
Chapter 1
Continuous and discrete reproducing systems
that arise from translations. Theory and
applications of composite wavelets.

Demetrio Labate and Guido Weiss

Abstract Reproducing systems of functions such as the wavelet and Gabor systems
have been particularly successful in a variety of applications from both mathematics
and engineering. In this chapter, we review a number of recent results in the study
of such systems and their generalizations developed by the authors and their collab-
orators. We first describe the unified theory of reproducing systems. This is a simple
and flexible mathematical framework to characterize and analyze wavelets, Gabor
systems and other reproducing systems in a unified manner. The systems of interest
to us are obtained by applying families of translations, modulations and dilations
to a countable set of functions. As the reader will see, we can rewrite such systems
as a countable family of translations applied to a countable collection of functions.
Building in part on this approach, we define the wavelets with composite dilations,
a novel class of reproducing systems which provide truly multidimensional gen-
eralizations of traditional wavelets. For example, in dimension two, the elements
of such systems are defined not only at various scales and locations, as traditional
wavelet systems, but also at various orientations. The shearlet system is a special
case of a composite wavelet system which provides optimally sparse representation
for a large class of bivariate functions. This is useful for a number of applications
in image processing, such as image denoising and edge detection. Finally, we dis-
cuss some related issues about the continuous wavelet transform and the continuous
analogues of composite wavelets.
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1.1 Introduction

These lectures present an overview of a program of research developed by the au-
thors and their collaborators at Washington University in St.Louis during the past
10 years, which is devoted to the study of reproducing systems of functions. Byre-
producing systems of functions, we refer to those families of functions{ψi : i ∈I }
in L2(Rn) which are obtained by applying a countable collections of operators to
a countable set of “generating” functions and have the property that any function
f ∈ L2(Rn) can be recovered from the reproducing formula

f = ∑
i∈I

〈 f ,ψi〉ψi ,

with convergence in theL2–norm. Thewavelet systems, for example, have received
a great deal of attention in the last 20 years, since their applications in mathemat-
ics and engineering have been especially successful. In dimensionn = 1, they are
defined as those collections of the form

Ψ = {ψ j,k = 2 j/2 ψ(2 j ·−k) : j,k∈ Z}, (1.1)

whereψ is a fixed function inL2(R). As the expression above shows,Ψ is obtained
by applying dyadic dilations and integer translations to the generating functionψ.
For particular choices of the generatorψ, the wavelet systemΨ is an orthonormal
basis or a Parseval frame forL2(R), in which case anyf ∈ L2(Rn) can be recovered
as

f = ∑
j,k∈Z

〈 f ,ψ j,k〉ψ j,k, (1.2)

with convergence in theL2–norm. Other important classes of reproducing systems
are the Gabor systems, which are obtained by applying translations and modula-
tions to a fixed generator, and the wave packet systems, which involve translations,
dilations and modulations.

One main theme developed in these lectures is that there is a general framework
which allows us to describe and analyze wavelet systems, Gabor systems and many
other reproducing systems by using a unified approach. Indeed, for a large class of
reproducing systems of the form

{gp(·−Cpk) : k∈ Zn, p∈P}, (1.3)

whereP is countable and{Cp} is a set of invertible matrices, there is a relatively
simple set of equations which characterizes those generating functions{gp}p∈P

such that the corresponding system (1.3) is an orthonormal basis or, more generally,
a Parseval frame forL2(Rn). For example, it was discovered by Gripenberg [14] and
Wang [41] independently, in 1995, that a functionψ ∈ L2(R) is the generator of an
orthonormal wavelet system if and only if‖ψ‖2 = 1,
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∑
j∈Z
|ψ̂(2 jξ )|2 = 1 for a. e.ξ ∈ R, (1.4)

and
tq(ξ ) = ∑

j≥0
ψ̂(2 jξ )ψ̂(2 j(ξ +q)) = 0 for a.e.ξ ∈ R, (1.5)

wheneverq is an odd integer. It is remarkable that a similar set of characterization
equations holds not only for wavelet systems in higher dimensions, but also for
many other reproducing systems. This topic, and the correspondingunified theory
of reproducing systemswill be presented in Section 1.2.

Parallel to the unified theory mentioned above, there is another “unifying” per-
spective to the study of reproducing systems which are provided by representation
theory and, more specifically, by the study of the continuous wavelet transform
and its generalization. In Section 1.3, we introduce the continuous analogues of the
wavelet systems (1.1), which are obtained by applying dilations (with respect to a
dilation group) and continuous translations to a functionψ ∈ L2(Rn). For example,
in dimensionn = 1, the continuous wavelet system is a system of the form

{ψat = a−1/2ψ(a−1(·− t)) : a > 0, t ∈ R},

and the (one-dimensional)continuous wavelet transformis the mapping

f 7→
{
〈 f ,ψat〉= a−1/2

∫ ∞

0
f (y)ψ(a−1(y− t))dy : (a, t) ∈ R+×R

}
.

Then, provided thatψ satisfies a certain admissibility condition, anyf ∈ L2(R) can
be expressed using theCalder̀on reproducing formula:

f =
∫

R

∫ ∞

0
〈 f ,ψat〉ψat

da
a

dt. (1.6)

The close relationship between the discrete and continuous framework is apparent
by comparing the last expression with formula (1.2). A number of observations
concerning this relationship, as well as several multidimensional extensions of the
continuous wavelet transform are discussed in Section 1.3.

Traditional multidimensional wavelet systems are obtained by taking tensor
products of one-dimensional ones and, as a result, they have a very limited capabil-
ity to deal effectively with those directional features which typically occur in images
and other multidimensional data. To overcome such limitations, several extensions
and generalizations have been proposed in applied harmonic analysis during the last
10 years. One such approach is thetheory of wavelets with composite dilations,
which was originally introduced by the authors and their collaborators, and pro-
vides a very flexible and powerful framework to construct “truly” multidimensional
extensions of the wavelet approach.

An example of a composite wavelet system, in dimensionn= 2, is the collection:

{ψi jk = |detA|i/2 ψ(B jAi ·−k) : i, j ∈ Z,k∈ Z2}, (1.7)
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whereA =
(

2 0
0
√

2

)
and B =

(
1 1
0 1

)
. The elements of such systems are defined

not only at various scales and locations, as traditional wavelet systems, but also at
various orientations, associated with the powers of theshearing matrixB. In ad-
ditions, for appropriate choices ofψ, the elementsψi jk have the ability to provide
very efficient representations for data containing directional and anisotropic features
(see Section 1.5). There are a variety of systems of the form (1.7) forming Parseval
frames or even orthonormal bases, for many choices of matricesA andB. Indeed,
the theory of wavelets with composite dilations encompasses the theory of wavelets,
and there is a generalized Multiresolution Analysis associated with this theory. As
in the case of the classical MRA, this framework allows one to obtain a variety of
constructions with many different geometric and analytic properties. An outline of
this theory is presented in Section 1.4.

In Section 1.5, we examine a generalization of the wavelet transform associated
with the affine group

G = {(M, t) : M ∈Dα , t ∈ R2},

where, for each0 < α < 1, Dα ⊂GL2(R) is the set of matrices:

Dα =



M = Mas =




a −aα s

0 aα


 , a > 0, s∈ R



 .

Associated with this is thecontinuous shearlet transformS α
ψ , defined by

f →{S α
ψ f (a,s, t) = 〈 f ,ψast〉 : a > 0,s∈ R, t ∈ R2},

which is mappingf ∈ L2(R2) into a transform domain dependent on the scalea,
the shearing parameters and the locationt. The analyzing elementsψast, forming a
continuous shearlet system, are the functions

ψast(x) = |detMas|−
1
2 ψ(M−1

as (x− t)), (1.8)

with Mas∈ Dα . One remarkable property is that the continuous shearlet transform
of a function f has the ability to completely characterize both the location and the
geometry of the set of singularities off .

A discrete shearlet systemis obtained by appropriately discretizing the functions
(1.8). Indeed, such a discrete system can be designed so that it forms a Parseval
frame and it provides us with a special case of wavelets with composite dilations
(1.7). In addition, the generatorψ can be chosen to be a well-localized function;
that is,ψ has fast decay both in the space and the frequency domains (see [19, 21]).
As a result, the elements of the discrete shearlet systsm form a collection of well-
localized waveforms at various scales, locations and orientations and provide opti-
mally sparse representations for a large class of bivariate functions with distributed
discontinuities. Only the curvelets introduced by Candès and Donoho have been
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proved to have similar properties; however, the curvelets do not share the simple
affine-like structure of wavelets with composite dilations. To illustrate the advan-
tages of the shearlet framework with respect to wavelets and other traditional repre-
sentations, we describe a number of useful applications of shearlets to the analysis
and processing of images, including some representative applications of feature ex-
traction and edge detection.

1.2 Unified Theory of Reproducing Systems

In order to describe the types of reproducing systems that we will consider in this
study, it will be useful to introduce the following definitions. We adopt the conven-

tion thatx∈Rn is a column vector, i.e.,x =




x1
...

xn


, and thatξ ∈ R̂n is a row vector,

i.e., ξ = (ξ1, . . . ,ξn). A vectorx multiplying a matrixM ∈ GLn(R) on the right is
understood to be a column vector, while a vectorξ multiplying M on the left is a
row vector. Thus,Mx∈ Rn andξM ∈ R̂n.

Let f ∈ L2(Rn). For y∈ Rn, the translation operatorTy is defined byTy f (x) =
f (x− y); for M ∈ GLn(R), the dilation operator DM is defined byDM f (x) =
|detM|−1/2 f (M−1x); for ν ∈Rn, themodulation operatorMν is defined by(Mν f )(x)=
e2π iνx f (x).

We will use the Fourier transform in the form

f̂ (ξ ) =
∫

Rn
f (x)e−2π iξx dx,

for f ∈ L1(Rn)∩L2(Rn). Thus the inverse Fourier transform is given by

f̌ (x) =
∫

R̂n
f (ξ )e2π iξx dξ .

We remark that(Ty f )∧(ξ ) = (My f̂ )(ξ ) and (DM f )∧(ξ ) = (D̂M f̂ )(ξ ), where
(DM f )∧(ξ ) = (D̂M f̂ )(ξ ) = |detM|1/2 f̂ (ξM).

Virtually all systems of functions which are used in harmonic analysis to generate
subspaces ofL2(Rn) are obtained by applying a certain combination of translations,
dilations and modulations to a finite family of functions inL2(Rn). Let us start by
recalling the definitions of the systems commonly used in many harmonic analysis
applications.

• Gabor Systems.Let Ψ = {ψ1, . . . ,ψL} ⊂ L2(Rn), and B,C ∈ GLn(R). The
Gabor systemsare the collections

G = GB,C(Ψ) = {MBmTCkψ` : m,k∈ Zn, ` = 1, . . . ,L}
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or
G̃ = G̃B,C(Ψ) = {TCkMBmψ` : m,k∈ Zn, ` = 1, . . . ,L}.

Notice thatG̃ is obtained fromG by interchanging the order of the translation and
modulation operators. Also, it is easy to see that

MBmTCkψ` = e−2π iBmCkTCkMBmψ`.

• Affine Systems.GivenΨ = {ψ1, . . . ,ψL} ⊂ L2(Rn), A⊂GLn(R) andΓ ⊂ Rn,
theaffine systemsare the collections

F = FA,Γ (Ψ) = {DaTγ ψ` : a∈ A,γ ∈ Γ , ` = 1, . . . ,L}.

Very often we use the notationD = {M j : j ∈ Z}, whereM ∈GLn(R) is expanding
(i.e., each proper valueλ of M satisfies|λ | > 1), andΓ is the latticeCZn, where
C∈GLn(R).

•Wave Packet Systems.These include the above two systems. ForΨ = {ψ1, . . . ,ψL},
they consist of those functions

WPΓ ,A,S(Ψ) = {Tγ DaMy ψ` : γ ∈ Γ ,a∈D ,y∈ S, ` = 1, . . . ,L},

whereΓ ,Sare countable (or finite) subsets ofRn, A⊂GLn(R). As will be discussed
below, the order of the three operatorsTγ ,Da,My can be permuted.

