Support Vector Machines — Part 2

Scribes: Alexander Zhiliakov* and Sulaimon Oyeleye™

1 Non-linear SVMs

Recall that the standard linear SVM problem reads as follows.
Find (w*,b*) € R? x R such that

* . 1
(W 7b*) = argmm(w,h)eRdXR E <W,W>

subjectto y; ({w,x;) +b) > 1.

€]

We refer to the constrained optimization (1) as a linear SVM problem. The decision
function associated with this problem is

f(x) = sgn((w”,x) +b) )

and it is designed to find the maximum-margin hyperplane {x : (w*,x) +b* = 0}
separating a set of training points Xi,...,X, € RY.
There are two major issues with this classification approach [3, Chapter 1.3]:

1. The linear form of (2) may not be suitable for a classification task, i.e., the train-
ing set is not linearly separable. In this case (w*,b*) simply does not exist.

2. Overfitting may be a serious problem for d > n and we need to somehow mis-
classify some training points in order to avoid overfitting in the presence of noise.
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1.1 Hard and soft margin SVM approaches and the ‘kernel trick’

In order to resolve the first issue, we consider a feature map @ that maps the input
data xi, Xy, ..., X, € X to some Hilbert space 7 called feature space:

DX H ©)

The feature map @ is typically nonlinear and .72 may be infinite dimensional.
Using a feature map &, one can build analogous problem to (1) by considering

the mapped data ®(x;), ®(xz), ..., P(x,) and then solving the nonlinear SVM

problem in the feature space # as follows. Find (w*,b*) € . x R x R" such that

* : 1
(Wh,b") = ATgMIN(w pye 7 xR ) (W, W)

subject to y; ((w,D(x;)) +b) > 1.

“)

This approach is called hard margin SVM approach, and initially was proposed by
Boseretal. [1].

To deal with the second issue, the so called soft margin SVM technique was
introduced by Cortes and Vapnik [2]. While the constraints in (1) force the data set
to be divided by a hyperplane exactly, the soft margin approach? introduces a slack
variables £ € R" to relax this constraint leading to the following nonlinear SVM
optimization problem. Find (w*,b*,£*) € J# x R x R" such that

. 1
(W, 0", &") = argmingy, ) c xr 3 (W, W)

subjectto  yi ((w,@(x;)) +b) > 1-&, & >0.

®)

Assume that there is a kernel function k : X x X — K on the input space* satis-
fying
k(Xi,Xj) = <¢(X,’),¢(Xj)>%. (6)

Given (6), we can then formulate the SVM problem in the dual form as

n 1 N
max (Zl o; — 5 Zl o; (ijiyjk(X,',Xj)>
= =

acR” -
(7

n
subjectto 04 >0, ) 04y =0,
i=1

and correspondingly write the decision function for (5) as

3 The original approach by Cortes and Vapnik also includes a regularization of the objective func-
tional to deal with overrelaxation of the constraints. We omit it here for simplicity.

4 Here and further we will use K for a field (either real R or complex C).
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f(x) = sgn <  yioy <<1>(X),¢(x,-)>;;,ﬂ+b> = sgn <Zn‘,yi 0 (X, X;) +b> :
=1 i=1

l =

To conclude, the ‘kernel trick’ makes it possible to achieve nonlinear separation
in the input space by implicitly mapping the input space into a feature space where
features are linearly separable; see Figure 1. These observations motivates us to
study kernels and their properties and this will be the topic of the following lectures.
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Fig. 1: Illustration of the “kernel trick”. Left: Initial input data xy, ..., x7 € X = R2

is not linearly separable. Right: Mapped data ®(x;), ..., @(x7) € . is separable
in A = &(X).

2 Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Definition 1. Let X # 0 be a set. A function k : X x X — K is called a kernel on X
iff there is a K-Hilbert space 7 and a feature map @ : X — 7 such that for any
x,x' € X

k(x,x') = (D(X), <I>(x)>if

holds.

Given a kernel k, neither @ nor J# are uniquely determined.

Example 1. Let X := R and k(x,x’) := x'x. Obviously, k is a kernel on X with
@) (x) := x being the identity map and 74 := R.
Consider @, : X — R? =: % given by

We have
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and hence £ is a kernel on X also for @, and .743.

Next we present one of the commonly used kernels that has series representation.

Example 2. Let X # 0 and {f,, }r_, be a set of functions f, : X — K with the prop-
erty that f,(x) € ¢2 for any x € X. Then

Kx,X) = Y Fu(x) 7o)
=1
is a kernel on X with ®(x) == f,(x), @ : X — (2, i.e., the sum
(P(X), P(x)) =Y fulX) fulx¥) = k(x,X')
=

is well defined since f,(x) € ¢? for any x € X by Holder’s inequality.

2.1 Properties of kernels

1. I:et k be a kernel on X and A be a map, A : Y — X, where Y is another set. Then,
k(x,x') = k(A(x),A(x')), x,x" € Xis akernel on Y. This include the special case
where A is a restriction map. Hence, if Y C X, then k\Yxx is a kernel.

