
Support Vector Machines – Part 2

Scribes: Alexander Zhiliakov? and Sulaimon Oyeleye??

1 Non-linear SVMs

Recall that the standard linear SVM problem reads as follows.
Find (w?,b?) ∈ Rd×R such that

(w?,b?) = argmin(w,b)∈Rd×R
1
2
〈w,w〉

subject to yi (〈w,xi〉+b)≥ 1.
(1)

We refer to the constrained optimization (1) as a linear SVM problem. The decision
function associated with this problem is

f (x) := sgn(〈w?,x〉+b?) (2)

and it is designed to find the maximum-margin hyperplane {x : 〈w?,x〉+ b? = 0}
separating a set of training points x1, . . . ,xn ∈ Rd .

There are two major issues with this classification approach [3, Chapter 1.3]:

1. The linear form of (2) may not be suitable for a classification task, i.e., the train-
ing set is not linearly separable. In this case (w?,b?) simply does not exist.

2. Overfitting may be a serious problem for d ≥ n and we need to somehow mis-
classify some training points in order to avoid overfitting in the presence of noise.
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1.1 Hard and soft margin SVM approaches and the ‘kernel trick’

In order to resolve the first issue, we consider a feature map Φ that maps the input
data x1, x2, . . . , xn ∈ X to some Hilbert space H called feature space:

Φ : X→H (3)

The feature map Φ is typically nonlinear and H may be infinite dimensional.
Using a feature map Φ , one can build analogous problem to (1) by considering

the mapped data Φ(x1), Φ(x2), . . . , Φ(xn) and then solving the nonlinear SVM
problem in the feature space H as follows. Find (w?,b?) ∈H ×R×Rn such that

(w?,b?) = argmin(w,b)∈H ×R
1
2
〈w,w〉H

subject to yi (〈w,Φ(xi)〉+b)≥ 1.
(4)

This approach is called hard margin SVM approach, and initially was proposed by
Boser et al. [1].

To deal with the second issue, the so called soft margin SVM technique was
introduced by Cortes and Vapnik [2]. While the constraints in (1) force the data set
to be divided by a hyperplane exactly, the soft margin approach3 introduces a slack
variables ξ ∈ Rn to relax this constraint leading to the following nonlinear SVM
optimization problem. Find (w?,b?,ξ ?) ∈H ×R×Rn such that

(w?,b?,ξ ?) = argmin(w,b)∈H ×R
1
2
〈w,w〉H

subject to yi (〈w,Φ(xi)〉+b)≥ 1−ξi, ξi ≥ 0.
(5)

Assume that there is a kernel function k : X×X→K on the input space4 satis-
fying

k(xi,x j) =
〈
Φ(xi),Φ(x j)

〉
H

. (6)

Given (6), we can then formulate the SVM problem in the dual form as

max
α∈Rn

(
n

∑
i=1

αi−
1
2

N

∑
i=1

αi α j yi y j k(xi,x j)

)

subject to αi ≥ 0,
n

∑
i=1

αi yi = 0,

(7)

and correspondingly write the decision function for (5) as

3 The original approach by Cortes and Vapnik also includes a regularization of the objective func-
tional to deal with overrelaxation of the constraints. We omit it here for simplicity.
4 Here and further we will use K for a field (either real R or complex C).
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f (x) = sgn

(
n

∑
i=1

yi αi 〈Φ(x),Φ(xi)〉H +b

)
= sgn

(
n

∑
i=1

yi αi k(x,xi)+b

)
.

To conclude, the ‘kernel trick’ makes it possible to achieve nonlinear separation
in the input space by implicitly mapping the input space into a feature space where
features are linearly separable; see Figure 1. These observations motivates us to
study kernels and their properties and this will be the topic of the following lectures.
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Fig. 1: Illustration of the “kernel trick”. Left: Initial input data x1, . . . , x7 ∈ X = R2

is not linearly separable. Right: Mapped data Φ(x1), . . . , Φ(x7) ∈H is separable
in H = Φ(X).

2 Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Definition 1. Let X 6= /0 be a set. A function k : X×X→K is called a kernel on X
iff there is a K-Hilbert space H and a feature map Φ : X→H such that for any
x,x′ ∈ X

k(x,x′) =
〈
Φ(x′),Φ(x)

〉
H

holds.