It is easy to see that each of the above systems can be expressed in the following
form.

Let P be a countable indexing set,{gp : p∈P} a family of functions inL2(Rn)
and{Cp : p∈P} a corresponding collection of matrices inGLn(R). Then each of
the systems we just described has the form:

{
TCpk gp : k∈ Zn, p∈P

}
. (1.9)

Indeed, in order to write down the general wave packet system into the form (1.9),
one needs just to use the “commutativity relations”DM Tk = TMk DM andMyTk =
e2π iykTk My (notice thate2π iyk is a constant of absolute value 1).

1.2.1 Unified Theorem for Reproducing Systems

In the theory of wavelets and, more generally, in Harmonic Analysis, it is of
paramount importance to construct such systems that form a reproducing set for
the spaceL2(Rn) (or more general function spaces). For example, it is of particular
interest to know when a system{φ j : j ∈ Z} of functions inL2(Rn) is an orthonor-
mal basis or, more generally, a frame. Many characterizations of systems that are
Parseval frames have been given in the literature; most often these results concern
themselves with affine systems [14, 24, 25, 32, 38, 41].
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We shall now give necessary and sufficient conditions for the system (1.3) to be
a Parseval frame forL2(Rn). For simplicity, we are letting the latticeΓ to beZn; our
arguments below can be easily extended to a more generalΓ .

Recall that a countable collection{φi}i∈I in a (separable) Hilbert spaceH is a
Parseval frame(sometimes called atight framewith constant 1) forH if

∑
i∈I
|〈 f ,φi〉|2 = ‖ f‖2, for all f ∈H .

This is equivalent to the reproducing formulaf = ∑i〈 f ,φi〉φi , for all f ∈H , where
the series converges unconditionally in the norm ofH . This shows that a Parseval
frame provides a basis-like representation even though a Parseval frame need not be
a basis in general. We refer the reader to [4, 6] for more details about frames.

We refer to the following result as the “Unifying Theorem for reproducing sys-
tems” [25]:

Theorem 1.Let P be a countable indexing set,{gp}p∈P a collection of functions
in L2(Rn) and{Cp}p∈P ⊂GLn(R). Let

E =
{

f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and suppf̂ is compact
}
,

and suppose that

L ( f ) = ∑
p∈P

∑
m∈Zn

∫

suppf̂
| f̂ (ξ +mC−1

p )|2 1
|detCp| |ĝp(ξ )|2dξ < ∞ (1.10)

for all f ∈ E . Then the system (1.3) is a Parseval frame forL2(Rn) if and only if

∑
p∈Pα

1
|detCp| ĝp(ξ ) ĝp(ξ +α) = δα,0 for a.e.ξ ∈ Rn, (1.11)

for eachα ∈ Λ =
⋃

p∈P ZnC−1
p , wherePα = {p∈P : α Cp ∈ Zn} andδ is the

Kronecker delta forRn.

Before discussing the proof of this theorem, it will be useful to make a few com-
ments about this result, in order to elucidate its context and its impact.

Remark 1.It is relatively well known that ifψ ∈ L2(R), then{ψ jk = D2 j Tkψ : j,k∈
Z} is an orthonormal basis forL2(R) (i.e.,ψ is anorthonormal wavelet) if and only
if equations (1.4) and (1.5) hold. As we mentioned above, this result was obtained
independently by G. Gripenberg [14] and X. Wang [41]. As it will be discussed
below, these equations are a simple consequence of Theorem 1 (see exercise 1, at
the end of this section).

Remark 2.The assumption (1.10) is referred to as the Local Integrability Condition
(LIC). At first sight, it might appear as a rather formidable technical hypothesis.
In some cases, however, it can be shown that it is a simple consequence of the
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system being considered. For example, let us consider the Gabor systemG̃B,C(G),
whereG = {g1, . . . ,gL}, and let us write it in the form (1.3). Namely, letP =
Zn×{1,2, . . . ,L}, gp = g j,` = MB j g`, andCp = C, so that

TCpk gp = TCkMB j g
`.

Without loss of generality, we can assume thatL = 1. Thus, the expression of (1.10)
is

L ( f ) = ∑
p∈P

∑
m∈Zn

∫

K
| f̂ (ξ +m(Cp)−1|2 |ĝp(ξ )|2 dξ

|detCp|

=
1

|detC| ∑
p∈Zn

∑
m∈Zn

∫

K
| f̂ (ξ +m(C)−1|2 |ĝ(ξ −B p)|2dξ ,

for f ∈ E andK = suppf̂ is compact. Sinceξ ∈ K, only a finite number of terms in
the sum∑m∈Zn are non-zero. Moreover, ifTn is then-torus, for eachj ∈ Zn, the set
{B(Tn + j− p) : p∈ Zn} is a partition ofRn. Thus,

‖g‖2
2 =

∫
⋃

p∈Zn B(Tn+ j−p)
|ĝ(η)|2dη = ∑

p∈Zn

∫
⋃

p∈Zn B(Tn+ j)
|ĝ(ξ −Bp)|2dξ .

Now observe that a finite union of the sets{B(Tn + j) : j ∈ Zn} coversK. Using
this fact and the fact that‖ f̂‖∞ ≤ ∞ (since f ∈ E ), it is not difficult to show that

L ( f )≤C‖g‖2
2,

whereC is a positive constant. As a result, the characterization theorem for the
Gabor systems can be stated explicitly as:

Theorem 2.The systemGB,C(G) (or the systemG̃B,C(G)) is a Parseval frame for
L2(Rn) if and only if

L

∑̀
=1

∑
k∈Zn

1
|detC| ĝ

`(ξ −Bk) ĝ`(ξ −Bk+mC−1) = δm,0

for a.e.ξ ∈ Rn, all m∈ Zn.

This result is well known, and can be found, for example, in [28, 39, 7, 32].
The situation for the “usual” affine systems is somewhat more subtle. Here, by

the word “usual” we mean the case whereA = {a j : j ∈ Z} wherea∈ GLn(R) is
expanding, andΓ = Zn. In this case one can show that, if the conditions (1.11) are
true, then the LIC is valid and, conversely, if the system (1.3) is a Parseval frame,
then the LIC also holds. Thus, in the characterization of Parseval frames given by
Theorem 1 it is not needed to assume the LIC. The characterization theorem for
these systems can be written down explicitly as:
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Theorem 3.LetΨ = {ψ1, . . . ,ψL} ⊂ L2(Rn) anda∈GLn(R) be expanding. Then
the systemFA,Γ (Ψ) = {Da j Tk ψ` : j ∈ Z,k∈ Zn, ` = 1, . . . ,L} is a Parseval frame
for L2(Rn) if and only if

L

∑̀
=1

∑
j∈Pα

ψ̂`(ξ a− j) ψ̂`((ξ +α)a− j) = δα,0, for a.e.ξ ∈ Rn, (1.12)

for all α ∈Λ =
⋃

j∈ZZna j , wherePα = { j ∈ Z : α a− j ∈ Zn}.
Apart from the argument needed to establish the validity of the LIC which we

mentioned above, this last theorem is a simple consequence of Theorem 1 once the
systemFA,Γ (Ψ) is expressed in the form (1.3). Notice that there is a redundancy
in the condition (1.12). Indeed an elementary argument shows that (1.12) can be
simplified to

L

∑̀
=1

∑
j∈Pm

ψ̂`(ξ a− j) ψ̂`((ξ +m)a− j) = δm,0, for a.e.ξ ∈ Rn, (1.13)

for all m∈ Zn, wherePm = { j ∈ Z : ma− j ∈ Zn}. It follows easily from this form
of Theorem 3 that the result of Gripenberg and Wang (given in Remark 1) holds for
n = 1 anda = 2.

In order to present the ideas involved in the proof of Theorem 1, it is useful to
introduce theC-bracket productof f ,g∈ L2(Rn), which, forC∈GLn(R), is defined
by

[ f ,g](x;C) = ∑
k∈Zn

f (x−Ck)g(x−Ck).

It is clear that[ f ,g] isCZn- periodic; that is,[ f ,g](x+Cm;C) = [ f ,g](x;C) for each
m∈ Zn.

That the system (1.3) is a Parseval frame forL2(Rn) is equivalent to

N2( f ) = ∑
p∈P

∑
k∈Zn

|〈 f ,TCpk gp〉|2 = ‖ f‖2
2, (1.14)

for all f ∈ E (recall thatE is dense inL2(Rn)).
Using the fact thatRn =

⋃
l∈Zn{(Tn− l)C−1} is a disjoint union, it follows easily

that

∑
p∈P

∑
k∈Zn

|〈 f ,TCpk gp〉|2 = ∑
k∈Zn

∣∣∣
∫

Rn
f̂ (ξ ) ĝ(ξ )e2π iCk·ξ dξ

∣∣∣
2

= ∑
l∈Zn

∫

CI (Tn)
f̂ (ξ −CI l) ĝ(ξ −CI l)e2π iCk·ξ dξ

=
∫

CI (Tn)
[ f̂ , ĝ](ξ ;CI )e2π iCk·ξ dξ .

Under all these assumptions, let us consider the function
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H(x) = ∑
k∈Zn

|〈Tx f ,TCkg〉|2,

whereC ∈ GLn(R). Indeed, it is clear that the functionH is CZn- periodic. Using
the fact thatf̂ has compact support, one can show that

Lemma 1. The functionH(x) is the trigonometric polynomial where

H(x) = ∑
m∈Zn

Ĥ(m)e2π i(CI m)·x,

where

Ĥ(m) =
1

|detC|
∫

Rn
f̂ (ξ ) f̂ (ξ +CI m) ĝ(ξ ) ĝ(ξ +CI m)dξ ,

and only a finite number of these expressions is non-zero.

The fact thatĤ(m) 6= 0 for finitely manym at most follows from the fact that̂f has
compact support.

To show that equality (1.14) holds for allf ∈ E , consider now the function

w(x) = N2(Tx f ) = ∑
p∈P

Hp(x),

whereHp(x) = |〈Tx f ,TCpk gp〉|2. By Lemma 1, for eachp∈P,

Hp(x) = ∑
m∈Zn

Ĥp(m)e2π i(CI
pm)·x,

where

Ĥp(m) =
1

|detCp|
∫

Rn
f̂ (ξ ) f̂ (ξ +CI

pm) ĝp(ξ ) ĝp(ξ +CI
pm)dξ .

Thus, using the assumptions of Theorem 1, from the observations we made above,
we have the expression

w(x) = N2(Tx f ) = ∑
α∈Λ

ŵ(α)e2π iα·x, (1.15)

where

ŵ(α) =
∫

Rn
f̂ (ξ ) f̂ (ξ +α) ∑

p∈P

1
|detCp| ĝp(ξ ) ĝp(ξ +α)dξ . (1.16)

This integral is absolutely convergent, and the series definingw(x) is absolutely
and uniformly convergent. Notice that the LIC plays an important role to establish
these convergence properties and the various uses of Fubini’s theorem needed for
the formulae developed here.

To complete the proof of Theorem 1 we argue as follows. Let us assume (1.11).
Then, by equation (1.16),
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ŵ(α) = δα,0

∫

Rn
f̂ (ξ ) f̂ (ξ +α)dξ .

By equation (1.15), this implies

w(x) = N2(Tx f ) = ∑
α∈Λ

ŵ(α)e2π iα·x = ŵ(0) = ‖ f‖2
2.

Hence, the system (1.3) is a Parseval frame forL2(Rn).
Conversely, let us now assume that the system (1.3) is a Parseval frame for

L2(Rn). Hence, by our assumptions, we know that

N2(Tx f ) = w(x) = ∑
α∈Λ

ŵ(α)e2π iα·x = ‖Tx f‖2
2 = ‖ f‖2

2,

for all f ∈ E .
SinceΛ is countable and the “Fourier coefficients”ŵ(α) of this generalized

Fourier series are unique, we must haveŵ(α) = 0 if α 6= 0 and ŵ(0) = 1. We
can then use (1.16) and appropriate choices off ∈ E to show that the equali-
ties (1.11) must hold. For example, by lettingf to be such thatf̂ (ξ ) = f̂ε(ξ ) =

1√
|B(ε)|χB(ε)(ξ − ξ0), whereB(ε) is a ball of radiusε about the origin,ε > 0 and

ξ0 is a point of differentiability of the integral ofh(ξ ) = ∑p∈P
1

|detCp| |ĝp(ξ )|2, one

obtains easily from (1.16) thath(ξ0) = 1. This gives (1.11) whenα = 0.
This is, to conclude, the basic idea of the proof of Theorem 1. The role played by

these generalized Fourier series is arrived at naturally; it arises from the importance
of the notion of shift invariance which is essentially related to the structure of these
families of reproducing systems.

