i.e., ¢ is anorthonormal wavelgtif and only

if equations (1.4) and (1.5) hold. As we mentioned above, this result was obtained
independently by G. Gripenberg [14] and X. Wang [41]. As it will be discussed
below, these equations are a simple consequence of Theorem 1 (see exercise 1, at
the end of this section).

Remark 2The assumption (1.10) is referred to as the Local Integrability Condition
(LIC). At first sight, it might appear as a rather formidable technical hypothesis.
In some cases, however, it can be shown that it is a simple consequence of the
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system being considered. For example, let us consider the Gabor §§§t§(|@),
whereG = {g%,...,g"}, and let us write it in the form (1.3). Namely, le? =
Z"x {1,2,...,L}, gp = gj» = Mgj g, andCp = C, so that

TekOp = TekMs; g

Without loss of generality, we can assume that 1. Thus, the expression of (1.10)
is

HUEDID) /Kf<5+m<0p>‘1|2@p(f)zmgtécpl

pe P meZh

1 " ~
= (o] 2, 3 [ If(€+m©) F o B ae.
pEZN meZn

for f € £ andK = suppf is compact. Sincé€ € K, only a finite number of terms in
the sumy .zn are non-zero. Moreover, " is then-torus, for eachj € Z", the set
{B(T"+j—p): peZ"}is a partition ofR". Thus,

2 A 2
9 =/ a(m)|“dn =75
9112 UpQZnB(Tnﬂfp)\ () 2

| 16(& ~Bp)2de.
Upezn B(T"+])

Now observe that a finite union of the s¢®(T" + j) : j € Z"} coversK. Using
this fact and the fact thdjtf ||, < o (sincef € &), itis not difficult to show that

Z(f) <Clgli3,

whereC is a positive constant. As a result, the characterization theorem for the
Gabor systems can be stated explicitly as:

Theorem 2. The systen¥sc(G) (or the systen¥zc(G)) is a Parseval frame for
L2(R") if and only if

S 1
/z % |detC| §'(& —BK)§’(& —Bk+mC 1) = &0
=1kezn

fora.e.é c¢R", all me Z".

This result is well known, and can be found, for example, in [28, 39, 7, 32].

The situation for the “usual” affine systems is somewhat more subtle. Here, by
the word “usual” we mean the case wheve- {al : j € Z} wherea € GLy(R) is
expanding, and™ = Z". In this case one can show that, if the conditions (1.11) are
true, then the LIC is valid and, conversely, if the system (1.3) is a Parseval frame,
then the LIC also holds. Thus, in the characterization of Parseval frames given by
Theorem 1 it is not needed to assume the LIC. The characterization theorem for
these systems can be written down explicitly as:
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Theorem 3.LetW¥ = {¢*,..., '} C L2(R") anda € GLy(R) be expanding. Then
the systenZar (W) = {Dy k' : j € Z,kc Z",¢=1,...,L} is a Parseval frame
for L2(R") if and only if

L

/z ; P Ea)Pl(E+a)al) =250, foraeé ecR", (1.12)
=1j€Pq

forall a € A =UjczZ"al, whereZ = {j € Z: aa~} € Z"}.

Apart from the argument needed to establish the validity of the LIC which we
mentioned above, this last theorem is a simple consequence of Theorem 1 once the
systemZar (W) is expressed in the form (1.3). Notice that there is a redundancy
in the condition (1.12). Indeed an elementary argument shows that (1.12) can be
simplified to

L S

/Z ; P Ea ) Pi((E+m)ai) = dmo, fora.e. e R", (1.13)
=1jePm

for all me Z", whereZy, = {j € Z: mal € Z"}. It follows easily from this form

of Theorem 3 that the result of Gripenberg and Wang (given in Remark 1) holds for
n=1landa=2

In order to present the ideas involved in the proof of Theorem 1, it is useful to

introduce theC-bracket producof f,g € L2(R™), which, forC € GL,(R), is defined
by S

[f.g(xC) = ¥ f(x—CKg(x—CK).
kezZn
Itis clear thaf f, g] is CZ"- periodic; that is[f,g](x+CmC) = [f,g](x;C) for each
me Z".
That the system (1.3) is a Parseval framelf&(R") is equivalent to

N2(F) =5 5 I(f, Tekam > =I5, (1.14)
peZ kezZ"

forall f € & (recall thats is dense irL?(R")).
Using the fact thaR" = | J; ;0 {(T" —1)C~1} is a disjoint union, it follows easily
that

P e\ ETES 27iCk 2
5 [(ETenaplP= 3 | [ f(6)8@&™ < ae

pe P keZn

=5 /C.(Tn> f(& —C'1)g( —CTT) €27k g¢

lezn

= [f,gl(&;C) e de..
c!(Tn)

Under all these assumptions, let us consider the function
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H(X): 2 |<Txf7TCkg>|23
kezn

whereC € GLy(R). Indeed, it is clear that the functidt is CZ"- periodic. Using
the fact thatf has compact support, one can show that

Lemma 1. The functiorH (x) is the trigonometric polynomial where

Hx) = 3 A(m)emcmx

meZn

where

f(E+C'm)a(€)a(¢ +C'm)dé,

\detC\
and only a finite number of these expressions is hon-zero.

The fact thatd (m) # 0 for finitely manym at most follows from the fact thaft has
compact support.
To show that equality (1.14) holds for dlle &, consider now the function

W) =NA(Txf) = Hp(x),
peZ

whereH(x) = [(Tx f,Tcpkgp>|2. By Lemma 1, for eaclp € &2,
Hp() = 5 Hp(m) e (m

where

A 1
Hp(m) - |deth‘ RN

f(&) F(& +Clm) Go(&) Gp(& +Chm) dé.

Thus, using the assumptions of Theorem 1, from the observations we made above,
we have the expression

w(x) = N*(Txf) = 5 W(a) e, (1.15)
aen
where
. R T 1
Wa) = [ f@)fE+a) 3 rdey EOGErOdE (116

This integral is absolutely convergent, and the series definipg is absolutely
and uniformly convergent. Notice that the LIC plays an important role to establish
these convergence properties and the various uses of Fubini’'s theorem needed for
the formulae developed here.

To complete the proof of Theorem 1 we argue as follows. Let us assume (1.11).
Then, by equation (1.16),
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(@) = 8o [ (&) TE+a)de.

Rn

By equation (1.15), this implies

w(x) = N?(Tcf) = 5 W(a) &m* =w(0) = | f||3.

aen

Hence, the system (1.3) is a Parseval frame.fgR").
Conversely, let us now assume that the system (1.3) is a Parseval frame for
L?(R"). Hence, by our assumptions, we know that

NZ(Tf) =w(x) = 5 W() e = |[Tef |5 = | [,
aen

forall f € &.

Since A is countable and the “Fourier coefficientd{a) of this generalized
Fourier series are unique, we must hav@) = 0 if a # 0 andw(0) = 1. We
can then use (1.16) and appropriate choiced & & to show that the equali-
ties (1.11) must hold. For example, by lettifigto be such thaf (£) = f.(£) =
\/ﬁXB@)(E — &), whereB(¢) is a ball of radiuss about the origing > 0 and

& is a point of differentiability of the integral df(€) = ¥ pe » @ dp(€)[2, one
obtains easily from (1.16) th&{&p) = 1. This gives (1.11) whea = 0.

This is, to conclude, the basic idea of the proof of Theorem 1. The role played by
these generalized Fourier series is arrived at naturally; it arises from the importance
of the notion of shift invariance which is essentially related to the structure of these
families of reproducing systems.

Theorem 1 has many applications and several of them are described in [25, 26].
As mentioned above, they include Gabor, affine and wave packet systems. Theo-
rem 1 applies also to thguasi-affine systemén dimensionn = 1, these are the
systems{{j : j,k € Z} obtained fromyp € L2(R) by setting

_ 212Dyt j>0
.k = .
PO D T, j<o.

These systems (as well as their higher dimensional versions) were introduced by
Ron and Shenin [37]. They pointed out that, unlike the affine systems, these systems
are shift-invariant. Furthermore, the quasi-affine sys{einy} is a Parseval frame

if and only if the corresponding affine syste; ¢} is a Parseval frame.