Given a kernel k, neither Φ nor H are uniquely determined.

Example 1. Let X := R and k(x,x′) := x′ x. Obviously, k is a kernel on X with
Φ1(x) := x being the identity map and H1 := R.
Consider Φ2 : X→ R2 =: H2 given by

Φ2(x) :=
1√
2
(x, x).

We have 〈
Φ2(x′),Φ2(x)

〉
R2 =

x′x√
2
+

x′x√
2
= x′x =: k(x,x′),



4 Scribes: Alexander Zhiliakov and Sulaimon Oyeleye

and hence k is a kernel on X also for Φ2 and H2.

Next we present one of the commonly used kernels that has series representation.

Example 2. Let X 6= /0 and { fn}∞
n=1 be a set of functions fn : X→K with the prop-

erty that fn(x) ∈ `2 for any x ∈ X. Then

k(x,x′) :=
∞

∑
i=1

fn(x) fn(x′)

is a kernel on X with Φ(x) := fn(x), Φ : X→ `2, i.e., the sum

〈
Φ(x′),Φ(x)

〉
`2 =

∞

∑
i=1

fn(x) fn(x′) =: k(x,x′)

is well defined since fn(x) ∈ `2 for any x ∈ X by Hölder’s inequality.

2.1 Properties of kernels

1. Let k be a kernel on X and A be a map, A : Ȳ
¯
→X, where Ȳ

¯
is another set. Then,

k(x,x′) := k(A(x),A(x′)), x,x′ ∈X is a kernel on Ȳ
¯

. This include the special case
where A is a restriction map. Hence, if Ȳ

¯
⊂ X, then k|Ȳ

¯
×X is a kernel.

2. If k1, k2 are kernels then k1 + k2 is a kernel.

3. If α ≥ 0 and k is a kernel, then αk is a kernel.

Remark: The space of kernels forms a cone but not a vector space.
Let k1, k2 be kernels on X such that, for some x ∈ X,

k1(x,x)− k2(x,x)< 0.

If k1− k2 is kernel, then there exist a map Φ : X→ H such that

0≤ 〈Φ(x),Φ(x)〉= k1(x,x)− k2(x,x)< 0,

giving a contradiction. So k1− k2 is not a kernel.

4. If k1 is a kernel on X1 and k2 is a kernel on X2, then k1.k2 is a kernel on
the tensor space X1 × X2. In particular, if X1 = X2 = X, then k(x,x′) :=
k1(x,x′)k2(x,x′), x,x′ ∈ X defines a kernel on X.

Example 3. For any n > 0, the map kn(x,x′) := (xx′)n, where x,x′ ∈ X is a kernel.
Hence, if p : X→ R is of the form,
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p(t) = antn + ...+a1t +a0

with non-negative coefficients ai, then k(x,x′) = p(xx′), with x,x′ ∈ X is a kernel.
In general, the function: k(z,z1) = (〈z,z′〉+ c)m with z,z′ ∈ Cd ,c ≥ 0, is a polyno-
mial kernel on Cd .

Lemma (Taylor type kernels). Let BC, BCd be the open unit ball in C,Cd re-
spectively. Let r > 0 and f : rBC→C be a holomorphic function with Taylor series
expansion;

f (z) =
∞

∑
n=0

anzn; z ∈ rBC

If an ≥ 0 for all n ∈ N, then

k(z,z′) := f (
〈
z,z′
〉
)Cd =

∞

∑
n=0

an
〈
z,z′
〉n
Cd , z,z′ ∈

√
rBCd

defines a kernel on
√

rBCd .
It follows that the restriction to X := {x ∈ Rd : ||x||2 <

√
r} is a real-valued kernel.

Example 4. For d ∈ N, x,x′ ∈ Rd , k(x,x′) = exp(〈x,x′〉) is a K - valued kernel on
Rd .

Example 5. (Exponential kernel). Let d ∈N, γ > 0, z=(z1, ...,zd), z′=(z′1, ...,z
′
d)∈

Cd . It follows from the lemma above that

k(z,z
′)

γ,Cd := exp(−γ
−2

d

∑
j=1

(z j,−z̄′j)
2)

is a kernel on Cd . Its restriction kγ := exp(− ||x−x′||22
γ2 ), for x,x′ ∈ Rd , is a kernel on

Rd .