Theorem 1 has many applications and several of them are described in [25, 26].
As mentioned above, they include Gabor, affine and wave packet systems. Theo-
rem 1 applies also to thequasi-affine systems. In dimensionn = 1, these are the
systems{ψ̃ jk : j,k∈ Z} obtained fromψ ∈ L2(R) by setting

ψ̃ j,k =

{
2 j/2Tk D2− j ψ`, j > 0

D2− j Tk ψ`, j ≤ 0.

These systems (as well as their higher dimensional versions) were introduced by
Ron and Shen in [37]. They pointed out that, unlike the affine systems, these systems
are shift-invariant. Furthermore, the quasi-affine system{ψ̃ j,k} is a Parseval frame
if and only if the corresponding affine system{ψ j,k} is a Parseval frame.

Recall that, in higher dimensions, affine and quasi-affine systems are typically
defined using dilations of the formDM j , whereM is an expanding matrix, that is,
each proper valueλ of M satisfies|λ | > 1. Notice that this condition is equivalent
to the existence of constantsk andγ, satisfying0 < k≤ 1 < γ < ∞, such that

|M j x| ≥ kγ j |x| (1.17)
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whenx∈ Rn, j ∈ Z, j ≥ 0, and

|M j x| ≤ 1
k

γ j |x| (1.18)

whenx∈ Rn, j ∈ Z, j ≤ 0. One remarkable property of Theorem 1 is that it applies
not only to the case of expanding dilations matrices, but also to a more general class
of dilations which areexpanding on a subspace[25], and are defined as follows.

Definition 1. GivenM ∈ GLn(R) and a non-zero linear subspaceF of Rn, we say
thatM is expanding onF if there exists a complementary (not necessarily orthogo-
nal) linear subspaceE of Rn with the following properties1:

(i) Rn = F +E andF ∩E = {0}; that is, for anyx∈ Rn, there exist uniquexF ∈ F
andxE ∈ E such thatx = xF +xE;

(ii) M(F) = F andM(E) = E, that is,F andE are invariant underM;
(iii) conditions (1.17) and (1.18) hold for allx∈ F ;
(iv) For any j ≥ 0, there existsk1 = k1(M) > 0 such that,|xE| ≤ k1 |M j xE|.
It is clear that if a matrixM is expanding, then it is also expanding on a subspace.
However, there are several examples of matrices which satisfy Definition 1 and are
not expanding. For example, the following matrices are all expanding on a subspace:

• M =
(

a 0
0 1

)
, wherea∈ R, |a|> 1;

• M =




a 0 0
0 cosθ −sinθ
0 sinθ cosθ


 , wherea∈ R, |a|> 1.

It is shown in [16, 25] that, for affine systems where the dilation matrixM is expand-
ing on a subspace, according to the definition above, then the LIC is “automatically”
satisfied. Hence, Theorem 3 applies to this class of affine systems as well.

The examples seem to suggest that Theorem 3 applies whenever the dilation
matrixM has all eigenvalues|λk| ≥ 1 and at least one eigenvalue|λ1|> 1. However,
this is not the case. In [16] there is an example of a3× 3 dilation matrix having
eigenvaluesλ1 = a> 1 andλ2 = λ3 = 1, for which the LIC fails. Indeed it turns out
that the information about the eigenvalues ofM alone is not sufficient to determine
the LIC or even the existence of corresponding affine systems. We refer to [27, 40]
for additional results and observations about this topic.

Exercises

1. Show that equation (1.12) in Theorem 3 can be simplified to obtain (1.13). Next,
show that, forn = 1, when the dilation matrixa is replaced by the dyadic factor

1 This is the revised definition from [16]. It turned out that the definition initially proposed in [25],
with a different condition (iv), was not sufficient to guarantee that the LIC was satisfied
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2, equation (1.13) yields the “classical” Gripenberg-Wang equations (1.4) and
(1.5).

2. Show that the matricesM =
(

a 0
0 1

)
andM =

(a 0 0
0 cosθ −sinθ
0 sinθ cosθ

)
, wherea > 1, are

expanding on a subspace (that is, they satisfy Definition 1).

1.3 Continuous Wavelet Transform

The full affine group of motions onRn, denoted byAn, consists of all pairs
(M, t)∈GLn(R)×Rn (endowed with the product topology) together with the group
operation

(M, t) · (M′, t ′) = (MM′, t ′+(M′)−1t).

This operation is associated with the actionx→ M(x+ t) on Rn. The subgroup
N = {(M, t) ∈ An : M = I , t ∈ Rn} is clearly a normal subgroup ofAn.

We consider a class of subgroups{G} of An of the form

G = {(M, t) ∈ An : M ∈D , t ∈ Rn},

whereD is a closed subgroup ofGLn(R). We can identifyD with the subgroup
{(M, t) ∈ G : M ∈ D , t = 0}. Hence we refer toD as thedilation subgroupand
to N as thetranslation subgroupof G. If µ is the left Haar measure forD , then
dλ (M, t) = dµ(M)dt is the element of the left Haar measure forG.

Let U be the unitary representation ofG acting onL2(Rn) defined by

(
U(M,t) ψ

)
(x) = |detM|−1/2ψ(M−1x− t) := ψM,t(x), (1.19)

for (M, t)∈G andψ ∈ L2(Rn). The elements{ψM,t : (M, t)∈G} are thecontinuous
affine systemswith respect toG. The corresponding expression in the frequency
domain is: (

U(M,t) ψ
)∧ (ξ ) = |detM|1/2ψ̂(ξM)e−2π iMt .

For a fixedψ ∈ L2(Rn), thewavelet transformassociated withG is the mapping

f → (Wψ f )(M, t) = 〈 f ,ψM,t〉= |detM|−1/2
∫

Rn
f (y)ψ(M−1y− t)dy,

where f ∈ L2(Rn) and(M, t) ∈ G. If there exists a functionψ ∈ L2(Rn) such that,
for all f ∈ L2(Rn), the reproducing formula

f =
∫

G
〈 f ,ψM,t〉ψM,t dλ (M, t) (1.20)

holds, thenψ is a continuous waveletwith respect toG. Expression (1.20) is a
generalized version of the Calderòn reproducing formula (1.6) presented in Chap-
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ter 1.1. Notice that equality (1.20) is understood in the weak sense (see the proof of
Theorem 4 below); the pointwise result is much more subtle.

The following theorem establishes an admissibility condition forψ that guaran-
tees that (1.20) is satisfied:

Theorem 4.Equality (1.20) is valid for allf ∈ L2(Rn) if and only if, for a.e.ξ ∈
Rn\{0},

∆ψ(ξ ) =
∫

D
|ψ̂(ξM)|2dµ(M) = 1. (1.21)

Proof. Suppose that (1.21) is satisfied. Then, by direct computation we have that

‖Wψ f‖2
L2(G,λ ) =

∫

D

∫

Rn
|〈 f ,ψM,t〉|2dt dµ(M)

=
∫

D

∫

Rn

∣∣∣∣
∫

Rn
f̂ (ξ ) ψ̂(ξM)e2π iξMt dξ

∣∣∣∣
2

|detM|dt dµ(M)

=
∫

D

(∫

Rn

∣∣∣∣
(

f̂ (ξ )ψ̂(·M)
)∨

(Mt)
∣∣∣∣
2

|detM|dt

)
dµ(M)

=
∫

D

∫

Rn
| f̂ (ξ )|2|ψ̂(ξM)|2dξ dµ(M)

=
∫

Rn
| f̂ (ξ )|2∆ψ(ξ )dξ

= ‖ f‖2
L2(Rn).

This shows that the mappingWψ : L2(Rn)→ L2(G,λ ) is an isometry. By polariza-
tion we then obtain

〈Wψ f ,Wψg〉L2(G) = 〈 f ,g〉L2(Rn), (1.22)

for all f ,g∈ L2(Rn).
Conversely, suppose that equality (1.20) holds in the weak sense (i.e., (1.22)

holds). Consider the expression
∫

Rn
| f̂ (ξ )|2∆ψ(ξ )dξ ,

with f satisfying| f̂ (ξ )|2 = |β (r,ξ0)|−1χβ (r,ξ0)(ξ ), whereβ (r,ξ0) is a ball of radius
r and centerξ0, andξ0 is a point of differentiability of∆ψ . Then, by reversing the
chain of equalities above, we obtain that

|β (r,ξ0)|−1
∫

β (r,ξ0)
∆ψ(ξ )dξ = 1,

for all r > 0. By taking limr→0+ , we conclude that∆ψ(ξ0) = 1. Thus,∆ψ(ξ ) = 1
for a.e.ξ ∈ Rn. ut

Theorem 4 can easily be extended to the case whereG is not a subgroup of
GLn(R), but simply a subset ofGLn(R). Furthermore, Theorem 4 extends to func-
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tions on subspaces ofL2(Rn) of the form

L2(V)∨ = { f ∈ L2(Rn) : suppf̂ ⊂V}.

The proof of this fact is left as an exercise.

In the special case of Theorem 4 wheren = 1 andD = {2 j : j ∈ Z}, equation
(1.21) is∑ j∈Z |ψ̂(2 jξ )|2 = 1 for a.e.ξ ∈R (this is the classical Calderòn equation),
and equation (1.20) is

f = ∑
j∈Z

∫

R
〈 f ,ψ j,t〉ψ j,t dt, (1.23)

whereψ j,t(x) := 2− j/2ψ(2− jx− t), j ∈ Z, t ∈ R. Thus, the classical orthonormal
wavelet expansion

f = ∑
j∈Z

∑
k∈Z
〈 f ,ψ jk〉ψ jk

is a “discretization” of (1.23). This shows, by equation (1.4), that an orthonormal
wavelet (in this classical case) is always a continuous wavelet satisfying property
(1.23) for all f ∈ L2(R). This raises the question of how to “discretize” continu-
ous wavelets associated with general dilations groupsD . We refer to [42] for more
observations about this topic.

A variant of the affine groupAn (and the corresponding affine systems (1.19)) is
obtained by considering the groupG∗ consisting of all pairs(M, t) ∈ GLn(R)×Rn

(endowed with the product topology) together with the group operation

(M, t) · (M′, t ′) = (MM′, t +M′t ′).

This operation is associated with the actionx→Mx+t onRn. Theco-affine systems
associated withG∗ are then defined as the elements

(
V(M,t) ψ

)
(x) = |detM|−1/2ψ(M−1(x− t)) := ψ∗

M,t(x),

for (M, t) ∈ G∗ and ψ ∈ L2(Rn). The corresponding expression in the frequency
domain is: (

U(M,t) ψ
)∧ (ξ ) = |detM|1/2ψ̂(ξM)e−2π it .

The left Haar measure,λ ∗, for G∗ is easily seen to satisfydλ ∗(M, t)= |detM|−1dµ(M)dt,
whereµ is the left Haar measure forD . Then the “co-affine” reproducing formula
is

f =
∫

G
〈 f ,ψ∗

M,t〉ψ∗
M,t dλ ∗(M, t). (1.24)

A straightforward calculation shows that (1.24) holds if and only ifψ satisfies con-
dition (1.21). Thus,ψ is a continuous affine wavelet if and only if it is a continuous
co-affine wavelet.

Notice that the situation observed above is different from the discrete case. In
fact, consider the systemsΨ = {ψ j,k = 2− j/2ψ(2− j · −k) : j,k ∈ Z} andΨ ∗ =
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{ψ∗
j,k = 2− j/2ψ(2− j(·−k)) : j,k∈ Z}. A simple calculation shows that

〈ψ∗
j,k,ψ−1,−1〉= 〈ψ j,0,ψ−1,2k−1〉.