Recall that, in higher dimensions, affine and quasi-affine systems are typically
defined using dilations of the for,,;, whereM is an expanding matrix, that is,
each proper valug of M satisfiegA| > 1. Notice that this condition is equivalent
to the existence of constarkandy, satisfying0 < k < 1 < y < o, such that

IMIX| > Ky [x] (1.17)
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whenxeR", j€Z, j>0,and
. 1 .
MIX < 2y (1.18)

whenx e R", j € Z, j < 0. One remarkable property of Theorem 1 is that it applies
not only to the case of expanding dilations matrices, but also to a more general class
of dilations which arexpanding on a subspa§25], and are defined as follows.

Definition 1. GivenM € GLy(R) and a non-zero linear subspaeef R", we say
thatM is expanding orf if there exists a complementary (not necessarily orthogo-
nal) linear subspadg of R" with the following properties

() R"=F +E andF NE = {0}; that is, for anyx € R", there exist uniquer € F
andxg € E such thak = xg + Xg;
(i) M(F) =F andM(E) = E, that is,F andE are invariant unde;
(iii) conditions (1.17) and (1.18) hold for ade F;
(iv) For anyj > 0, there exist&; = ky(M) > 0 such that|xg| < ky |MI xg|.

It is clear that if a matriXM is expanding, then it is also expanding on a subspace.
However, there are several examples of matrices which satisfy Definition 1 and are
not expanding. For example, the following matrices are all expanding on a subspace:

e M= (a o),whereae R, |a] > 1;

01
a o0 0

e M= |0cosf —sinf | ,whereacR, |a] > 1.
0 sinB cosO

Itis shown in [16, 25] that, for affine systems where the dilation mafris expand-
ing on a subspace, according to the definition above, then the LIC is “automatically”
satisfied. Hence, Theorem 3 applies to this class of affine systems as well.

The examples seem to suggest that Theorem 3 applies whenever the dilation
matrixM has all eigenvaluedy| > 1 and at least one eigenval{fa | > 1. However,
this is not the case. In [16] there is an example &>a3 dilation matrix having
eigenvalued; = a> 1andA, = Az = 1, for which the LIC fails. Indeed it turns out
that the information about the eigenvaluedvbtlone is not sufficient to determine
the LIC or even the existence of corresponding affine systems. We refer to [27, 40]
for additional results and observations about this topic.

Exercises

1. Show that equation (1.12) in Theorem 3 can be simplified to obtain (1.13). Next,
show that, fom = 1, when the dilation matri® is replaced by the dyadic factor

1 This is the revised definition from [16]. It turned out that the definition initially proposed in [25],
with a different condition (iv), was not sufficient to guarantee that the LIC was satisfied
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2, equation (1.13) yields the “classical” Gripenberg-Wang equations (1.4) and
(1.5).

. 0 0
2. Show that the matrice® = (39) andM = §cpsg —sinee) , wherea > 1, are
sin Cosl
expanding on a subspace (that is, they satisfy Definition 1).

1.3 Continuous Wavelet Transform

The full affine group of motions oR", denoted byA,, consists of all pairs
(Mt) € GLy(R) x R" (endowed with the product topology) together with the group
operation
(M, 1) - (M,t') = (MM',t' + (M) ).
This operation is associated with the actior> M(x+1t) on R". The subgroup
A ={(M,t) € A: M =1,t € R"} is clearly a normal subgroup &f,.
We consider a class of subgroufis} of A, of the form

G={(M,t) eA: M e Z,teR"},

where 7 is a closed subgroup @L,(R). We can identifyZ with the subgroup
{(M;t) e G: M € 2,t = 0}. Hence we refer t&Z as thedilation subgroupand
to .4 as thetranslation subgroupf G. If u is the left Haar measure fap, then
dA (M,t) = du(M)dt is the element of the left Haar measure Gr

LetU be the unitary representation Gfacting onL?(R") defined by

(Umn @) (¥) = | detM|~Y2g(M~x—t) == g4 (X), (1.19)

for (M,t) € Gandy € L2(R"). The element§yi ; : (M,t) € G} are thecontinuous
affine systemsvith respect toG. The corresponding expression in the frequency
domain is:

(U(M,t) w)A (&) = |detM|Y2@(EM) =2t

For a fixedy € L2(R"), thewavelet transfornassociated witls is the mapping

f = (£ DML = (T, uar) = [ detM[ 2 [ () p(M-Ty—D)d
wheref ¢ L2(R") and(M,t) € G. If there exists a functiogy € L2(R") such that,
for all f € L2(R"), the reproducing formula

f= (. 4m) Y dAMD) (1.20)
G

holds, theny is a continuous waveletvith respect toG. Expression (1.20) is a
generalized version of the Cal@er reproducing formula (1.6) presented in Chap-



14 Demetrio Labate and Guido Weiss

ter 1.1. Notice that equality (1.20) is understood in the weak sense (see the proof of
Theorem 4 below); the pointwise result is much more subtle.

The following theorem establishes an admissibility conditiongidhat guaran-
tees that (1.20) is satisfied:

Theorem 4. Equality (1.20) is valid for allf € L?(R") if and only if, for a.e. €
R™\ {0},
8y(8) = [ 1BEM)Edu) = 1 (1.21)

Proof. Suppose that (1.21) is satisfied. Then, by direct computation we have that

1t = [, [, 1(Fgmol2dtcu(m)
Lo he
-1(L

= [ [ If@Rp@Em)RdE dum)
2 JRN
S RLGIZMGE:

= ||f||EZ(Rn)-

2
[ (&) aem e |dew dtau(w

(f&BCM)) " (Mt)

2
detM|dt> du(M)

This shows that the mappirgy : L?(R") — L?(G,A) is an isometry. By polariza-
tion we then obtain
(Pt 749)126) = (£, Q) 12(mn), (1.22)

for all f,g € L2(R").
Conversely, suppose that equality (1.20) holds in the weak sense (i.e., (1.22)
holds). Consider the expression

[ f@Pa(E)de,
Rn

with f satisfying| f(&)|2 = |B(r, Eo)|_1Xg(r,zo)(E). wheref(r, &) is a ball of radius
r and centeép, andép is a point of differentiability ofAy. Then, by reversing the
chain of equalities above, we obtain that

IB(r, &)| /ﬁ oo E)dE =1

for all r > 0. By takinglim,_,o+, we conclude thatly (&) = 1. Thus,Ay(&) =1
fora.e.l e R". O

Theorem 4 can easily be extended to the case wBei® not a subgroup of
GLn(R), but simply a subset dL,(IR). Furthermore, Theorem 4 extends to func-
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tions on subspaces bf(R") of the form

L2(V)Y = {f € L%(R") : suppf C V}.
The proof of this fact is left as an exercise.

In the special case of Theorem 4 where- 1 and 2 = {2! : j € Z}, equation
(1.21)isY ez |P(21€)|? = 1for a.e.£ € R (this is the classical Calden equation),
and equation (1.20) is

f=3 [ (g gt (1.23)

€L

where;(x) := 271/2¢(271x—t), j € Z, t € R. Thus, the classical orthonormal

wavelet expansion
F=75 > (f, e Ui
JELKEZ

is a “discretization” of (1.23). This shows, by equation (1.4), that an orthonormal
wavelet (in this classical case) is always a continuous wavelet satisfying property
(1.23) for all f € L?(R). This raises the question of how to “discretize” continu-
ous wavelets associated with general dilations graapgve refer to [42] for more
observations about this topic.

A variant of the affine groupg, (and the corresponding affine systems (1.19)) is
obtained by considering the gro@J consisting of all pairgM,t) € GLy(R) x R"
(endowed with the product topology) together with the group operation

(M,t)- (M, t') = (MM’ t +M't").

This operation is associated with the actior Mx+t onRR". Theco-affine systems
associated witlS* are then defined as the elements

(Vomg) @) () = | detM] Y2 (M (x—1)) = gy (%),

for (M,t) € G* and g € L2(R"). The corresponding expression in the frequency
domain is:

(Umy lﬂ)A (&) = |detM|Y2@(EM) e 2,

The left Haar measura,’, for G* is easily seen to satistjA * (M, t) = |detM|~*du (M) dt,
wherep is the left Haar measure fap. Then the “co-affine” reproducing formula
is

= [ (. Wia ) i A" (ML) (1.2)
G

A straightforward calculation shows that (1.24) holds if and only Batisfies con-
dition (1.21). Thusy is a continuous affine wavelet if and only if it is a continuous
co-affine wavelet

Notice that the situation observed above is different from the discrete case. In
fact, consider the system8 = {; = 271/2@(271 - —k) : j,k€ Z} and¥* =
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{r =27129(271(-— k) : j,ke Z}. Asimple calculation shows that

WioW-1-1) = (Yo, P-12k1)-

This shows that the co-affine systems cannot generate the p@pgif the cor-
responding affine systet is an orthonormal basis fdr?(R). In fact, the affine
system is an orthonormal basis fdr?(R) (in which case the right hand side of
the above expression is zero) if and only if the co-affine systrhas a non-empty
orthogonal complement.