2.2 Characterization of kernels

Definition: A function k : X×X→R is positive definite if for all n∈N, α1, ...,αn ∈
R, and all x1, ...,xn ∈ X, we have

n

∑
i=1

m

∑
j=1

αiα jk(xi,x j)≥ 0

Furthermore, it is strictly positive definite if for mutually distinct x1, ...,xn ∈ X,
equality only occurs when α1 = ...=αn = 0. k is symmetric if k(x,x′)= k(x′,x), f or all x,x′ ∈
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X.

NOTE: K = (k(xi,x j))i, j is the Gram matrix.

n

∑
i=1

m

∑
j=1

αiα jk(xi,x j)≥ 0 ⇐⇒ K is positive definite.

Theorem 1. A function k : X×X→ R is a kernel if and only if it is symmetric and
positive definite

Proof. (=⇒) If k is a R-kernel, then k(x,x′) = 〈Φ(x),Φ(x′)〉 = 〈Φ(x′),Φ(x)〉 =
k(x′,x) is symmetric.
Also, for any n ∈ N, α1, ...,αn ∈ R, x1, ...,xn ∈ X

n

∑
i=1

m

∑
j=1

αiα jk(xi,x j) =

〈
n

∑
i=1

αiΦ(xi),
m

∑
j=1

α jΦ(x j)

〉
= ||

n

∑
i=1

αiΦ(xi)||2 ≥ 0

Hence, k is positive definite.
(⇐=) Assume k : X×X→ R is symmetric and positive definite.
Define

Hpre :=

{
n

∑
i=1

αi k(. , xi) : n ∈ N,αi ∈ R,xi ∈ X

}
.

For any f = ∑
n
i=1 αik(. , xi), g = ∑

m
j=1 α jk(. , x′j) ∈ Hp, set

〈 f ,g〉 :=
n

∑
i=1

m

∑
j=1

αiβ jk(x′j,x j).

We want to show that this operation defines an inner product on Hpre, hence we
will show that 〈., .〉 is bilinear, symmetric and positive definite.

First we observe that, for any x′j ∈X, we have f (x′j) = ∑
n
i=1 αik(x′j,xi), hence we

can write 〈 f ,g〉= ∑
m
j=1 β j f (x′j). Similarly, we can write 〈 f ,g〉= ∑

n
i=1 αig(xi). This

shows that 〈 f ,g〉 is independent of the representation of f and g.
By the assumption on k, it is straightforward tp verify that 〈 f ,g〉 is sym-

metric, bilinear and positive, that is 〈 f , f 〉 = ∑
n
i=1 ∑

m
j=1 αiα jk(xi,x j) ≥ 0 for any

α1, ...,αn,x1, ...,xn, f ∈Hpre. We remark that these properties also imply the Cauchy-
Schwartz inequality, | 〈 f ,g〉 |2 ≤ 〈 f , f 〉〈g,g〉 for all f ,g,∈Hpre.

It is also clear that if f = 0, then 〈 f , f 〉= 0. It remains to show that n〈 f , f 〉 implies
f = 0. WE observe that 〈 f ,g〉 = ∑

n
i=1 αig(xi), then ∑

n
i=1 αik(x,xi) = 〈 f ,k(x,xi)〉 ≤

k(. , x)k(. , x)> 〈 f , f 〉.
Using this observation and Cauchy-Schwartz inequality, for any x ∈ X we have

| f (x)|2 = |
n

∑
i=1

αik(x,xi)|2 = | 〈 f ,k(.,x)〉 |2 ≤ 〈k(. , x),k(. , x)〉 .〈 f , f 〉= 0
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Thus, f (x) = 0 for any x ∈ X hence f = 0.

Let H be a completion of Hpre and T : Hpre→H be the corresponding isomet-
ric embedding. Thus H is a Hilbert space and for any x ∈ X〈

T k(. , x′),T k(. , x)
〉

H =
〈
k(. , x′),k(. , x)

〉
Hpre

= k(x,x′)

The map x 7→ T k(. , x) for x ∈ X defines a feature map of k, hence k is a kernel.
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