This shows that the co-affine systems cannot generate the spaceL2(R) if the cor-
responding affine systemΨ is an orthonormal basis forL2(R). In fact, the affine
systemΨ is an orthonormal basis forL2(R) (in which case the right hand side of
the above expression is zero) if and only if the co-affine systemΨ ∗ has a non-empty
orthogonal complement.

1.3.1 Admissible groups

It is not difficult to show that there are dilation groupsD for which one can find no
functionsψ satisfying equation (1.21). In particular, ifD is compact, there are no
associated functionsψ that satisfy this condition. For example, letD = SO(2) and
suppose that there is a functionψ ∈ L2(R2) satisfying (1.21). Notice that, in this
case, using polar coordinates equation (1.21) can be expressed as

∫ 2π

0
|ψ̂(reiφ eiθ )|2 dθ

2π
= 1,

for a.e.ξ = r eiφ . Multiplying both sides of the equality byr > 0 and integrating
with respect tor ∈ [0,∞), we obtain:

∞ =
∫ ∞

0
rdr

=
∫ ∞

0
r
∫ 2π

0
|ψ̂(reiφ eiθ )|2 dθ

2π
dr

=
∫ ∞

0
r
∫ 2π

0
|ψ̂(reiθ )|2 dθ

2π
dr

= ‖ψ‖2 < ∞.

This is clearly a contradiction and, thus, there is noψ satisfying (1.21). In this
situation, we say that the groupSO(2) is not admissible. That a general compact
D ⊂GLn(R) is not admissible is not much harder to prove.

The observation above leads to the question: what are the groupsD that are
admissible? Our result on admissibility involves the notion ofε–stabilizerof x∈Rn,
which is defined as the set

Dε
x = {M ∈D : |xM−x| ≤ ε},

for eachε > 0. The setDx := D0
x = {M ∈D : xM = x} is called thestabilizerof x.

Themodular function∆ , onD , defined by the property
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µ(EM) = ∆(M)µ(E)

for all µ–measurableE⊂D andM ∈D , also plays an important role in the follow-
ing basic result about admissible dilation groups.

Theorem 5. (a) If D is admissible, then∆ 6= |detM| and the stabilizer ofx is com-
pact for a.e.x∈ Rn.

(b) If ∆ 6= |detM| and for a.e.x ∈ Rn there exists anε > 0 such that theε–
stabilizer ofx is compact, thenD is admissible.

The proof of Theorem 5 is rather involved and can be found in [33]. Even though
Theorem 5 “just fails” to be a characterization of admissibility, still it is quite use-
ful for determining admissibility or non-admissibility of particular groupsD . For
example, ifD is compact, then∆ = |detM| = 1 and, thus, it cannot be admissi-
ble. Another example where Theorem 5 can be used effectively is the case where
D is a one-parameter group. Namely, letD = {Mt = etL : t ∈ R}, whereL is a
real n×n matrix. ThenD is admissible if and only if trace(L) 6= 0. Indeed, since
detMt = et trace(L) andD is Abelian, it follows that the modular function,∆ , is iden-
tically 1. Thus, when trace(L) 6= 0, we have thatdetMt 6= 1= ∆ andD is admissible.

1.3.2 Wave Packet Systems

In [5], Córdoba and Fefferman introduced “wave packets” as those families of func-
tions obtained by applying certain collections of dilations, modulations and trans-
lations to the Gaussian function. More generally, we will describe as “wave packet
systems” any collections of functions which are obtained by applying a combination
of dilations, modulations and translations to a finite family of function inL2(Rn).
ForΨ = {ψ` : 1≤ `≤ L} ⊂ L2(Rn), whereL ∈ N, andS⊂GLn(R)×Rn, thecon-
tinuous wave packet systemwith respect toSthat is generated byΨ is the collection

WPS(Ψ) = {DAMν Ty ψ` : (A,ν) ∈ S, y∈ Rn,1≤ `≤ L}, (1.25)

whereMν is the modulation operator defined at the beginning of Section 1.2.
Let

G = {U = cDAMν Ty : c∈ C, |c|= 1,(A,ν ,y) ∈GLn(R)×Rn×Rn}.

G is a subgroup of the unitary operators onL2(Rn) which is preserved by the action
of the mappingU → Û , whereÛ f = (U f )∧.

In the definition (1.25), we considered the map(A,ν ,y)→U (0)
(A,ν ,y) = DAMν Ty,

which is a one-to-one mapping fromS×Rn into the groupG. By changing the order
of the operators, we can also define the following one-to-one mappings fromS×Rn

into G:

U (1)
(A,ν,y) = DATyMν
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U (2)
(A,ν,y) = TyDAMν

U (3)
(A,ν ,y) = Mν DATy

U (4)
(A,ν ,y) = TyMν DA

U (5)
(A,ν ,y) = Mν TyDA.

Hence, we can generate alternate continuous wave packet systems,WP
(i)
S (Ψ),

by replacingU (0)
(A,ν ,y) with U (i)

(A,ν ,y), for 1 ≤ i ≤ 5. The systemsWP
(0)
S (Ψ) and

WP
(1)
S (Ψ) are equivalent in the sense that one is a Parseval frame if and only if

the other one is a Parseval frame (in fact, by the commutativity relations of trans-
lations and modulations, they only differ by a unimodular scalar factor). The same

is true forWP
(4)
S (Ψ) andWP

(5)
S (Ψ). The other systems, on the other hand, have

substantial differences.
Each subgroupU (i)

(A,ν ,y), , i = 0, . . . ,5, is associated to a continuous wave packet

system generated byΨ ⊂ L2(Rn). We can characterize thoseΨ for which we have
Parseval frames:

L

∑̀
=1

∫

S×Rn

∣∣∣〈 f ,U (i)
(A,ν ,y)ψ`〉

∣∣∣
2

dλ (A,ν)dy= ‖ f‖2
2

for all f ∈ L2(Rn), whereλ is a measure onS. Such a characterization is an exten-
sion of Theorem 4, and is given by an analog of equality (1.21). Explicitly, we have
the result

Theorem 6.Let Ψ = {ψ` : 1 ≤ ` ≤ L} ⊂ L2(Rn). The systemsWP
(i)
S (Ψ), i =

0, . . . ,5 are continuous Parseval frame wave packet systems with respect to(S,λ ),
for L2(Rn), if and only if

∆ (i)
Ψ (ξ ) = 1, for a.e.ξ ∈ Rn,

where

∆ (1)
Ψ (ξ ) = ∆ (0)

Ψ (ξ ) =
L

∑̀
=1

∫

S
|ψ̂`(ξA−1−ν)|2dλ (A,ν);

∆ (2)
Ψ (ξ ) =

L

∑̀
=1

∫

S
|ψ̂`(ξA−1−ν)|2 |detA|−1dλ (A,ν);

∆ (3)
Ψ (ξ ) =

L

∑̀
=1

∫

S
|ψ̂`((ξ −ν)A−1)|2dλ (A,ν);

∆ (4)
Ψ (ξ ) = ∆ (5)

Ψ (ξ ) =
L

∑̀
=1

∫

S
|ψ̂`((ξ −ν)A−1)|2 |detA|−1dλ (A,ν).
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Exercises

1. Show that Theorem 4 is valid for functions on subspaces ofL2(Rn) of the form

L2(V)∨ = { f ∈ L2(Rn) : suppf̂ ⊂V}.

1.4 Affine Systems with Composite Dilations

To describe the class of systems which will be considered in this section, it will be
useful to begin with one example inL2(R2).

Let A=
(

2 0
0 ε

)
, whereε 6= 0, B=

(
1 1
0 1

)
andG= {(B j ,k) : j ∈Z,k∈Z2}. Then

G is a group with group multiplication:

(B`,m)(B j ,k) = (B`+ j ,k+B− jm). (1.26)

In particular, we have(B j ,k)−1 = (B− j ,−B jk). The multiplication (1.26) is consis-
tent with the operation that mapsx→ B j(x+k) of R2 intoR2. Let π be the unitary
representation ofG, acting onL2(R2) which is defined by

(
π(B j ,k) f

)
(x) = f ((B j ,k)−1x) = f (B− jx−k) =

(
D j

BTk f
)
(x), (1.27)

for f ∈ L2(R2). Notice thatdetB j = 1. The observation that

(D`
BTm)(D j

BTk) = (D`+ j
B Tk+B− j m),

where`, j ∈ Z, k,m∈ Z2, shows how the group operation (1.26) is associated with
the unitary representation (1.27).

Let S0 = {ξ = (ξ1,ξ2) ∈ R̂2 : |ξ1| ≤ 1} and define

V0 = L2(S0)∨ = { f ∈ L2(Rn) : suppf̂ ⊂ S0}.

Since, for all j ∈ Z andk∈ Z2, we have2

(
π(B j ,k) f

)∧
(ξ ) =

(
D j

BTk f
)∧

(ξ ) = e−2π iξB j k f̂ (ξB j),

andξB j = (ξ1,ξ2)B j = (ξ1,ξ2 + jξ1), then the action ofB j maps the vertical strip
domainS0 into itself and, thus, the spaceV0 is invariant under the action ofπ(B j ,k).
The same invariance property holds for the vertical strips

Si = S0Ai = {ξ = (ξ1,ξ2) ∈ R̂2 : |ξ1| ≤ 2i},
2 Recall that, according to the notation introduced in Section 1.2, in the frequency domain, the
matricesB j multiply row vectors on the right.
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i ∈ Z, and, as a consequence, the spacesVi = L2(Si)∨ are also invariant under the
action of the operatorsπ(B j ,k).
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Fig. 1.1 Example of ONAB–MRA. The sets{J+ B j ,J−B j : j ∈ Z} form a disjoint partition ofS0.

The spaces{Vi}i∈Z defined above satisfy the basic MRA properties:

1. Vi ⊂Vi+1, i ∈ Z;
2. D−i

A V0 = Vi ;
3.

⋂
i∈ZVi = {0};

4.
⋃

i∈ZVi = L2(Rn).

The complete definition of an MRA includes the assumption thatV0 is generated by
the integer translates of aφ ∈V0, called thescaling function, and that these translates
{Tk φ : k ∈ Z2} are an orthonormal basis ofV0. In some cases, there are more than
one scaling function.

The situation here is a bit different and thescalingproperty is replaced by an
analogous property. Namely, considerV̂0 = L2(S0) and letφ̂ = χJ, whereJ = J+∪
J−, J+ is the triangle with vertices(0,0), (1,0), (1,1) andJ− is the triangle with
vertices(0,0), (−1,0), (−1,−1). The setsJ Bj , j ∈ Z, form a partition ofS0; that
is, S0 =

⋃
j∈Z J Bj , except for the set of points{(0,ξ2) : ξ2 6= 0}, which is, however,

a set of measure 0. The setJ has measure 1 and the collection{e−2π ikξ χJ : k∈ Z2}
is easily seen to be an ON basis ofL2(J). Since
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(
e−2π ik· χJ(·) :

)∨
(x) = (Tkφ)(x) = φ(x−k),

these last functions form an ON basis ofL2(J)∨. It follows that{DB j Tk φ : k∈ Z2}
is an ON basis ofL2(J Bj)∨, for eachj ∈ Z2. Hence, the set

{
DB j Tk φ : j ∈ Z,k∈ Z2} =

{
Tk DB j φ : j ∈ Z,k∈ Z2}

is an ON basis ofV0. The setsJ+,J−, as well as the other sets used in this construc-
tion are illustrated in Figure 1.1.
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Fig. 1.2 Example of orthonormalABwavelet.

Thus, the “complete” definition of the MRA, introduced above, adds to (1)–(4)
the property:
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(5) V0 is generated by a “scaling function”φ , in the sense that{Tk DB j φ : j ∈ Z,k∈
Z2} is an ON basis ofV0.

Let GB be the group{B j : j ∈ Z}; this is equivalent to the dilation group{DB j :
j ∈ Z}. ThenG = {(B j ,k) : j ∈ Z,k∈ Z2} is the semidirect product ofGB andZ2,
denoted byGBnZ2. This shows that theshift–invarianceof the traditional MRA is
replaced by a notion ofGBnZn–invariance, that is, the spaceV0 is invariant with
respect to both integer translations andGB dilations.