1.3.1 Admissible groups

It is not difficult to show that there are dilation grougsfor which one can find no
functionsy satisfying equation (1.21). In particular, # is compact, there are no
associated functiong that satisfy this condition. For example, lgt= SQ(2) and
suppose that there is a functigne L?(R?) satisfying (1.21). Notice that, in this
case, using polar coordinates equation (1.21) can be expressed as

an e dO
ip0y\22Y
| lweret) 2 ~1

for a.e.& = re'?. Multiplying both sides of the equality by > 0 and integrating
with respect ta € [0, ), we obtain:

oo:/ rdr
0
© 21 - do
— ip6y12 XY
/o r/0 |((re'?e®)] 2ndr

o e oo de
— i6y22Y
= [0 [T 1e0e?) RS r
— ]2 <o,

This is clearly a contradiction and, thus, there is hasatisfying (1.21). In this
situation, we say that the groiQ(2) is notadmissible That a general compact
2 C GLn(R) is not admissible is not much harder to prove.

The observation above leads to the question: what are the gr@ughsit are
admissible? Our result on admissibility involves the notioa-edtabilizerof x € R",
which is defined as the set

D ={Me P :|xM—x| <&},

for eache > 0. The setZ ;= D? = {M € 2 : xM = x} is called thestabilizerof x.
Themodular functiom, on 2, defined by the property
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H(EM) = A(M) u(E)

for all u—measurabl& C 2 andM € 2, also plays an important role in the follow-
ing basic result about admissible dilation groups.

Theorem 5. (a) If 2 is admissible, thed # |detM| and the stabilizer ok is com-
pact for a.ex € R".

(b) If A # |detM| and for a.e.x € R" there exists are > 0 such that thee—
stabilizer ofx is compact, ther¥ is admissible.

The proof of Theorem 5 is rather involved and can be found in [33]. Even though
Theorem 5 “just fails” to be a characterization of admissibility, still it is quite use-
ful for determining admissibility or non-admissibility of particular grougs For
example, ifZ is compact, thedd = |detM| = 1 and, thus, it cannot be admissi-
ble. Another example where Theorem 5 can be used effectively is the case where
9 is a one-parameter group. Namely, [8t= {M; = €' : t € R}, whereL is a
realn x n matrix. ThenZ is admissible if and only if tradk) # 0. Indeed, since
detM; = €"a%€L) and 2 is Abelian, it follows that the modular function, is iden-
tically 1. Thus, when tradé ) # O, we have thatletM; ## 1= A andZ is admissible.

1.3.2 Wave Packet Systems

In [5], Cérdoba and Fefferman introduced “wave packets” as those families of func-
tions obtained by applying certain collections of dilations, modulations and trans-
lations to the Gaussian function. More generally, we will describe as “wave packet
systems” any collections of functions which are obtained by applying a combination
of dilations, modulations and translations to a finite family of functioh.#(R").
ForW={y': 1<¢<L}cL?R"),whereL € N, andSc GLy(R) x R", thecon-
tinuous wave packet systemth respect tdSthat is generated by is the collection

WP(W) = {DaM, Ty : (Av) €S ye R 1< (<L}, (1.25)

whereM, is the modulation operator defined at the beginning of Section 1.2.
Let

G={U=cDaMyTy: ceC,|c|=1,(AV,y) € GLy(R) x R" x R"}.

G is a subgroup of the unitaronperatorsLo’fQR”) which is preserved by the action
of the mappindJ — U, whereU f = (U f)".

In the definition (1.25), we considered the m@pv,y) — U((g%y) =DaMy Ty,
which is a one-to-one mapping frox R" into the groups. By changing the order
of the operators, we can also define the following one-to-one mappingsSroRf'
into G:

@ _
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U,y = TyDaMy
UR,) =MyDaT,
U,y = TyMyDa
URyy =My TyDa

Hence, we can generate alternate continuous wave packet sym’é@b@(w

by replacmgU((A)V y) Wwith U<(A)Vy> for 1 <i <5 The systems;/%@éo)(l#) and

W@S (W) are equivalent in the sense that one is a Parseval frame if and only if
the other one is a Parseval frame (in fact, by the commutativity relations of trans-
lations and modulations, they only differ by a unimodular scalar factor). The same
is true for%@; (W) and%@g’)(%. The other systems, on the other hand, have
substantial dlfferences

Each subgroupJ (Avy) = 0,...,5, is associated to a continuous wave packet
system generated by C L?(R™M). We can characterize thod&for which we have
Parseval frames:

PRI

for all f € L?(R"), whereA is a measure 08. Such a characterization is an exten-
sion of Theorem 4, and is given by an analog of equality (1.21). Explicitly, we have
the result

“ax (Av)dy=||f|3

VY) w‘>

Theorem 6.Let W = {¢' : 1< £ < L} C LA(R"). The systeme/Z)) (W), i =
0,...,5 are continuous Parseval frame wave packet systems with respegitn
for L2(RM), if and only if

ASL)(E) =1, fora.e.§ eR",

where
ay)(e) = ; L Eat-vEaa)
;/WEA- v)PP|detAl 1 dA (A, v);
/ P (E- VAP A)

a(&) = ;/w V)AL | deth| 2 dA (A,v).
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Exercises

1. Show that Theorem 4 is valid for functions on subspacds’ (R") of the form

L2(V)Y = {f € L(R") : suppf C V}.

1.4 Affine Systems with Composite Dilations

To describe the class of systems which will be considered in this section, it will be
useful to begin with one example irf (R?).
20 11

LetA= <0 e) , Wheree #0,B= (0 1) andG = {(Bl k) : j € Z,ke Z?}. Then
Gis a group with group multiplication:
(B, m) (Bl,k) = (B“*] k+B~Im). (1.26)
In particular, we havéBl, k)~ = (B~1, —Blk). The multiplication (1.26) is consis-

tent with the operation that maps— Bl(x+ k) of R? into R?. Let 17 be the unitary
representation dB, acting onL?(R?) which is defined by

(n(Bi,k)f)(x) — f((B},k)"Ix) = (B Ix—k) = (D,ngf)(x), (1.27)
for f € L>(R?). Notice thatdetB! = 1. The observation that
(D5 Tm) (DL T) = (D5 Tir-im):
wherel, j € Z, k,m e Z?, shows how the group operation (1.26) is associated with
the unitary representation (1.27).
LetS = {& = (&,&) € R?: |&| < 1} and define

Vo= L%(S)" = {f € L2(R") : suppf c S}
Since, for allj € Z andk € Z?, we havé

. A . A . oA .

(n(®Kf) (&) = (DhTif) (&) =e 2mokf(gBl),

and&B! = (&1,&)Bl = (&1,& + j&1), then the action oB! maps the vertical strip

domaing into itself and, thus, the spawfg is invariant under the action af(B!, k).
The same invariance property holds for the vertical strips

S = SA = {& = (&,&) e R?: |&] < 2'},

2 Recall that, according to the notation introduced in Section 1.2, in the frequency domain, the
matricesB! multiply row vectors on the right.
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i € Z, and, as a consequence, the spages LZ(S)v are also invariant under the
action of the operatora(B!, k).

&
2
I3
1 J'B
I3
J* -
1
2 1 1 2 &
Iy J-
Iy
JB -1
I3
-2

Fig. 1.1 Example of ONAB-MRA. The set§J* Bi J~ Bi : j € Z} form a disjoint partition 0.

The space$V, }icz defined above satisfy the basic MRA properties:

1. Vi CViy1, i €Z;

2. DA'Vo =V;;

3. NiezVi = {0};

4. UiezgVi = L2(R").

The complete definition of an MRA includes the assumption\hés$ generated by
the integer translates of@c Vp, called thescaling functionand that these translates
{Tk@: k € Z?} are an orthonormal basis U§. In some cases, there are more than
one scaling function.