2. If ky, ko are kernels then k; + k&, is a kernel.
3. If ¢ > 0 and £ is a kernel, then ok is a kernel.

Remark: The space of kernels forms a cone but not a vector space.
Let k1, k> be kernels on X such that, for some x € X,

k1 (x,x) —ky(x,x) <O0.
If k| — ky is kernel, then there exist a map & : X — H such that
0 < (®(x), B(x)) = ki (x,x) — ka(x,%) < 0,
giving a contradiction. So k; — k5 is not a kernel.

4. If k; is a kernel on X; and k» is a kernel on X,, then k;.k; is a kernel on
the tensor space Xj x Xp. In particular, if X; = X; = X, then k(x,x) =
kq (o, X" )ka (x,x’), x,x" € X defines a kernel on X.

Example 3. For any n > 0, the map k,(x,x') := (xx’)", where x,x' € X is a kernel.
Hence, if p : X — R is of the form,
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p(t) =ant"+...+ait+ap

with non-negative coefficients a;, then k(x,x’) = p(xx’), with x,x” € X is a kernel.
In general, the function: k(z,z1) = ((z,2') +¢)™ with z,7/ € C¢,¢ > 0, is a polyno-
mial kernel on C.

Lemma (Taylor type kernels). Let B¢, B« be the open unit ball in C, C4 re-
spectively. Let r > 0 and f : rBc — C be a holomorphic function with Taylor series
expansion;

2) =Y and"; z€rBg
n=0

If a,, > 0 for all n € N, then
k(z,7) = f((27))ca = Y an {27 ) 2,2 € VrBea

defines a kernel on /rBa.
It follows that the restriction to X := {x € R? : ||x||2 < \/r} is a real-valued kernel.

Example 4. Ford € N, x,x' € RY| k(x,x') = exp((x,x')) is a K - valued kernel on
RY.

Example 5. (Exponential kernel). Letd €N, y>0, z=(z1,...,24), 2 = (2}, ....,2)) €
C4. 1t follows from the lemma above that

k(”> = ex i
J/(C"' T [7 o Z}7

12 .
is a kernel on C¥. Its restriction ky = exp(—wyigl‘z), for x,x' € R?, is a kernel on

R4
2.2 Characterization of kernels

Definition: A function k : X x X — R is positive definite if foralln € N, ay, ..., 0, €
R, and all xy,...,x, € X, we have

m
Z k(x;,x;) >0

il ael

Furthermore, it is strictly positive definite if for mutually distinct xq,...,x, € X,

equality only occurs when o = ... = &, = 0. k is symmetric if k(x,x’) = k(x',x), forall x,x' €
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NOTE: K = (k(x;,x;)); j is the Gram matrix.
n m
Y. Y aiajk(xi,x;) > 0 <= K is positive definite.
i=1j=1

Theorem 1. A function k : X x X — R is a kernel if and only if it is symmetric and
positive definite

Proof. (=) If k is a R-kernel, then k(x,x') = (®(x), (X)) = (®(X'), P(x)) =
k(x',x) is symmetric.
Also, foranyn € N, ay,...,a, € R, x1,....,x, € X

Y Y aiok(, <za, xl->,fla,,-d>< >|Zal ()| >0

i=1j=1

Hence, k is positive definite.
(<) Assume k : X x X — R is symmetric and positive definite.

Define
pre:—{za[ 5 nENOt,ERx,EX}
Forany f =YY", aik(., x;), §= Y ojk(. xg) € H), set

m
Z iBjk( xj7xj

i [\/]:

We want to show that this operation defines an inner product on %, hence we
will show that (.,.) is bilinear, symmetric and positive definite.

First we observe that, for any x; € X, we have f(x) = Yi | cik(x;, x;), hence we
can write (f,g) = X7y B, f(x}). Similarly, we can write (f,g) = ¥i_; ct:g(x;). This
shows that (f,g) is independent of the representation of f and g.

By the assumption on k, it is straightforward tp verify that (f,g) is sym-
metric, bilinear and positive, that is (f, f) = XL L., 04ak(x;,x;) > 0 for any
O, vy Oy X1, ooy Xy f € Hpre. We remark that these properties also imply the Cauchy-
Schwartz inequality, | (f,g)|* < (f,f) (g.g) forall f,g,€ Hpp.

Itis also clear that if £ =0, then (f, f) = 0. It remains to show that n{f, f) implies
f =0. WE observe that (f,g) = YI , o4g(x;), then Y7 | a;k(x,x;) = (f, k(x,x;)) <
k(., k(. , x) > (f, f).

Using this observation and Cauchy-Schwartz inequality, for any x € X we have

—IZal x,30) [ = [ (f k(520)) [P < k(- 0),k( 0)) - (f,f) =0
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Thus, f(x) = 0 for any x € X hence f = 0.

Let 5 be a completion of ¢}, and T : 5¢,,, — H be the corresponding isomet-
ric embedding. Thus ¢ is a Hilbert space and for any x € X

<Tk(. , X'),Tk(. , x)>H <k( X)) k(. x)>jf

7 pre

= k(x,x")

The map x +— Tk(. , x) for x € X defines a feature map of k, hence k is a kernel.
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