We shall now show how the MRA we just introduced can be used to construct
a wavelet–like basis ofL2(R2). We begin by constructing an ON basis ofW0, de-
fined to be the orthogonal complement ofV0 in V1, that is,V1 = V0⊕W0. It will be
convenient to work in the frequency domain. We have thatV̂1 = V̂0⊕Ŵ0 and, con-
sequently,Ŵ0 = L2(R0), whereR0 = S1 \S0 = {ξ = (ξ1,ξ2) ∈ R̂2 : 1 < |ξ1| ≤ 2}.
We define the following subsets ofR0 = S1\S0:

I1 = I+
1 ∪ I−1 , I2 = I+

2 ∪ I−2 , I3 = I+
3 ∪ I−3 ,

where

I+
1 = {ξ = (ξ1,ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2,0≤ ξ2 < 1/2},

I+
2 = {ξ = (ξ1,ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2,1/2≤ ξ2 < 1},

I+
3 = {ξ = (ξ1,ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2,1≤ ξ2 < ξ1},

andI−` = {ξ ∈ R̂2 : −ξ ∈ I+
` }, ` = 1,2,3. These sets are illustrated in Figures 1.1

and 1.2. Observe that each setI` is a fundamental domainfor Z2: the functions
{e2π iξk : k∈ Z2}, restricted toI`, form an ON basis forL2(I`), ` = 1,2,3. We then
defineψ`, ` = 1,2,3 by settingψ̂` = χI` , ` = 1,2,3. It follows from the observations
about the sets{I`} that the collection

{e2π iξk ψ̂`(ξ ) : k∈ Z2}

is an orthonormal basis ofL2(I`), ` = 1,2,3. A simple direct calculation shows that
the sets{I` b j : j ∈ Z, ` = 1,2,3} are a partition ofR0, that is,

3⋃

`=1

⋃

j∈Z
I` B j = R0,

where the union is disjoint. As a consequence, the collection

{e2π iξk ψ̂`(ξB j) : k∈ Z2, j ∈ Z, ` = 1,2,3} (1.28)

is an orthonormal basis ofL2(R0) and, thus, by taking the inverse Fourier transform
of (1.28), we have that

{π(B j ,k)ψ` : k∈ Z2, j ∈ Z, ` = 1,2,3} (1.29)
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is an orthonormal basis ofW0 = L2(R0)∨. Notice that, since, for eachj ∈ Z fixed,
B j mapsZ2 into itself, the collection{e2π iξB j k : k ∈ Z2} is equal to the collection
{e2π iξk : k∈ Z2}.

It is clear that, by applying the dilationsDAi , i ∈ Z, to the system (1.29), we
obtain an ON basis ofL2(Ri)∨, where

Ri = R0Ai = {ξ = (ξ1,ξ2) ∈ R̂2 : 2i < |ξ1| ≤ 21+i}.

Furthermore, we have that
⋃

i∈ZRi = R̂2, where the union is disjoint, and, hence
we can writeL2(R2) =

⊕
i∈ZWi . Hence, by combining the observations above, it

follows that the collection

{DAi DB j Tk ψ` : k∈ Z2, i, j ∈ Z, ` = 1,2,3} (1.30)

is an ON basis ofL2(R2).

1.4.1 Affine System with Composite Dilations

The construction given above is a particular example of a general class of affine-like
systems calledaffine system with composite dilations, which have the form:

AAB(Ψ) = {DADBTk ψ` : A∈GA,B∈GB,k∈ Zn, ` = 1, . . . ,L}, (1.31)

whereΨ ⊂ {ψ1, . . . ,ψ`} ∈ L2(Rn), GA ⊂ GLn(R) (usually, GA = {Ai : i ∈ Z},
with A expanding or having some “expanding” property), andGB ⊂ GLn(R) with
|detB|= 1. Later on, we will show that there are several examples of such systems
that form ON bases ofL2(Rn) or, more generally, Parseval frames ofL2(Rn).

The roles played by the two families of dilations,GA andGB, in definition (1.31),
are very different. The elementsA ∈ GA dilate (at least in some direction), while
the elements ofGB affect the geometry of the reproducing systemAAB(Ψ). In the
example we worked out,GB = {(1 1

0 1)
j : j ∈ Z} is the shear groupand exhibits

a “shear geometry”, in which objects in the plane are stretched vertically without
increasing their size (like the trapezoids in Figure 1.2). In Section 1.5, we will use
this group and a construction similar to the one above to obtain theshearlets, whose
geometrical properties are similar to the example above, and are, in addition, well-
localized functions (i.e., they have rapid decay both in the space and frequency
domains). They have similarities to thecurveletsintroduced by Cand̀es and Donoho
[2] and to thecontourletsof Do and Vetterli [10]. However, their mathematical
construction is simpler, since it derived from the structure of affine systems and, as
a result, their development and applications are “more systematic” [22, 23].

As indicated by the example above, there is a special multiresolution analysis
associated with the affine systems with composite dilations which is useful for con-
structing “composite wavelets”. Let us give a proper definition of this new frame-
work. Let GB be a countable subset of̃SLn(Z) = {B ∈ GLn(R) : |detB| = 1} and
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GA = {Ai : i ∈ Z}, whereA ∈ GLn(Z) (notice thatA is an integral matrix). Also
assume thatA normalizesGB, that is,ABA−1 ∈ GB for everyB∈ GB, and that the
quotient spaceB/(ABA−1) is finite. Then the sequence{Vi}i∈Z of closed subspaces
of L2(Rn) is anAB-multiresolution analysis (AB-MRA) if the following holds:

(i) DBTkV0 = V0, for anyB∈GB, k∈ Zn,
(ii) for eachi ∈ Z, Vi ⊂Vi+1,, whereVi = D−i

A V0,

(iii)
⋂

Vi = {0} and
⋃

Vi = L2(Rn),
(iv) there existsφ ∈ L2(Rn) such thatΦB = {DBTk φ : B ∈ GB, k ∈ Zn} is a semi-

orthogonal Parseval frame forV0, that is,ΦB is a Parseval frame forV0 and, in
addition,DBTk φ⊥DB′ Tk′ φ for anyB 6= B′, B,B′ ∈GB, k,k′ ∈ Zn.

The spaceV0 is called anAB scaling spaceand the functionφ is an AB scaling
function for V0. In addition, if ΦB is an orthonormal basis forV0, thenφ is anor-
thonormalABscaling function.

The number of generatorsL of an orthonormal MRAAB-wavelet is completely
determined by the groupG= {(B j ,k) : j ∈Z, k∈Zn}. Indeed we have the following
simple fact:

Proposition 1. Let G be a countable group andu→ Tu be a unitary representation
of G acting on a (separable) Hilbert spaceH . SupposeΦ = {φ1, . . . ,φN}, Ψ =
{ψ1, . . . ,ψM} ⊂ H , whereN,M ∈ N⋃{∞}. If {Tu φ k : u ∈ G, 1 ≤ k ≤ N} and
{Tu ψ i : u∈G, 1≤ i ≤M} are each orthonormal bases forH , thenN = M.

Proof. It follows from the assumptions that, for each1≤ k≤ N:

‖φ k‖2 = ∑
u∈G

M

∑
i=1
|〈φ k,Tu ψ i〉|2.

Thus, by the properties ofTu, we have:

N =
N

∑
k=1

‖φ k‖2 =
N

∑
k=1

∑
u∈G

M

∑
i=1
|〈φ k,Tu ψ i〉|2

=
M

∑
i=1

∑
u∈G

N

∑
k=1

|〈Tu−1 φ k,ψ i〉|2

=
M

∑
i=1
‖ψ i‖2 = M. ut

Using Proposition 1, one obtains the following result which establishes the num-
ber of generators needed to obtain an orthonormal MRAAB-wavelet.ut
Theorem 7.Let Ψ = {ψ1, . . . ,ψL} be an orthonormal MRAAB-multiwavelet for
L2(Rn), and let N = |B/ABA−1| (= the order of the quotient groupB/ABA−1).
Assume that|detA| ∈ N. ThenL = N |detA|−1.
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The composite wavelet systemAAB(Ψ) have associated continuous multiwavelets.
The simplest case is the one in which the translations are{Ty : y∈Rn}. In this case,
we have the reproducing formula corresponding to (1.20):

f =
L

∑̀
=1

∑
i, j∈Z

∫

Rn
〈 f ,DAi DB j Ty ψ`〉DAi DB j Ty ψ` dy, (1.32)

for f ∈ L2(Rn). As in Section 1.3, one can show thatΨ = {ψ1, . . . ,ψ`} satisfies
(1.32) if and only if it satisfies the Calderòn equation

L

∑̀
=1

∑
i, j∈Z

|ψ̂`(ξAiB j)|= 1 for a.e.ξ ∈ Rn.

Some more general examples of continuous composite wavelet system will be ex-
amined in Section 1.5.

1.4.2 Other Examples

There are several other examples of affine systems with composite dilationsAAB(Ψ)
which form ON bases or Parseval frames.

In particular, the construction presented above in dimensionn = 2 extends to the
generaln-dimensional setting. In this case, the shear group is given byGB = {Bi :
i ∈ Z}, whereB∈ GLn(R) is characterized by the equality(B− In)2 = 0, andIn is
then×n identity matrix. We refer to [23] for more detail about these systems.

A different type of affine systems with composite dilations arises whenGB is
a finite group. For example, letGB = {±B0,±B1,±B2,±B3} be the 8-element

group consisting of the isometries of the square[−1,1]2. Specifically:B0 =
(

1 0
0 1

)
,

B1 =
(

0 1
1 0

)
, B2 =

(
0 1
−1 0

)
, B3 =

(−1 0
0 1

)
. Let U be the parallelogram with ver-

tices(0,0),(1,0),(2,1) and(1,1) andS0 =
⋃

b∈BU b (see the snowflake region in
Figure 1.3). It is easy to verify thatS0 is B-invariant.

Let A be the quincunx matrix

(
1 1
−1 1

)
, andSi = S0Ai , i ∈ Z. Observe thatA is

expanding,ABA−1 = B andS0 ⊆ S0A = S1. In particular, the regionS1 \S0 is the
disjoint union

⋃
b∈BRB, where the regionR is the parallelogram illustrated in Fig-

ure 1.3. Thus, as in the case of the shear composite wavelet that we have described
above, it follows that the system

{Di
ADBTk ψ : i ∈ Z, B∈GB, k∈ Z2}, (1.33)

whereψ̂ = χR, is an orthonormal basis forL2(R2).
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Fig. 1.3 Example of composite wavelet with finite group.GA = {Ai : i ∈ Z}, whereA is the quin-
cunx matrix, andGB is the group of isometries of the square[−1,1]2.

If the quincunx matrixA is replaced by the matrix̃A =
(

2 0
0 2

)
, we obtain a dif-

ferent ON basis. LetB, U andSi , i ∈ Z, be defined as above. Also in this case,Ã is
expanding,ÃBÃ−1 = B andS1 = S0a⊃ S0. A direct computation shows that the re-
gionS1\S0 is the disjoint union

⋃
B∈GB

Rb, whereR= R1
⋃

R2
⋃

R3 and the regions
R1,R2,R3 are illustrated in Figure 1.4. Observe that each of the regionsR1,R2,R3 is
a fundamental domain. Thus, the system

{Di
ÃDBTk ψ` : i ∈ Z, B∈GB, k∈ Z2, ` = 1, . . . ,3}, (1.34)

whereψ̂` = χR̀ , ` = 1,2,3, is an orthonormal basis forL2(R2).
Note that the system in the first example (equation (1.33)) was generated by a

single function, while the second system (equation (1.34)) is generated by three
functionsψ1,ψ2,ψ3. This is consistent with Theorem 7. In fact, ifB is a finite
group, thenN = |B/ABA−1| = 1, and so, in this situation, the number of genera-
tors isL = |detA|−1. Thus, by Theorem 7, in the first example we obtain that the
number of generators isL = 1 sinceA is the quincunx matrix anddetA = 2. In the
second example, the number of generators isL = 3 sinceÃ = 2I anddetÃ = 4. Fi-
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Fig. 1.4 Example of composite wavelet with finite group.GA = {Ai : i ∈ Z}, whereA = 2I , and
GB is the group of isometries of the square[−1,1]2.

nally, in the example at beginning of this Section, whereGB is the two-dimensional

group of shear matrices andGA = {Ai : i ∈ Z}, with A =
(

2 A1,2

0 A2,2

)
∈ GL2(Z), a

calculation shows that|B/ABA−1| = 2|A2,2|−1 and, thus, the number of generators
is L = 2|A2,2|−12|A2,2|−1 = 3.