The situation here is a bit different and thealing property is replaced by an
analogous property. Namely, considkr= L2(S) and letg = 3, whered = J* U
J—, J* is the triangle with vertice$0,0), (1,0), (1,1) andJ™ is the triangle with
vertices(0,0), (—1,0), (—1,—1). The sets) B/, j € Z, form a partition 0fS; that
is, S = UjezJ B, except for the set of pointg0, &) : & # 0}, which is, however,
a set of measure 0. The skhas measure 1 and the collectifar 2™ x; : k € 72}
is easily seen to be an ON basisL3{J). Since
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(efzr"'k' xa() :)v (X) = (k@) (x) = @(x—k),

these last functions form an ON basisl3{J)". It follows that{Dg; T @ : k € Z2}
is an ON basis oE%(JB!)V, for eachj € Z2. Hence, the set

{Dgi Tk@: j€Z,keZ?} = {TDg @: j € Z,k € Z?}

is an ON basis 0. The sets)™,J~, as well as the other sets used in this construc-
tion are illustrated in Figure 1.1.

&
S
e S ——
I3b
;b
5 I7b
1 "
N IJa
I
IJa £
2 1 I 1/a "
I 1 2 4
Iz
-1
I3
-2
S\S S\S

Fig. 1.2 Example of orthonormaAB wavelet.

Thus, the “complete” definition of the MRA, introduced above, adds to (1)—(4)
the property:
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(5) Vo is generated by a “scaling functiorp, in the sense thgTyDgj ¢: j € Z,k €
72} is an ON basis 0¥p.

Let Gg be the groug B! : j € Z}; this is equivalent to the dilation groyDy; :
j€Z}. ThenG = {(Bl,k) : j € Z,k € Z?} is the semidirect product @g andZ?,
denoted byGg x Z2. This shows that thehift—invarianceof the traditional MRA is
replaced by a notion dbg x Z"-invariance that is, the spack, is invariant with
respect to both integer translations @gldilations.

We shall now show how the MRA we just introduced can be used to construct
a waveletlike basis df?(R?). We begin by constructing an ON basis\W§, de-
fined to be the orthogonal complement\gfin V4, that is,V1 = Vo &Wp. It will be
convenient to work in the frequency domain. We have \71&@\70 ®Wp and, con-
sequentlyWo = L?(Ro), whereRo = S\ So = {€ = (&1,&2) € R?: 1< [&] <2},
We define the following subsets B = S \ S:

Ilzlfull‘,IZ:I;UIZ‘,I;;:I;UI:;,
where

{E=(8,8)eR?: 1< E<2,0< & <1/2}),
(E=(&,&)eR?:1 1< & <2,1/2< & < 1},
(E=(8,8)eR?:1 1< & <21< &< &),

Wi N P

andl, ={¢ ¢ R2: - € Ij}, ¢=1,2,3. These sets are illustrated in Figures 1.1
and 1.2. Observe that each $gis afundamental domaitior Z2: the functions
{€MEk: k € 72}, restricted td,, form an ON basis fot2(l,), £ = 1,2,3. We then
definey!, ¢ = 1,2 3 by setting)’ = X, £=1,2,3. It follows from the observations
about the set§l, } that the collection

{Tk Pl (&) ke 72}

is an orthonormal basis &P (l;), £ = 1,2,3. A simple direct calculation shows that
the setg{I,b! : j € Z,£ =1,2, 3} are a partition oRy, that is,

3 .
U U 1B =Ry,
(=1jez
where the union is disjoint. As a consequence, the collection
(MR pl(EB)) ke Z? je 2,0 =123} (1.28)

is an orthonormal basis &f(Ry) and, thus, by taking the inverse Fourier transform
of (1.28), we have that

{nBl K y':keZ? ez (=123} (1.29)
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is an orthonormal basis &b = L?(Rg)". Notice that, since, for eache Z fixed,
B! mapsZ? into itself, the collection{e?¢B'k : k € 72} is equal to the collection
(2K k e 72).

It is clear that, by applying the dilatior3,;, i € Z, to the system (1.29), we
obtain an ON basis df?(R))", where

R =RoA = {& = (&1,&) e R?: 2' < |&| < 211,

Furthermore, we have thal, ., R = R2, where the union is disjoint, and, hence
we can writeL?(R?) = @;.,W. Hence, by combining the observations above, it
follows that the collection

{DuDgi k' : ke Z%i,jeZ,t =123} (1.30)

is an ON basis oE?(R?).

1.4.1 Affine System with Composite Dilations

The construction given above is a particular example of a general class of affine-like
systems calledffine system with composite dilatigmghich have the form:

App(W) = {DaDe Tk’ : Ac Go,Be G, ke Z", 0 =1,...,L}, (1.31)

where W c {¢*,..., @'} € LA(R"), Ga C GLy(R) (usually,Ga = {A' : i € Z},

with A expanding or having some “expanding” property), @glC GL,(R) with

|detB| = 1. Later on, we will show that there are several examples of such systems
that form ON bases df?(R") or, more generally, Parseval frames 8fR").

The roles played by the two families of dilatior, andGg, in definition (1.31),
are very different. The elementse Ga dilate (at least in some direction), while
the elements o6g affect the geometry of the reproducing systefkg(¥). In the
example we worked ouGg = {(3})! : j € Z} is the shear groupand exhibits
a “shear geometry”, in which objects in the plane are stretched vertically without
increasing their size (like the trapezoids in Figure 1.2). In Section 1.5, we will use
this group and a construction similar to the one above to obtaisttbarletswhose
geometrical properties are similar to the example above, and are, in addition, well-
localized functions (i.e., they have rapid decay both in the space and frequency
domains). They have similarities to tharveletsntroduced by Cangs and Donoho
[2] and to thecontourletsof Do and Vetterli [10]. However, their mathematical
construction is simpler, since it derived from the structure of affine systems and, as
a result, their development and applications are “more systematic” [22, 23].

As indicated by the example above, there is a special multiresolution analysis
associated with the affine systems with composite dilations which is useful for con-
structing “composite wavelets”. Let us give a proper definition of this new frame-
work. Let Gg be a countable subset 8L,(Z) = {B € GLy(R) : |detB| =1} and
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Ga = {A: i € Z}, whereA € GLy(Z) (notice thatA is anintegral matrix). Also
assume thaf normalizesGg, that is,ABA 1 € Gg for everyB € Gg, and that the
quotient spac8/(ABA™Y) is finite. Then the sequend¥, <7, of closed subspaces
of L2(R") is anAB-multiresolution analysisAB-MRA)if the following holds:

() DeTcVo=Vo, foranyBe Gg, ke Z",
(ii) foreachi € Z,V; C Viy1,, whereV; = D'V,
(ii)) NV = {0} andUV; = L2(R"),
(iv) there existsp € L?(R") such that®g = {DgTx@: B € Gg, k € Z"} is a semi-
orthogonal Parseval frame for, that is, @g is a Parseval frame foYj and, in
addition,Dg Tk @ L Dg Ty @ for anyB # B/, B,B’ € Gg, k, k' € Z".

The spacey is called anAB scaling spaceand the functionp is an AB scaling
functionfor V. In addition, if @g is an orthonormal basis faf, theng is anor-
thonormalAB scaling function

The number of generatotsof an orthonormal MRAAB-wavelet is completely
determined by the group = {(B!,k) : j € Z, ke Z"}. Indeed we have the following
simple fact:

Proposition 1. Let G be a countable group andl— T, be a unitary representation
of G acting on a (separable) Hilobert spac#’. Supposeb = {¢',..., 0"}, ¥ =
{¢t,...,.yM} c o, whereN,M € NJ{eo}. If {T,¢*: ue G,1 <k <N} and
{Tu¢': ue G, 1<i <M} are each orthonormal bases fo#’, thenN = M.