In higher dimensions, the type of constructions we have just described extend
by using the Coxeter group. These are finite groups (hence, their elements have
determinant 1 in magnitude) generated by reflections through hyperplanes.

Other examples of composite wavelets, in dimensionn = 2, are obtained, for
eachλ > 1 fixed, by considering the group

GB = {B j =
(

λ j 0
0 λ− j

)
: j ∈ Z},

and choosingGA to be a group of expanding matrices; for exampleGA = {Ai : i ∈Z},
whereA is diagonal and|detA| > 1. We refer to [23] for more detail about this
construction.
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Fig. 1.5 On the left: the fractal set known as “Twin Dragon”. On the right: support of the 2-
dimensional Haar waveletψ; ψ = 1 on the darker set,ψ =−1 on the lighter set.

All examples of composite wavelets presented so far are “direct” constructions
in the frequency domain. let us now discuss a different class of composite wavelets
in the “time domain”.

Perhaps the simplest dyadic-dilation wavelet in dimensionn = 1 is the Haar
wavelet. It is produced by the scaling functionφ = χ[0,1) and is generated by the
Haar functionψ = χ[0,1/2)−χ[1/2,1). TheHaar ON basisof L2(R) is the affine sys-
tem

{ψi,k = D2i Tk ψ : i,k∈ Z}.
It is a natural question to ask what are the extensions of this compactly supported

waveletψ in higher dimensions. For example, in dimensionn = 2, consider the

quincunx matrixAq =
(

1 −1
1 1

)
and the associated affine system

{ψi,k = DAi
q
Tk ψ : i ∈ Z,k∈ Z2}. (1.35)

Then, similarly to the one-dimensional Haar wavelet, one can find an MRA wavelet
ψ produced by a scaling functionφ that is the characteristic function of a compact
setQ⊂ R2 of area 1. However, the functionsφ andψ are not that simple. In fact,
the scaling functionφ is the characteristic function of a rather complicated fractal
set known at the “twin dragon” andψ is the difference of two similar characteristic
functions (see Figure 1.5).

We can construct an affine system with composite dilations having the same ex-
panding dilation groupGA = {Ai

q : i ∈ Z} and the same translations that does, how-
ever, generate a very simple Haar-type wavelet. For the groupGB, let us choose
again the group of symmetries of the unit square given at the beginning of this sec-
tion. LetR0 be the triangle with vertices(0,0), (1/2,0), (1/2,1/2) andR̀ = B` R0,
` = 1, . . . ,7 (see Figure 1.6). Then, forφ = 2

√
2χR0, it follows that the system

{DB`
Tk φ : ` = 0, . . . ,7,k∈ Z2}
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Fig. 1.6 Example of a composite wavelet with finite support.

is an ON basis for the spaceV0, which is the closed linear span of the subspace
of L2(R2) consisting of the functions which are constant on eachZ2-translate of
the trianglesR̀ , ` = 0,1, . . . ,7. Let us now consider the spacesVi = DA−i

q
V0, i ∈ Z.

Then one can verify that each spaceVi is the closed linear span of the subspace of
L2(R2) consisting of the functions which are constant on eachA−i

q Z2-translate of
the trianglesA−i

q R̀ , ` = 0,1, . . . ,7. Thus,Vi ⊂ Vi+1 for eachi ∈ Z, and the spaces
{Vi} form anAB–MRA, with φ as anAB–scaling function. We can now construct a
simple Haar-like wavelet obtained from thisAB–MRA. Specifically, let

R0 = A−1
q R1∪

[
A−1

q R6 +
(

1/2
1/2

)]
= A−1

q R1∪A−1
q

[
R6 +

(
0
1

)]
.

Thus,χR0 = χA−1
q R1

+ χ
A−1

q R6+(1/2
1/2

)
or, equivalently,

φ (0)(x) = φ (1)(Aqx)+φ (6)(Aqx− (0
1)), (1.36)

whereφ (`) = DB`
φ , for ` = 0,1, . . . ,7. It is now easy to see thatψ = φ (1)(Aqx)−

φ (6)(Aqx− (0
1)) is the desired Haar–likeAB–wavelet. The spaceV0 is generated

by applying the translationsTk, k ∈ Z2, to the scaling functionsφ (`) = DB`
φ , ` =

0,1, . . . ,7. We see that this is the case by applyingDB`
in equality (1.36); we we

obtain:

φ (0) = φ (1)(Aqx)+φ (6)(Aqx− (0
1))

φ (1) = φ (2)(Aqx)+φ (5)(Aqx− (0
1))

φ (2) = φ (3)(Aqx)+φ (0)(Aqx− (0
1))

φ (3) = φ (4)(Aqx)+φ (7)(Aqx− (0
1))

φ (4) = φ (5)(Aqx)+φ (2)(Aqx− (0
1))
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φ (5) = φ (6)(Aqx)+φ (1)(Aqx− (0
1))

φ (6) = φ (7)(Aqx)+φ (4)(Aqx− (0
1))

φ (7) = φ (0)(Aqx)+φ (3)(Aqx− (0
1)).

It follows that
{DAi

q
DB`

Tk ψ : i ∈ Z, ` = 0,1, . . . ,7, k∈ Z2}

is an ON basis forL2(R2). This Haar-typeAB-wavelet is clearly simpler that the
twin dragon wavelet obtained above. We refer to [1, 29] for more information about
this type of constructions.

Other complicated fractal wavelets appear in many situations. For example, if

the dilation matrixAq in the affine system (1.35) is replaced byAq1 =
(

1
√

3
−√3 1

)

or Aq2 =
(

3/2 −√3/2√
3/2 3/2

)
, then also in this case there is a compactly supported

MRA wavelet generated by a (compactly supported) scaling functionφ which is the
characteristic function of a fractal set (see Figure 1.7).
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Fig. 1.7 The fractal sets associated with the MRA generated by the dilation matricesAq1 (on the
left) andAq2 (on the right).

The construction given above, suggests that also in these cases one should be
able to find anAB–MRA such that the associated compactly supportedAB–wavelet
has a simpler “non-fractal” support.

Exercises

1. Let ψ1 ∈ L2(R) be a dyadic wavelet with supp̂ψ1 ⊂ [−1
2, 1

2] andψ2 ∈ L2(R) be
such that supp̂ψ1 ⊂ [−1,1] and
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∑
k∈Z

|̂ψ2(ω +k)|2 = 1 for a.e.ω ∈ R.

Forξ = (ξ1,ξ2) ∈R2, let ψ be defined byψ̂(ξ ) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

). Show that the

affine system{Di
AD j

BTkψ : i, j ∈ Z,k∈ Z2}, whereA =
(

2 0
0 1

)
andB =

(
1 1
0 1

)
,

is a Parseval frame forL2(R2).

1.5 Continuous Shearlet Transform

An important class of subgroups of the affine groupA2 (which was described in
Section 1.3) is obtained by considering

G = {(M, t) : M ∈Dα , t ∈ R2}, (1.37)

where, for each0 < α < 1, Dα ⊂GL2(R) is the set of matrices:

Dα =



M = Mas =




a −aα s

0 aα


 , a > 0, s∈ R



 .

The matricesMas can be factorized asMas = BsAa, where

Bs =
(

1 −s

0 1

)
Aa =

(
a 0

0 aα

)
. (1.38)

The matrixBs is called ashear matrixand, for eachs∈ R, is a non-expanding
matrix (detBs = 1, for eachs). The matrixAa is an anisotropic dilation matrix, that
is, the dilation rate is different in thex andy directions. In particular, ifα = 1/2 the

matrix Aa producesparabolic scalingsince f (Aax) = f
(

Aa

(x1

x2

))
leaves invariant

the parabolax1 = x2
2. Thus, the action associated with the dilation groupDα can be

interpreted as the superposition of anisotropic dilation and shear transformation.

Using Theorem 4 from Section 1.3, we can establish simple conditions on the
functionψ so that it will satisfy the Calderón reproducing formula (1.20) with re-
spect toG. This is done in the following proposition.

Proposition 2. LetG be given by (1.37) and, forξ = (ξ1,ξ2) ∈R2, ξ2 6= 0, let ψ be
given by

ψ̂(ξ ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

).

Suppose that:

(i) ψ1 ∈ L2(R) satisfies

∫ ∞

0
|ψ̂1(aξ )|2 da

a2α = 1 for a.e.ξ ∈ R;
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(ii) ‖ψ2‖L2 = 1.

Thenψ satisfies (1.20) and, hence, is a continuous wavelet with respect toG.

Proof. A direct computation shows that(ξ1,ξ2)M = (aξ1,aα(ξ2− sξ1)). Also
notice the element of the left Haar measure forD is dµ(Mas) = da

|detMas| ds. Hence
the admissibility condition (1.21) forψ is

∆(ψ)(ξ ) =
∫

R

∫

R+
|ψ̂1(aξ1)|2 |ψ̂2(aα−1( ξ2

ξ1
−s))|2 da

a1+α ds= 1. (1.39)

for a.e.(ξ1,ξ2) ∈ R2. Thus, by Theorem 4, to show thatψ is a continuous wavelet
with respect toG, it is sufficient to show that (1.39) is satisfied. Using the assumption
on ψ1 andψ2, we have:

∆(ψ)(ξ ) =
∫

R

∫

R+
|ψ̂1(aξ1)|2 |ψ̂2(aα−1( ξ2

ξ1
−s))|2 da

a1+α ds

=
∫

R+
|ψ̂1(aξ1)|2

(∫

R
|ψ̂2(aα−1 ξ2

ξ1
−s)|2 ds

) da
a2α

=
∫

R+
|ψ̂1(aξ1)|2 da

a2α = 1,

for a.e.ξ = (ξ1,ξ2) ∈ R2. This shows that equality (1.39) is satisfied.ut
In the following, to distinguish a continuous waveletsψ associated with this par-

ticular groupG from other continuous wavelets, we will refer to such a function as a
continuous shearlet. Hence, for each0 < α < 1, thecontinuous shearlet transform
is the mapping

f →{S α
ψ f (a,s, t) = 〈 f ,ψast〉 : a > 0,s∈ R, t ∈ R2},

where the analyzing elements:

{ψast(x) = |detMas|−
1
2 ψ(M−1

as (x− t)) :,a > 0,s∈ R, t ∈ R2},

with Mas ∈ Dα , form a continuous shearlet system. Notice that, according to the
terminology introduced in Section 1.3, the elements{ψast} are co-affine functions.

An useful variant of the continuous shearlet transform is obtained by restricting
the range of the shear variables associated with the shearing matricesBs to a finite
interval. Namely, for0 < α < 1, let us redefine

D
(h)
α =



Mas =




a −aα s

0 aα


 , 0 < a≤ 1

4
,−3

2
≤ s≤ 3

2
,



 ,

and
G(h) = {(M, t) : M ∈D

(h)
α , t ∈ R2}.
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Also, consider the subspace ofL2(R2) given byL2(Ch)∨ = { f ∈ L2(R2) : suppf̂ ⊂
Ch}, whereCh is the “horizontal cone” in the frequency plane:

Ch = {(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 1 and| ξ2
ξ1
| ≤ 1}.

Hence we can show that, by slightly modifying the assumptions of Proposition 2,
the functionψ is be a continuous shearlet for the subspaceL2(Ch)∨.

Proposition 3. For ξ = (ξ1,ξ2) ∈ R2, ξ2 6= 0, let ψ be given by

ψ̂(ξ ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where:

(i) ψ1 ∈ L2(R) satisfies

∫ ∞

0
|ψ̂1(aξ )|2 da

a2α = 1 for a.e.ξ ∈ R,

and suppψ̂1 ⊂ [−2,−1
2]∪ [1

2,2];
(ii) ‖ψ2‖L2 = 1 and suppψ̂2 ⊂ [−1,1].

Thenψ satisfies (1.24). That is, for allf ∈ L2(Ch)∨,

f (x) =
∫

R2

∫ 3
2

− 3
2

∫ 1
4

0
〈 f ,ψast〉ψast(x)

da
a2+2α dsdt,

with convergence in theL2 sense.

There are several examples of functionsψ1 andψ2 satisfying the assumptions of
Proposition 2 and Proposition 3. In particular, we can chooseψ1,ψ2 such thatψ̂1,
ψ̂2 ∈C∞

0 and we will make this assumption in the following. We refer to [15, 23] for
the construction of these functions.

If the assumptions of Proposition 3 are satisfied, we say that the set

Ψ (h) = {ψast : 0 < a≤ 1
4,−3

2 ≤ s≤ 3
2, t ∈ R2}

is a continuous shearlet systemfor L2(Ch)∨ and that the corresponding mapping

from f ∈ L2(Ch)∨ into S
(h),α

ψ f (a,s, t) = 〈 f ,ψast〉 is thecontinuous shearlet trans-
formonL2(Ch)∨.

In the frequency domain, an element of the shearlet systemψast has the form:

ψ̂ast(ξ1,ξ2) = a
1+α

2 ψ̂1(aξ1) ψ̂2(aα−1( ξ2
ξ1
−s))e−2π iξ t .

As a result, each function̂ψast has support:

suppψ̂ast⊂ {(ξ1,ξ2) : ξ1 ∈ [−2
a,− 1

2a]∪ [ 1
2a, 2

a], | ξ2
ξ1
−s| ≤ a1−α}.
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As illustrated in Figure 1.8, the frequency support is a pair of trapezoids, symmetric
with respect to the origin, oriented along a line of slopes. The support becomes
increasingly elongated asa→ 0.

HHY
(a,s) = ( 1

32,1)
@

@@R

(a,s) = ( 1
4 ,0)

6

(a,s) = ( 1
32,0)

ξ1 ξ1

ξ2 ξ2

HHHY

(a,s) = ( 1
32,1)

@
@@R

(a,s) = ( 1
4 ,0)

HHHY

(a,s) = ( 1
32,0)

Fig. 1.8 Frequency support of the horizontal shearlets (left) and vertical shearlets (right) for dif-
ferent values ofa ands.

As shown by Proposition 3, the continuous shearlet transformS
(h),α

ψ provides a
reproducing formula only for functions in a proper subspace ofL2(R2). To extend
the transform to allf ∈ L2(R2), we introduce a similar transform to deal with the
functions supported on the “vertical cone”:

C(v) = {(ξ1,ξ2) ∈ R2 : |ξ2| ≥ 1 and| ξ2
ξ1
|> 1}.

Specifically, let
ψ̂(v)(ξ ) = ψ̂(v)(ξ1,ξ2) = ψ̂1(ξ2) ψ̂2(

ξ1
ξ2

),

whereψ̂1, ψ̂2 satisfy the same assumptions as in Proposition 3, and consider the
dilation group

D
(v)
α = {Nas =

(
aα 0

−aα s a

)
: 0 < a≤ 1,−3

2
≤ s≤ 3

2
, t ∈ R2}.

Then it is easy to verify that the set

Ψ (v) = {ψ(v)
ast : 0 < a≤ 1

4,−3
2 ≤ s≤ 3

2, t ∈ R2},

where ψ(v)
ast = |detNas|− 1

2 ψ(v)(N−1
as (x− t)), is a continuous shearlet system for

L2(C(v))∨. The corresponding transformS (v),α
ψ f (a,s, t) = 〈 f ,ψ(v)

ast〉 is the contin-
uous shearlet transform onL2(C(v))∨. Finally, by introducing an appropriate win-
dow functionW, we can represent the functions with frequency support on the set
[−2,2]2 as
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f =
∫

R2
〈 f ,Wt〉Wt dt,

whereWt(x) = W(x− t). As a result, any functionf ∈ L2(R2) can be reproduced
with respect of the full shearlet system, which consists of the horizontal shearlet
systemΨ (h), the vertical shearlet systemΨ (v), and the collection of coarse-scale
isotropic functions{Wt : t ∈ R2}. We refer to [31] for more details about this rep-
resentation. For our purposes, it is only the behavior of the fine-scale shearlets that
matters. Indeed, in the following, we will apply the continuous shearlet transforms

S
(h),α

ψ and S
(v),α

ψ , at fine scales (a→ 0), to resolve and precisely describe the
boundaries of certain planar regions. Hence, it will be convenient to re-define shear-
let transform, at “fine-scales”, as follows. For0 < a≤ 1/4, s∈ R, t ∈ R2, the(fine-
scale) continuous shearlet transformis the mapping fromf ∈ L2(R2 \ [−2,2]2)∨
into Sψ f which is defined by:

S α
ψ f (a,s, t) =

{
S

(h),α
ψ (a,s, t) if |s| ≤ 1

S
(v),α

ψ (a, 1
s, t) if |s|> 1.

1.5.1 Edge Analysis using the Shearlet Tranform

One remarkable property of the continuous shearlet transform is its ability to provide
a very precise characterization of the set of singularities of functions and distribu-
tions. Indeed, letf be a function onR2 consisting of several smooth regionsΩn,
n = 1, . . . ,N, separated by piecewise smooth boundariesγn = ∂Ωn:

f (x) =
N

∑
n=1

fn(x)χΩn(x),

where each functionfn is smooth. Then the continuous shearlet transformS α
ψ f (a,s, t)

will signal both the location and orientation of the boundaries through its asymptotic
decay at fine scales. In fact,S α

ψ f (a,s, t) will exhibit fast asymptotic decaya→ 0
for all (s, t), except for the values oft on the boundary curvesγn and for the values
of sassociated with the normal orientation to theγn at t.

The study of these objects is motivated by image applications, wheref is used to
model an image, and the curvesγn are the edges of the imagef . We will show that
the shearlet framework provides a very effective method for the detection and anal-
ysis of edges. This is a fundamental problem in many applications from computer
vision image processing.

To illustrate how the shearlet transform can be employed to characterize the ge-
ometry of edges, let us consider the case wheref is simply the characteristic func-
tion of a bounded subset ofR2. Also, to simplify the presentation, we will only

present the situation whereα = 1/2 and use the simplified notationSψ = S
1
2

ψ . The
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O(aN)

O(a
3
4 )

O(aN)
O(aN)

Fig. 1.9 Asymptotic decay of the continuous shearlet transform of theB(x) = χD(x). On the

boundary∂D, for normal orientation, the shearlet transform decays asO(a
3
4 ). For all other val-

ues of(t,s), the decay is as fast asO(aN), for anyN ∈ N.

more general case whereα ∈ (0,1) the continuous shearlet transformS α
ψ is similar

and details can be found in [21].
We then have the following result from [21].

Theorem 8.Let D⊂ R2 be a bounded region inR2 and suppose that the boundary
curveγ = ∂D is a simpleC3 regular curve. DenoteB = χD. If t = t0 ∈ γ, ands0 =
tanθ0 whereθ0 is the angle corresponding to the normal orientation toγ at t0, then

lim
a→0+

a−
3
4 SψB(a,s0, t0) 6= 0.

If t = t0 ∈ γ ands 6= tanθ0, or if t /∈ γ, then

lim
a→0+

a−β SψB(a,s, t) = 0, for all β > 0.

This shows that the continuous shearlet transformSψB(a,s, t) has “slow” decay
only for t = t0 onγ when the value of the shear variablescorresponds exactly to the
normal orientation toγ at t0. For all other values oft ands the decay is fast. This
behavior is illustrated in Figure 1.9.

Theorem 8 can be generalized to the situation where the boundary curveγ is
piecewise smooth and contains finitely many corner points. Also in this case, the
continuous shearlet transform provides a precise description of the geometry of the
boundary curve through its asymptotic decay at fine scales. In particular, at the cor-
ner points, the asymptotic decay at fine scales is the slowest for values ofs corre-
sponding to the normal directions (notice that there are two of them). We refer the
interested reader to [20] for a detailed discussion of the shearlet analysis of regions
with piecewise smooth boundaries. We also refer to [21, 31] for other related results,
including the situation wheref is not simply the union of characteristic functions of
sets.
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Finally, we recall that the shearlet transform shares some of the features described
above withcontinuous curvelet transform, another directional multiscale transform
introduced by Cand̀es and Donoho in [3]. Even if a result like Theorem 8 is not
known for the curvelet transform, other results in [3] indicate that also the curvelet
transform is able to capture the geometry of singularities inR2 through its asymp-
totic decay at fine scales Notice that, unlike the shearlet transform, the curvelet
transform is not directly associated with an affine group.

1.5.2 A Shearlet Approach to Edge Analysis and Detection

Taking advantage of the properties of the continuous shearlet transform described
above, an efficient numerical algorithm for edge detection was designed by one
of the authors and his collaborators [43, 44]. The shearlet approach adapts several
ideas from the well-knownWavelet Modulus Maximamethod of Hwang, Mallat
and Zhong [35, 36], where the edge points of an imagef are identified as the loca-
tions corresponding to the local maxima of the magnitude of the continuous wavelet
transform of f . Recall that, at a single scale, this wavelet-based method is indeed
equivalent to theCanny Edge Detector, which is a standard edge detection algorithm
[8].
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(a) (b) (c)

Fig. 1.10 (a) Test image. (b-c) Comparison of the average error in angle estimation using the
wavelet method versus the shearlet method, as a function of the scale, with different noise levels;
(b) PSNR = 16.9 dB, (c) PSNR = 4.9 dB (Courtesy of Sheng Yi).

As shown above, one main feature of the continuous shearlet transform is its su-
perior directional selectivity with respect to wavelets and other traditional methods.
This property plays a very important role in the design of the edge detection algo-
rithm. In fact, one major task in edge detection, is to accurately identify the edges
of an image in the presence of noise and, to perform this task, both the location
and the orientation of edge points have to be estimated from a noisy image. In the
usual Wavelet Modulus Maxima approach, the edge orientation of an imagef , at
the locationt, is estimated by looking at the ratio of the vertical over the horizon-
tal components ofWψ f (a, t), the wavelet transform off . However, this approach is
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Fig. 1.11 Comparison of edge detection using shearlet-based method versus wavelet-based
method. From top left, clockwise: Original image, noisy image (PSNR= 24.59dB), shearlet result,
and wavelet result (Courtesy of Glenn Easley).

not very accurate when dealing with discrete data. The advantage of the continuous
shearlet transform is that, by representing the image as a function of scale, loca-
tion and orientation, the directional information is directly available. A number of
tests conducted in [43, 44] show indeed that a shearlet-based approach provides a
very accurate estimate of the edge orientation of a noisy images; this method sig-
nificantly outperforms the wavelet-based approach. A typical numerical experiment
is illustrated in Figure 1.10, where the test image is the characteristic function of
a disc. This figure displays the average angular error in the estimate of the edges
orientation, as a function of the scalea. The average angle error is defined by

1
|E| ·∑t∈E

|θ̂(t)−θ(t)|,

whereE is the set of edge points,θ is the exact angle and̂θ the estimated angle.
The average angle error is indicated for both shearlet- and wavelet-based methods,
in presence of additive Gaussian noise. As the figure shows, the shearlet approach
significantly outperforms the wavelet method, especially at finer scales, and is ex-
tremely robust to noise.