Proof. It follows from the assumptions that, for eathk k < N:

M
(Pk 2 _ (Pk7TulIJi 2.
1"l u;;l( )|

Thus, by the properties df,, we have:
N= % g% = % §§1|<<pk,w>2
K=1 K=1UEGi=
= i ;% (T, 10k 0
iZ1UeGK=1

M

= ;Hw‘HZ:M O

Using Proposition 1, one obtains the following result which establishes the num-
ber of generators needed to obtain an orthonormal MiRAvavelet.OO

Theorem 7.Let ¥ = {¢*,..., @'} be an orthonormal MRAAB-multiwavelet for
L?(R"), and letN = |B/ABA™!| (= the order of the quotient grouB/ABA™1).
Assume thaftdetA| € N. ThenL = N |detA| — 1.
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The composite wavelet systemhg(¥) have associated continuous multiwavelets.
The simplest case is the one in which the translationgBrey € R"}. In this case,
we have the reproducing formula corresponding to (1.20):

L
f:,z > /n<f’DAiDBi Tyy") DaDgi Ty Y dy, (1.32)
(=i jez /R

for f € L?(R"). As in Section 1.3, one can show th#t= {2, ..., ¢} satisfies
(1.32) if and only if it satisfies the Caldam equation

L
/Z > |Q'(EAB))| =1 fora.e.f eR".
=1i,|€Z

Some more general examples of continuous composite wavelet system will be ex-
amined in Section 1.5.

1.4.2 Other Examples

There are several other examples of affine systems with composite dilatig(¥/)
which form ON bases or Parseval frames.
In particular, the construction presented above in dimensier? extends to the
generaln-dimensional setting. In this case, the shear group is giveBgy: {B':
i € Z}, whereB € GL,(R) is characterized by the equalit® — 1,)2 = 0, andl, is
then x nidentity matrix. We refer to [23] for more detail about these systems.
A different type of affine systems with composite dilations arises w@gns
a finite group. For example, lébg = {+Bp, +B1,+B,, +B3} be the 8-element

group consisting of the isometries of the squiaré, 1]2. Specifically:By = (1 0)

01)’
01 01 -10
Bi={10)'B2=| 10)'B=| 01
tices (0,0),(1,0),(2,1) and(1,1) andS = UpcgU b (see the snowflake region in
Figure 1.3). It is easy to verify th&, is B-invariant.

Let A be the quincunx matri><_11 D andS = LA, i € Z. Observe thaA is

. LetU be the parallelogram with ver-

expandingABA™ =B andS € SA = S;. In particular, the regiofs; \ § is the
disjoint unionlJ,.g R B, where the regiofr is the parallelogram illustrated in Fig-

ure 1.3. Thus, as in the case of the shear composite wavelet that we have described
above, it follows that the system

{D\DgTkW:i€Z BeGg ke Z?%}, (1.33)

wherel = xg, is an orthonormal basis f&?(R?).
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Rby | Rb

Rbp U R
'3

Fig. 1.3 Example of composite wavelet with finite groupa = {A : i € Z}, whereA is the quin-
cunx matrix, and3g is the group of isometries of the squarel, 12.

S (2)> , we obtain a dif-
ferent ON basis. LeB, U andS, i € Z, be defined as above. Also in this cads
expandingABA ! = BandS; = Sa> S. A direct computation shows that the re-
gion$§; \ & is the disjoint union Jgc, Rb, whereR = R; [JR2URs and the regions
R1, Rz, Rs are illustrated in Figure 1.4. Observe that each of the regfariR;, R; is

a fundamental domain. Thus, the system

If the quincunx matrixA is replaced by the matrid = (

{D5DeTky':i€Z,BeGg keZ? (=1,...,3}, (1.34)

where()’ = xg,, ¢ = 1,2,3, is an orthonormal basis f&r?(R?).

Note that the system in the first example (equation (1.33)) was generated by a
single function, while the second system (equation (1.34)) is generated by three
functions @1, Y2, 3. This is consistent with Theorem 7. In fact,Bfis a finite
group, thenN = |B/ABA™1| = 1, and so, in this situation, the number of genera-
tors isL = |detA| — 1. Thus, by Theorem 7, in the first example we obtain that the
number of generators Is= 1 sinceA is the quincunx matrix andetA = 2. In the
second example, the number of generatots<s3 sinceA = 2| anddetA = 4. Fi-
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Fig. 1.4 Example of composite wavelet with finite groupa = {Al : i € Z}, whereA = 2I, and
Gg is the group of isometries of the squarel, 1)2.

nally, in the example at beginning of this Section, whBggis the two-dimensional
group of shear matrices ar@h = {A' :i € Z}, with A = <(2) 2;2) € Glx(Z), a
calculation shows thdB/ABA Y| = 2|A; 5|1 and, thus, the number of generators
isL= 2|A2’2|712|A2’2‘ —1=3.

In higher dimensions, the type of constructions we have just described extend
by using the Coxeter group. These are finite groups (hence, their elements have
determinant 1 in magnitude) generated by reflections through hyperplanes.

Other examples of composite wavelets, in dimengiona 2, are obtained, for
eachA > 1fixed, by considering the group

A0 .
GBZ{BJ':(O/\J)ZJEZ},

and choosingsa to be a group of expanding matrices; for exan{ple= {Ai ez},
whereA is diagonal anddetA| > 1. We refer to [23] for more detail about this
construction.
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Fig. 1.5 On the left: the fractal set known as “Twin Dragon”. On the right: support of the 2-
dimensional Haar waveleft; ¢ = 1 on the darker setp = —1 on the lighter set.

All examples of composite wavelets presented so far are “direct” constructions
in the frequency domain. let us now discuss a different class of composite wavelets
in the “time domain”.

Perhaps the simplest dyadic-dilation wavelet in dimensica 1 is the Haar
wavelet. It is produced by the scaling functign= xjo1) and is generated by the
Haar functiony = X(0,1/2) — X|1/2,1)- TheHaar ON basisof L2(R) is the affine sys-
tem

{Ll’i7k= D, Tk :i,keZ}.

Itis a natural question to ask what are the extensions of this compactly supported
wavelet ¢ in higher dimensions. For example, in dimensioa- 2, consider the

quincunx matrixAq = (i _11> and the associated affine system

{Uhk =Dy Tkw: | €Z.keZ?). (1.35)

Then, similarly to the one-dimensional Haar wavelet, one can find an MRA wavelet
Y produced by a scaling functiapthat is the characteristic function of a compact
setQ c R? of area 1. However, the functiogsand s are not that simple. In fact,

the scaling functiorp is the characteristic function of a rather complicated fractal
set known at the “twin dragon” angl is the difference of two similar characteristic
functions (see Figure 1.5).

We can construct an affine system with composite dilations having the same ex-
panding dilation grougsa = {Aiq :i € Z} and the same translations that does, how-
ever, generate a very simple Haar-type wavelet. For the g&ujdet us choose
again the group of symmetries of the unit square given at the beginning of this sec-
tion. LetRy be the triangle with vertice®,0), (1/2,0), (1/2,1/2) andR, = By Ry,
£=1,...,7 (see Figure 1.6). Then, fgr= Zﬁxgo, it follows that the system

{Dg, Tk@: £ =0,...,7,ke 7%}
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Rz Ry

AgtRy
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Fig. 1.6 Example of a composite wavelet with finite support.

is an ON basis for the spa&g, which is the closed linear span of the subspace
of L2(R?) consisting of the functions which are constant on e@étranslate of
the triangleR;, £ =0,1,...,7. Let us now consider the spacés= DAai Vo, i € Z.
Then one can verify that each spagés the closed linear span of the subspace of
L?(R?) consisting of the functions which are constant on eagltZ?-translate of
the trianglesAgiRg, ¢=0,1,...,7. Thus,V; C Vi1 for eachi € Z, and the spaces
{Vi} form anAB-MRA, with ¢ as anAB-scaling function. We can now construct a
simple Haar-like wavelet obtained from tiA8-MRA. Specifically, let

Ro=A; IR U [Aqu6+ (ig)} =ATRIUAS? [R5+ (2)] :

Thus,xr, = Xag'Ry 1/2, Or, equivalently,

1/2)
9 (x) = oM (Agx) + 0'© (Agx— (9)), (1.36)

whereg!) = Dg, @, for £=0,1,...,7. It is now easy to see that = ¢!V (Agx) —
@ (Agx— (9)) is the desired Haar-likéB-wavelet. The space is generated
by applying the translatiori&, k € Z2, to the scaling functiong!’) = Dg, @, ¢ =
0,1,...,7. We see that this is the case by applyiDg, in equality (1.36); we we
obtain:

+
XAalReH

0 = @ (Ag) + 0 (Agx— (9))
o = g (A + 0 (Agx—(9))
92 = ¢ (Ag) + 9% (Ax— ()
@ = 0 (Ap) + 0 (Agx— (9))
o = 0 (A + 0 (Ax— (1))
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0 = ¢ (Agx) + 0 (Ax— (3
0© = ¢ (Agx) + W (Ax—(9))
07 = 9O (Ax) + ¢ (Agx— (3

It follows that
{Dp,De, k@ :i€Z,6=01,....7, ke 72}

is an ON basis fot.?(R?). This Haar-typeAB-wavelet is clearly simpler that the
twin dragon wavelet obtained above. We refer to [1, 29] for more information about
this type of constructions.

Other complicated fractal wavelets appear in many situations. For example, if

the dilation matrixAq in the affine system (1.35) is replaced Ayt = ( ! \/é)

-3 1
([ 3/2 —/3/2 Lo :
orAp = <\/§/2 3/2 ) then also in this case there is a compactly supported

MRA wavelet generated by a (compactly supported) scaling fungtiwhich is the
characteristic function of a fractal set (see Figure 1.7).

ST S‘
’ i %, g
g e,

16|

14

12

0.8
o5 g

0.4

0.2

Fig. 1.7 The fractal sets associated with the MRA generated by the dilation mafgggen the
left) andAg (on the right).

The construction given above, suggests that also in these cases one should be
able to find alAB-MRA such that the associated compactly suppoiBdwavelet
has a simpler “non-fractal” support.

Exercises

1. Let ¢n € L%(R) be a dyadic wavelet with supfy C [—3, 3] andys € L2(R) be
such that supgs C [—1,1] and
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> [a(w+K)|?=1forae.weR.
keZ

For& = (&1,&) € R?, let Y be defined byli(&) = @n(&1) Lﬁz(%). Show that the

affine systen{DiADéTkw “i,j €Z,ke Z?}, whereA = ((2) 2) andB = (3 D
is a Parseval frame fdr?(R?).

1.5 Continuous Shearlet Transform

An important class of subgroups of the affine grodp (which was described in
Section 1.3) is obtained by considering

G={(M,t): M € Zg,t € R?}, (1.37)

where, for eacl) < a < 1, 75 C GLz(R) is the set of matrices:

a—-a’s
.@a: M:Mas: 3 a>0,S€R .
0 a”

The matricedMzs can be factorized d¥las = BsAg, where

BS:(l’s) Aa:(ao). (1.38)

01 0a%

The matrixBs is called ashear matrixand, for eacls € R, is a non-expanding
matrix (detBs = 1, for eachs). The matrixA, is an anisotropic dilation matrix, that
is, the dilation rate is different in theandy directions. In particular, itr = 1/2 the

matrix Ay producesparabolic scalingsince f (Agx) = f (Aa (Z)) leaves invariant

the parabola; = x%. Thus, the action associated with the dilation greggpcan be
interpreted as the superposition of anisotropic dilation and shear transformation.

Using Theorem 4 from Section 1.3, we can establish simple conditions on the
function ¢ so that it will satisfy the Caldén reproducing formula (1.20) with re-
spect toG. This is done in the following proposition.

Proposition 2. LetG be given by (1.37) and, fdf = (&1, &) € R?, & #0, let s be
given by

B(E) = B(&1, &) = (&) Pa(2).
Suppose that:
(i) yn € L(R) satisfies

® da
/O\lﬂl(afﬂzaz—a:l fora.e.& €R;
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(i) [yl 2 =1
Theny satisfies (1.20) and, hence, is a continuous wavelet with respé&ct to
Proof. A direct computation shows th&€;, )M = (aé;,a% (& — s&1)). Also

notice the element of the left Haar measure is dp(Mgs) = ds Hence
the admissibility condition (1.21) fap is

da
TdetMag]

&= [ [ @) geia g 9P Sxas=1 (39

fora.e.(&1,&2) € R2. Thus, by Theorem 4, to show thgitis a continuous wavelet
with respect tas, it is sufficient to show that (1.39) is satisfied. Using the assumption
on gy andys,, we have:

= [ [ 101@&)P ga(a (g - 9)P o s

- [ st /\w (@ -9)2ds) S
_/ | ( El|2a2“:’

fora.e.l =(&1,&) € RR2. This shows that equality (1.39) is satisfiet.

In the following, to distinguish a continuous wavelgtsssociated with this par-
ticular groupG from other continuous wavelets, we will refer to such a function as a
continuous shearleHence, for eaclh < a < 1, thecontinuous shearlet transform
is the mapping

f— {7 f@st)=(f gus):a>0seRt R},
where the analyzing elements:
{Wast(x) = | detMas| 24’( o (x—1)),a>0,s€ Rt € R?},

with Mgs € 24, form acontinuous shearlet systemdotice that, according to the
terminology introduced in Section 1.3, the elemenigsi} are co-affine functions.

An useful variant of the continuous shearlet transform is obtained by restricting
the range of the shear varialdassociated with the shearing matri&do a finite
interval. Namely, fol0 < a < 1, let us redefine

<s<

-l>\|A
I\J\w
NI w

a—-a’s
.@((Xh) - Mas - 5 0 < a
0 a®

G = {(M,t): M e 2P t e R?}.

and
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Also, consider the subspaceld(R?) given byL2(Cp)" = {f € L4(R?) : suppf c
Ch}, whereC, is the “horizontal cone” in the frequency plane:

Ch={(£1,&) € R?:|&| > 1and| 2| < 1}.

Hence we can show that, by slightly modifying the assumptions of Proposition 2,
the functiony is be a continuous shearlet for the subsga€; )"

Proposition 3. For & = (&1,&,) € R?, & # 0, let ¢ be given by

B(E) = P(&1,&) = Pal&2) (),

where:

(i) Yr € L(R) satisfies
/ |1111(af)| —— =1 foraecR,

and Suppl’l C [_27 _%] U [%72]1
(il) [|@2ll 2 = 1 and suppf, C [-1,1].

Theny satisfies (1.24). That is, for afl € L?(Cy,)",

3 1
da
):/Rz/j%/()1<f7wast>wast(x)mdsdt,

with convergence in the? sense.

There are several examples of functighsand, satisfying the assumptions of
Proposition 2 and Proposition 3. In particular, we can chapsey, such that;,
(> € Cg and we will make this assumption in the following. We refer to [15, 23] for
the construction of these functions.

If the assumptions of Proposition 3 are satisfied, we say that the set

):{q—’ast: 0<a§%;_%§8§%7t€R2}

is a continuous shearlet systemr L%(Cy)" and that the corresponding mapping

from f € L2(C,)" into 5@, f(a,st) = (f, Yast) is thecontinuous shearlet trans-
formonL?(C,)".
In the frequency domain, an element of the shearlet sygigphas the form:

Dast(€1,&2) =a 2" Qn(a&y) Po(a®~ t& _g)e2n,

As a result, each functioii.st has support:

suppias C {(€1,&) : &1 € [-2,-£]U[4, 2], |8 -5 <a' 9}
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As illustrated in Figure 1.8, the frequency support is a pair of trapezoids, symmetric
with respect to the origin, oriented along a line of slg&he support becomes
increasingly elongated @s— 0.

&

4 4

(a,s) = (’3%20)

&
(avs):(%po) (375):(%,0)
\ / (89 = (%.1)

Fig. 1.8 Frequency support of the horizontal shearlets (left) and vertical shearlets (right) for dif-
ferent values o ands.

As shown by Proposition 3, the continuous shearlet transtffé;lﬂ’“ provides a
reproducing formula only for functions in a proper subspack?0R?). To extend
the transform to alf € L2(R?), we introduce a similar transform to deal with the
functions supported on the “vertical cone”:

CY) = {(&,&) € R?:|&| > 1and| & > 1}.