Using these properties, a very competitive algorithm for edge detection was de-
veloped in [44] and a representative numerical tests is illustrated in Figure 1.11.
We refer to [43, 44] for details about these algorithms and for additional numerical
demonstrations.
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1.5.3 Discrete Shearlet System

By sampling the continuous shearlet transform

f →Sψ f (a,s, t) = 〈 f ,ψa,s,t〉

on an appropriate discrete set of the scaling, shear, and translation parameters
(a,s, t) ∈ R+×R×R2, it is possible to obtain a frame or even a Parseval frame

for L2(R2). Notice that, as above, we will only consider the caseSψ = S
1
2

ψ .
To construct the discrete shearlet system (see [30] for more detail), we start by

choosing a discrete set of scales{a j} j∈Z ⊂ R+; next, for each fixedj, we choose
the shear parameters{sj,`}`∈Z ⊂R so that the directionality of the representation is
allowed to change with the scale. Finally, to provide a “uniform covering” ofR2, we
allow the location parameter to describe a different grid depending onj on `; hence
we lett j,`,k = Bsj,`Aa j k, k∈ Z2, where the matricesBs, for s∈ R, andAa, for a > 0
are given by 1.38). Observing that

T{Bsj,`Aaj k}DBsj,`Aaj
= DBsj,`Aaj

Tk,

we obtain the discrete system

{ψ j,`,k = DBsj,`Aaj
Tk ψ : j, ` ∈ Z, k∈ Z2}.

In particular, we will seta j = 22 j , sj,` = `
√

a j = `2 j . Thus, observing thatB`2 j A22 j =
A22 j B`, we finally obtain thediscrete shearlet system

{ψ j,`,k = DA4 j DB`
Tk ψ : j, ` ∈ Z, k∈ Z2}. (1.40)

Notice that (1.40) is an example of the affine systems with composite dilations
(1.31), described in Section 1.4. More specifically, the discrete shearlet system ob-
tained above is similar to the ”shearlet-like” system (1.30). Unlike the system (1.30),
however, whose elements where characteristic functions of sets in the frequency do-
main, we will show that in this case we obtain a system of well-localized functions.

To do that, we will adapt some ideas from the continuous case. Namely, for any
ξ = (ξ1,ξ2) ∈ R̂2, ξ1 6= 0, let

ψ̂(h)(ξ ) = ψ̂(h)(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
,

whereψ̂1, ψ̂2 ∈C∞(R̂), suppψ̂1 ⊂ [−1
2,− 1

16]∪ [ 1
16,

1
2] and supp̂ψ2 ⊂ [−1,1]. This

implies thatψ̂(h) is a compactly-supportedC∞ function with support contained in
[−1

2, 1
2]2. In addition, we assume that

∑
j≥0
|ψ̂1(2−2 jω)|2 = 1 for |ω| ≥ 1

8
, (1.41)
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and, for eachj ≥ 0,

2 j−1

∑
`=−2 j

|ψ̂2(2 j ω− `)|2 = 1 for |ω| ≤ 1. (1.42)

From the conditions on the support ofψ̂1 and ψ̂2, one can easily deduce that the
functionsψ j,`,k have frequency support contained in the set

{(ξ1,ξ2) : ξ1 ∈ [−22 j−1,−22 j−4]∪ [22 j−4,22 j−1], | ξ2
ξ1

+ `2− j | ≤ 2− j}.

Thus, each element̂ψ j,`,k is supported on a pair of trapezoids of approximate size
22 j ×2 j , oriented along lines of slopè2− j (see Figure 1.12(b)).

From equations (1.41) and (1.42) it follows that the functions{ψ̂ j,`,k} form a
tiling of the set

Dh = {(ξ1,ξ2) ∈ R̂2 : |ξ1| ≥ 1
8, |ξ2

ξ1
| ≤ 1}.

Indeed, for(ξ1,ξ2) ∈Dh

∑
j≥0

2 j−1

∑
`=−2 j

|ψ̂(h)(ξ A− j
4 B−`

1 )|2 = ∑
j≥0

2 j−1

∑
`=−2 j

|ψ̂1(2−2 j ξ1)|2 |ψ̂2(2 j ξ2

ξ1
− `)|2 = 1. (1.43)

An illustration of this frequency tiling is shown in Figure 1.12(a).

(a)

ξ1

ξ2

(b)

-¾

∼ 22 j

6

?
∼ 2 j

Fig. 1.12 (a) The tiling of the frequency planêR2 induced by the shearlets. The tiling ofDh is
illustrated in solid line, the tiling ofDv is in dashed line. (b) The frequency support of a shearlet
ψ j,`,k satisfies parabolic scaling. The figure shows only the support forξ1 > 0; the other half of the
support, forξ1 < 0, is symmetrical.
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Letting L2(Dh)∨ = { f ∈ L2(R2) : suppf̂ ⊂ Dh}, property (1.43) and the fact that
ψ̂(h) is supported inside[−1

2, 1
2]2 imply that the discrete shearlet system

Ψ (h)
d = {ψ j,`,k : j ≥ 0,−2 j ≤ `≤ 2 j −1,k∈ Z2}

is a Parseval frame forL2(Dh)∨. Similarly, we can construct a Parseval frame for
L2(Dv)∨, whereDv is the vertical coneDv = {(ξ1,ξ2) ∈ R̂2 : |ξ2| ≥ 1

8, | ξ1
ξ2
| ≤ 1}.

Specifically, let

Ã =
(

2 0
0 4

)
, B̃ =

(
1 0
1 1

)
,

andψ(v) be given by

ψ̂(v)(ξ ) = ψ̂(v)(ξ1,ξ2) = ψ̂1(ξ2) ψ̂2

(
ξ1

ξ2

)
.

Then the collection

Ψ (v)
d = {ψ(v)

j,`,k : j ≥ 0,−2 j ≤ `≤ 2 j −1,k∈ Z2}

whereψ(v)
j,`,k = D j

Ã
D`

B̃
Tkψ(v) is a Parseval frame forL2(Dv)∨.

Finally, let ϕ̂ ∈C∞
0 (R2) be chosen to satisfy

|ϕ̂(ξ )|2 + ∑
j≥0

2 j−1

∑
`=−2 j

|ψ̂(h)(ξA− j
4 B−`

1 )|2 χDh
(ξ )

+ ∑
j≥0

2 j−1

∑
`=−2 j

|ψ̂(v)(ξ Ã− j B̃−`)|2 χDv(ξ ) = 1, for ξ ∈ R̂2,

whereχD is the indicator function of the setD . This implies that supp̂ϕ ⊂ [−1
8, 1

8]2,
|ϕ̂(ξ )|= 1 for ξ ∈ [− 1

16,
1
16]

2, and the collection{ϕk : k∈ Z2} defined byϕk(x) =
ϕ(x−k) is a Parseval frame forL2([− 1

16,
1
16]

2)∨.

Thus, letting ̂̃ψ(ω)
j,`,k(ξ ) = ψ̂(ω)

j,`,k(ξ )χDω (ξ ), for ω = h or ω = v, we have the
following result.

Theorem 9.The discrete shearlet system

{ϕk : k∈ Z2}
⋃
{ψ̃(ω)

j,`,k(x) : j ≥ 0, ` =−2 j ,2 j −1, k∈ Z2,ω = h,v}
⋃
{ψ(ω)

j,`,k(x) : j ≥ 0,−2 j +1≤ `≤ 2 j −2, k∈ Z2,ω = h,v},

is a Parseval frame forL2(R2).

The “corner” elements̃ψ(ω)
j,`,k(x), ` =−2 j ,2 j −1, are simply obtained by truncation

on the conesχDω in the frequency domain. Notice that the corner elements in the
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horizontal coneDv match nicely with those in the vertical coneDh. We refer to
[13, 23] for additional details on this construction.

1.5.4 Optimal Representations using Shearlets

One major feature of shearlet system is that, iff is a compactly supported function
which isC2 away from aC2 curve, then the sequence of discrete shearlet coefficients
{〈 f ,ψ j,`,k〉} has (essentially) optimally fast decay. To make this more precise, let
f S
N be theN–term approximation off obtained from theN largest coefficients of its

shearlet expansion, namely

f S
N = ∑

µ∈IN

〈 f ,ψµ〉ψµ ,

where IN ⊂ M is the set of indices corresponding to theN largest entries of the
sequence{|〈 f ,ψµ〉|2 : µ ∈ M}. Also, we follow [2] and introduceSTAR2(A), a
class of indicator functions of setsB with C2 boundaries∂B. In polar coordinates,
let ρ(θ) : [0,2π)→ [0,1]2 be a radius function and defineB by x∈ B if and only if
|x| ≤ ρ(θ). In particular, the boundary∂B is given by the curve inR2:

β (θ) =
(

ρ(θ) cos(θ)
ρ(θ) sin(θ)

)
. (1.44)

The class of boundaries of interest to us are defined by

sup|ρ ′′(θ)| ≤ A, ρ ≤ ρ0 < 1. (1.45)

We say that a setB∈ STAR2(A) if B⊂ [0,1]2 andB is a translate of a set obeying
(1.44) and (1.45). Finally, we define the setE 2(A) of functions which areC2 away
from aC2 edgeas the collection of functions of the form

f = f0 + f1 χB,

where f0, f1 ∈C2
0([0,1]2), B∈ STAR2(A) and‖ f‖C2 = ∑|α|≤2‖Dα f‖∞ ≤ 1. We can

now state the following result from [19].

Theorem 10.Let f ∈ E 2(A) and f S
N be the approximation tof defined above. Then

‖ f − f S
N‖2

2 ≤CN−2 (logN)3.

Notice that the approximation error of shearlet systems significantly outperforms
wavelets, in which case the approximation error‖ f − fW

N ‖2
2 decays at most as fast

asO(N−1) [34], where fW
N is theN–term approximation off obtained from the

N largest coefficients in the wavelet expansion. Indeed, the shearlet representation
is essentially optimal for the kind of functions considered here, since the optimal
theoretical approximation rate (cf. [9]) satisfies
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‖ f − fN‖2
2 ³ N−2, N→ ∞.

Only the curvelet system of Candès and Donoho are known to satisfy similar ap-
proximation properties [2]. However, the curvelet construction has a number of im-
portant differences, including the fact that the curvelet system is not associated with
a fixed translation lattice, and, unlike the shearlet system, is not an affine-like sys-
tem since it is not generated from the action of a family of operators on a single or
finite family of functions.

The optimal sparsity of the shearlet system plays a fundamental role in a number
of applications. For example, the shearlet system can be applied to provide a sparse
representation of Fourier Integral Operators, a very important class of operators
which appear in problems from Partial Differential Equations [17, 18]. Another class
of applications comes from image processing, where the sparsity of the shearlet
representation is closely related to the ability to efficiently separate the relevant
features of an image from noise. A number of results in this direction are described
in [11, 12, 13].

Exercises

1. Prove Proposition 3 by modifying the argument of Proposition 3.
2. Let ψ be a Schwarz class function andSψ be the fine-scale continuous shearlet

transform (forα = 1/2), as defined in this section. Show that, for anys∈ R, the
continuous shearlet transform of the Dirac delta distribution satisfies:

Sψ δ (a,s,(0,0))∼ a−
3
4 ,

asymptotically asa→ 0. Show that ift 6= (0,0), then, for anyN ∈ N there is a
constantCN > 0 such that

Sψ δ (a,s,(0,0))≤CN aN,

asymptotically asa→ 0.
3. Let ψ andSψ be as in Exercise 2. Forp∈R, consider the distributionνp(x1,x2)

defined by
∫

R2
νp(x1,x2) f (x1,x2)dx1dx2 =

∫

R
f (px2,x2)dx2.

Show that, fors=−p andt1 = pt2, we have:

Sψ δ (a,s,(t1, t2))∼ a−
1
4 ,

asymptotically asa→ 0. Show that for all other values oft = (t1, t2) or s, then,
for anyN ∈ N there is a constantCN > 0 such that
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Sψ δ (a,s,(0,0))≤CN aN,

asymptotically asa→ 0.

References

1. J. Blanchard,Minimally supported frequency composite dilation Parseval frame wavelets, to
appear in J. Geom Anal.

2. E.J. Cand̀es and D.L. Donoho,New tight frames of curvelets and optimal representations of
objects withC2 singularities, Comm. Pure Appl. Math.56 (2004), 219–266.

3. E. J. Cand̀es and D. L. Donoho,Continuous curvelet transform: I. Resolution of the wavefront
set, Appl. Comput. Harmon. Anal.19 (2005), 162–197.

4. P. G. Casazza,The art of frame theory, Taiwanese J. Math.,4 (2000), 129–201.
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