Specifically, let
PY(E) = BV (&1, &) = du(&) Pa( ),

where (1, {1, satisfy the same assumptions as in Proposition 3, and consider the
dilation group
(V):N :(aa 0)- <1_§< <§ RZ
Dy {Nas e :0<a<il, 2_s_2,te }.
Then it is easy to verify that the set

WO = {glg:0<a<i -3<s<iteRr?,

where Y = |detNag 2V (NzZ(x — ), is a continuous shearlet system for
L2(C™¥)¥. The corresponding transformy”® f (a,s,t) = (f, ) is the contin-
uous shearlet transform drf(C™)V. Finally, by introducing an appropriate win-
dow fuznctionW, we can represent the functions with frequency support on the set
[—2,2)c as
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f= [ (T wwd,

whereW (x) = W(x—t). As a result, any functiori € L?(R?) can be reproduced

with respect of the full shearlet system, which consists of the horizontal shearlet
system@ M the vertical shearlet systeti¥), and the collection of coarse-scale
isotropic functions{W : t € R?}. We refer to [31] for more details about this rep-
resentation. For our purposes, it is only the behavior of the fine-scale shearlets that
matters. Indeed, in the following, we will apply the continuous shearlet transforms

Y,f,h)"’ and Yq(,")’“, at fine scalesa(— 0), to resolve and precisely describe the
boundaries of certain planar regions. Hence, it will be convenient to re-define shear-
let transform, at “fine-scales”, as follows. Fok a < 1/4, s€ R, t € R?, the(fine-
scale) continuous shearlet transforisithe mapping fromf € L?(R?\ [-2,2]?)Y

into ./ f which is defined by:

yl;]h),a(

ast) ifljsgi<1
7" (@t

ZIf(a,st) = '
yf@st) { Lty iflg > 1

1.5.1 Edge Analysis using the Shearlet Tranform

One remarkable property of the continuous shearlet transform is its ability to provide
a very precise characterization of the set of singularities of functions and distribu-
tions. Indeed, lef be a function oriR? consisting of several smooth regiof,
n=1...,N, separated by piecewise smooth boundayies d Qn:

N

(0=3 falX)Xan (),

n=1

where each functioff, is smooth. Then the continuous shearlet transtofghf (a, s,t)
will signal both the location and orientation of the boundaries through its asymptotic
decay at fine scales. In facfﬁﬁ f(a,s,t) will exhibit fast asymptotic decag — 0
for all (s,t), except for the values dfon the boundary curves, and for the values
of sassociated with the normal orientation to jpett.

The study of these objects is motivated by image applications, whisresed to
model an image, and the curvgsare the edges of the imade We will show that
the shearlet framework provides a very effective method for the detection and anal-
ysis of edges. This is a fundamental problem in many applications from computer
vision image processing.

To illustrate how the shearlet transform can be employed to characterize the ge-
ometry of edges, let us consider the case wHeigesimply the characteristic func-
tion of a bounded subset &?2. Also, to simplify the presentation, we will only

1
present the situation whece= 1/2 and use the simplified notatia#y, = .. The
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o@v)

Fig. 1.9 Asymptotic decay of the continuous shearlet transform ofBfe = xp(x). On the

boundarydD, for normal orientation, the shearlet transform decay@@gst). For all other val-
ues of(t,s), the decay is as fast &aV), for anyN € N.

more general case whegec (0,1) the continuous shearlet transfor#j is similar
and details can be found in [21].
We then have the following result from [21].

Theorem 8.LetD c R? be a bounded region iR? and suppose that the boundary
curvey = dD is a simpleC? regular curve. Denot® = xp. Ift =tg € y, andsy =
tan6y wheref is the angle corresponding to the normal orientatiorytat to, then

lim a4 .7,B(a,%,to) # 0.

a—0t

Ift =tp € yands#tanby, or ift ¢ y, then

aIirg+ a P 7B(ast)=0, forall B>0.

This shows that the continuous shearlet transfofpB(a, s,t) has “slow” decay
only fort =tg on y when the value of the shear varialeorresponds exactly to the
normal orientation to/ attg. For all other values dof ands the decay is fast. This
behavior is illustrated in Figure 1.9.

Theorem 8 can be generalized to the situation where the boundary gisve
piecewise smooth and contains finitely many corner points. Also in this case, the
continuous shearlet transform provides a precise description of the geometry of the
boundary curve through its asymptotic decay at fine scales. In particular, at the cor-
ner points, the asymptotic decay at fine scales is the slowest for valsesotke-
sponding to the normal directions (notice that there are two of them). We refer the
interested reader to [20] for a detailed discussion of the shearlet analysis of regions
with piecewise smooth boundaries. We also refer to [21, 31] for other related results,
including the situation wheréis not simply the union of characteristic functions of
sets.
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Finally, we recall that the shearlet transform shares some of the features described
above withcontinuous curvelet transformanother directional multiscale transform
introduced by Cangs and Donoho in [3]. Even if a result like Theorem 8 is not
known for the curvelet transform, other results in [3] indicate that also the curvelet
transform is able to capture the geometry of singulariti€R3rihrough its asymp-
totic decay at fine scales Notice that, unlike the shearlet transform, the curvelet
transform is not directly associated with an affine group.

1.5.2 A Shearlet Approach to Edge Analysis and Detection

Taking advantage of the properties of the continuous shearlet transform described
above, an efficient numerical algorithm for edge detection was designed by one
of the authors and his collaborators [43, 44]. The shearlet approach adapts several
ideas from the well-knowrwWavelet Modulus Maximenethod of Hwang, Mallat

and Zhong [35, 36], where the edge points of an imbgee identified as the loca-

tions corresponding to the local maxima of the magnitude of the continuous wavelet
transform off. Recall that, at a single scale, this wavelet-based method is indeed
equivalent to th€€anny Edge Detectowhich is a standard edge detection algorithm

[8].

SNR=16.942808 SNR=4.907d8

@) (b) (c)

Fig. 1.10 (a) Test image. (b-c) Comparison of the average error in angle estimation using the
wavelet method versus the shearlet method, as a function of the scale, with different noise levels;
(b) PSNR =16.9 dB, (c) PSNR = 4.9 dB (Courtesy of Sheng Yi).

As shown above, one main feature of the continuous shearlet transform is its su-
perior directional selectivity with respect to wavelets and other traditional methods.
This property plays a very important role in the design of the edge detection algo-
rithm. In fact, one major task in edge detection, is to accurately identify the edges
of an image in the presence of noise and, to perform this task, both the location
and the orientation of edge points have to be estimated from a noisy image. In the
usual Wavelet Modulus Maxima approach, the edge orientation of an ifhaafe
the locatiort, is estimated by looking at the ratio of the vertical over the horizon-
tal components dlVy, f (a,t), the wavelet transform of. However, this approach is
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Fig. 1.11 Comparison of edge detection using shearlet-based method versus wavelet-based
method. From top left, clockwise: Original image, noisy image (PSR 59dB), shearlet result,
and wavelet result (Courtesy of Glenn Easley).

not very accurate when dealing with discrete data. The advantage of the continuous
shearlet transform is that, by representing the image as a function of scale, loca-
tion and orientation, the directional information is directly available. A number of
tests conducted in [43, 44] show indeed that a shearlet-based approach provides a
very accurate estimate of the edge orientation of a noisy images; this method sig-
nificantly outperforms the wavelet-based approach. A typical numerical experiment
is illustrated in Figure 1.10, where the test image is the characteristic function of
a disc. This figure displays the average angular error in the estimate of the edges
orientation, as a function of the scaleThe average angle error is defined by

1 R
E-tgzle(t)—e(t)l,

whereE is the set of edge point$, is the exact angle ané the estimated angle.

The average angle error is indicated for both shearlet- and wavelet-based methods,
in presence of additive Gaussian noise. As the figure shows, the shearlet approach
significantly outperforms the wavelet method, especially at finer scales, and is ex-
tremely robust to noise.

Using these properties, a very competitive algorithm for edge detection was de-
veloped in [44] and a representative numerical tests is illustrated in Figure 1.11.
We refer to [43, 44] for details about these algorithms and for additional numerical
demonstrations.
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1.5.3 Discrete Shearlet System

By sampling the continuous shearlet transform

f Hwa(a,sft) = <f,wa7s7t>

on an appropriate discrete set of the scaling, shear, and translation parameters
(a,st) € R* xR x R?, it is possible to obtain a frame or even a Parseval frame

for L2(R2). Notice that, as above, we will only consider the cag= Yé.
To construct the discrete shearlet system (see [30] for more detail), we start by
choosing a discrete set of scalgg }jcz C R*; next, for each fixed, we choose
the shear parametefs; ¢}z C R so that the directionality of the representation is
allowed to change with the scale. Finally, to provide a “uniform covering®gfwe
allow the location parameter to describe a different grid dependirigoor?; hence
we lett; ;= BSMAaJ. k, k € Z2, where the matriceBs, for s € R, andA,, fora > 0
are given by 1.38). Observing that

T{st‘[Aaj k}DBsJ-?[Aaj = DBsMAaJ- Tk,
we obtain the discrete system
{Wj.0 =Dy a T : L EZ ke 72},

In particular, we will sety =22, 5; , = ¢, /aj = 2). Thus, observing thd,,; Ayj =
Ax2; By, we finally obtain theliscrete shearlet system

{Wj.k=Da,De, TuW: j,L€Z ke Z?. (1.40)

Notice that (1.40) is an example of the affine systems with composite dilations
(1.31), described in Section 1.4. More specifically, the discrete shearlet system ob-
tained above is similar to the "shearlet-like” system (1.30). Unlike the system (1.30),
however, whose elements where characteristic functions of sets in the frequency do-
main, we will show that in this case we obtain a system of well-localized functions.
To do that, we will adapt some ideas from the continuous case. Namely, for any

E=(&,8) €R2 & #0, let
PO (&) = P (£1,8) = dn(&1) B (2) ,

where, i € C*(R), suppdy C [-3,—&]U[&, 1] and suppl, C [~1,1]. This
implies that(" is a compactly-supporte@® function with support contained in

[—3,3]2. In addition, we assume that

i 1
3 1@ Hw)f =1 forjw]> g, (1.41)
1=
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and, for eachj > 0,

2i-1 )
(@ w—0)?=1 for|w| <1 (1.42)
(==2i

From the conditions on the support §i and {», one can easily deduce that the
functionsy; ¢« have frequency support contained in the set

{(81,&): &€ [-2871, 2274 (2274 22170 | 2 g2l < 270

Thus, each elemenf; , is supported on a pair of trapezoids of approximate size
221 x 21, oriented along lines of slope2~1 (see Figure 1.12(b)).

From equations (1.41) and (1.42) it follows that the functi¢ig i} form a
tiling of the set

= {(&1,&) e R?: |&] > z, \ | <1}.

Indeed, for(&1,&2) € %

20—

1
Z)Z_MZ' (EA'BY) Z)z |P1(2721 &) 2| (2
1500200

(=—2i

152 H=1 (1.43)

An illustration of this frequency tiling is shown in Figure 1.12(a).

~ 2
&

~ 22

(b)

Fig. 1.12 (a) The tiling of the frequency plariﬁ2 induced by the shearlets. The tiling 64, is
illustrated in solid line, the tiling of2, is in dashed line. (b) The frequency support of a shearlet
Yj ¢k satisfies parabolic scaling. The figure shows only the suppoé for0; the other half of the
support, foré; < 0, is symmetrical.
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Letting L2(Z,)Y = {f € LZ(RZ) : suppf c 2}, property (1.43) and the fact that
@M is supported |nS|d{e— 3 2] imply that the discrete shearlet system

) = (@i ;] >0,-21 <r<2-1kez?}

is a Parseval frame fdr?(Z)". Similarly, we can construct a Parseval frame for
L2(%)", where 2, is the vertical conez, = {(&1,&) € R?: [&] > &, |<,1| <1}

Specifically, let
~ 20 ~ 10
A-(68) #-(9)

D) = 06 E) = Ba(E2) 0 ().

andy) be given by

Then the collection
= (Y j>0-2<e<2-1kez?

wheret,ul-(f’gk = DJ DLy is a Parseval frame far? (7).
Finally, letd € C”(RZ) be chosen to satisfy

&2+ V(EA, IB- (&
&)l %/22] TP X7, (8)

+Z> |¢ (EATIB Y xq(8) =1, for& eR?
j=0¢==2i

whereyy is the indicator function of the sé2. This implies that supp C [— é, é]z,

|§(&)| =1for & € [—, ]2 and the coIIectlor{q'Jk k € Z?} defined bygy(x) =
p(x—k)isa Parseval frame fdr?([— 75, &]2)".

Thus, Iettmgt,”[lJ ,_;k( ) = LTJJ(‘Zk(E)x%(E), for w =h or w = v, we have the
following result.

Theorem 9. The discrete shearlet system
{ox: keZZ}U{‘I’Jfk 1j>0,0=-2121 -1 keZ2 w=hv}
U{ka 1j>0, -2 +1<0<2 -2 keZ? w=h,v},
is a Parseval frame foL2(IR?).

The “corner’ eIementhJ ,k( X), { = —2} 21 — 1, are simply obtained by truncation
on the coneyg,, in the frequency domaln Notice that the corner elements in the
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horizontal coneZ, match nicely with those in the vertical cor#g,. We refer to
[13, 23] for additional details on this construction.

1.5.4 Optimal Representations using Shearlets

One major feature of shearlet system is thaf, i a compactly supported function
which isC? away from &C? curve, then the sequence of discrete shearlet coefficients
{(f, P k) } has (essentially) optimally fast decay. To make this more precise, let
f,\? be theN—term approximation of obtained from thé\ largest coefficients of its
shearlet expansion, namely

S = f, ,
N IJEZN< Wu) Yu

wherely € M is the set of indices corresponding to tNelargest entries of the
sequence(|(f, )% : 4 € M}. Also, we follow [2] and introduceSTAR(A), a
class of indicator functions of seBswith C2 boundaries)B. In polar coordinates,
let p(0) : [0,2m) — [0,1]? be a radius function and defifby x € B if and only if
X < p(8). In particular, the boundagB is given by the curve iiR?:

p(6) cos(6)
B(6) = <p(9) sin(6)> . (1.44)

The class of boundaries of interest to us are defined by
suplp”(8)| <A, p<po<Ll (1.45)

We say that a sé8 ¢ STAR(A) if B C [0,1]2 andB is a translate of a set obeying
(1.44) and (1.45). Finally, we define the #t(A) of functions which ar€€? away
from aC? edgeas the collection of functions of the form

f = fo+ f1xB,

wherefo, f € C§([0,1]?), B STAR(A) and||f||c2 = 5 |a|<2|ID? f [l < 1. We can
now state the following result from [19].

Theorem 10.Let f € &£2(A) and f§ be the approximation té defined above. Then
If — 513 < CN"?(logN)>.

Notice that the approximation error of shearlet systems significantly outperforms
wavelets, in which case the approximation ertér— f\'||3 decays at most as fast
asO(N~1) [34], where f)) is the N-term approximation of obtained from the
N largest coefficients in the wavelet expansion. Indeed, the shearlet representation
is essentially optimal for the kind of functions considered here, since the optimal
theoretical approximation rate (cf. [9]) satisfies
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[f—f]3=N2 N-ow

Only the curvelet system of Caésl and Donoho are known to satisfy similar ap-
proximation properties [2]. However, the curvelet construction has a number of im-
portant differences, including the fact that the curvelet system is not associated with
a fixed translation lattice, and, unlike the shearlet system, is not an affine-like sys-
tem since it is not generated from the action of a family of operators on a single or
finite family of functions.

The optimal sparsity of the shearlet system plays a fundamental role in a number
of applications. For example, the shearlet system can be applied to provide a sparse
representation of Fourier Integral Operators, a very important class of operators
which appear in problems from Partial Differential Equations [17, 18]. Another class
of applications comes from image processing, where the sparsity of the shearlet
representation is closely related to the ability to efficiently separate the relevant
features of an image from noise. A number of results in this direction are described
in[11, 12, 13].

Exercises

1. Prove Proposition 3 by modifying the argument of Proposition 3.

2. Let i be a Schwarz class function ary, be the fine-scale continuous shearlet
transform (fora = 1/2), as defined in this section. Show that, for any R, the
continuous shearlet transform of the Dirac delta distribution satisfies:

45(a,5,(0,0)) ~a 4,

asymptotically ag — 0. Show that ift # (0,0), then, for anyN € N there is a
constantCy > 0 such that

Zu0(a,s,(0,0)) <Cya",
asymptotically as — O.

3. Lety and.” be as in Exercise 2. Fgre R, consider the distributionp(x1, X2)
defined by

/RZ Vp(X1,%2) f(X1,X%2) dxq dxo = /Rf(pxzxz)dxz.
Show that, fors= —p andt; = ptp, we have:
Fpd(as, (ti,tp)) ~a 4,

asymptotically ag — 0. Show that for all other values of= (t1,t2) or s, then,
for anyN € N there is a consta@y > 0 such that
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Zu0(a,s,(0,0)) <Cya",

asymptotically as — O.
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