
Reproducing Kernel Hilbert Spaces - Part II

Scribes: Malcolm Davies and Ahmed Abouserie

1 Properties of Reproducing Kernel Hilbert Spaces

We have seen that there is a one-to-one correspondence between kernels and re-
producing kernel Hilbert spaces (RKHS). In this section, we study properties of
functions in a RKHS that are inherited from the reproducing kernel function. Con-
versely, properties of a reproducing kernel such as boundedness, measurability and
integrability are characterized in terms of analogous properties of all functions in
the associated RKHS.

1.1 Boundedness

We recall that, for a function f on a topological space Z, the uniform norm of f is
given by ‖ f‖b = supz∈Z | f (z)| (see [1, Chapters 4.2]). For kernel functions K on X×
X , we introduce the norm ‖ · ‖∞ (not to be confused with the essential supremum)
that is given by:

‖K‖∞ := sup
x∈X

√
K(x,x). (1)

Note that in general, ‖K‖b 6= ‖K‖∞ for any such K. However, it is natural to inquire
whether there exists a correlation between the two norms in terms of characterizing
the boundedness of K. The following lemma is a consequence of the reproducing
property.

Published: February 21, 2020

1



2 Scribes: Malcolm Davies and Ahmed Abouserie

Lemma 1. Let K : X ×X → K be a kernel on a reproducing kernel Hilbert space
H with the feature map Φ : X →H . Then K is bounded iff

‖K‖∞ := sup
x∈X

√
K(x,x)< ∞.

Proof. Recall that the reproducing property of H implies that for any x,x′ ∈ X ,

K(x,x′) =
〈
Φ(x′),Φ(x)

〉
=
〈
K(·,x),K(·,x′)

〉
. (2)

Hence, by the Cauchy-Schwarz inequality, we get that

|K(x,x′)|2 = |
〈
K(·,x),K(·,x′)

〉
|2

≤ ‖K(·,x)‖2
H · ‖K(·,x′)‖2

H

= K(x,x) ·K(x′,x′).

Using properties of the supremum, along with the continuity and monotone increas-
ing nature of the square root function on [0,∞), we get that

‖K‖b := sup
(x,x′)∈X×X

|K(x,x′)|

≤ sup
x,x′∈X

√
K(x,x) ·

√
K(x′,x′)

= sup
x∈X

√
K(x,x) · sup

x′∈X

√
K(x′,x′)

= sup
x∈X

K(x,x).

On the other hand, we have that

sup
(x,x′)∈X×X

|K(x,x′)| ≥ sup
(x,x)∈X×X

K(x,x)

since {(x,x)|x ∈ X} ⊆ {(x,x′)|x,x′ ∈ X} by choosing x′ = x. Thus, equality holds
and we get that K is bounded iff

‖K‖b := sup
(x,x′)∈X×X

|K(x,x′)|= sup
x∈X

K(x,x)< ∞.

Again, by the monotone continuity of the square root and the fact K(x,x) ≥ 0, this
is equivalent to boundedness with respect to our more useful norm definition from
[2, Chapter 4.3]. Thus, K is bounded iff ‖K‖b < ∞ iff

‖K‖∞ := sup
x∈X

√
K(x,x)< ∞

Thus, we conclude that either of the norms, ‖.‖b and ‖.‖∞, can be used to determine
boundedness of K. ut
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Next, we relate the boundedness of K to the boundedness of its feature map Φ .

Lemma 2. Let K : X ×X → K be a kernel on a reproducing kernel Hilbert space
H with feature space H0 and feature map Φ : X →H0. Then K is bounded iff Φ

is bounded.

Proof. Since Φ : X →H0 is a feature map for K, an application of (2) gives that

‖Φ(x)‖2
H0

= 〈Φ(x),Φ(x)〉H0
= 〈K(·,x),K(·,x)〉H = K(x,x).

Taking the supremum over X on both sides gives ‖Φ‖2
b = ‖K‖2

∞. Thus, ‖Φ‖2
b < ∞

iff ‖K‖2
∞ < ∞ which is our desired characterization of boundedness.

ut

Now we are able to characterize the boundedness of the reproducing kernel in
terms of the feature space elements f ∈H .

Lemma 3. Let K : X ×X → K be a kernel on X with a reproducing kernel Hilbert
space H . Then K is bounded iff every f ∈H is bounded (as a function).

Moreover, in this case the induction map (id) : H → l∞(X) is continuous, with

‖(id) : H → l∞(X)‖= ‖K‖∞.

Proof. ( =⇒ ): Assume K is bounded. By virtue of the properties of RKHS’s for
H and the Cauchy-Schwarz inequality, we have for all x ∈ X and f ∈H ,

| f (x)|2 = | 〈 f ,K(·,x)〉H |
2 ≤ ‖ f‖2

H K(x,x).

Taking the supremum over X gives

‖ f‖b ≤ ‖ f‖H ‖K‖∞.

Since K is assumed bounded and f ∈H =⇒ ‖ f‖H < ∞, then we have ‖ f‖b < ∞,
showing boundedness.

This also shows that (id) : H → l∞(X) is well-defined, and that

‖(id) : H → l∞(X)‖ ≤ ‖K‖∞. (3)

(⇐= ): Conversely, if every f ∈H is bounded, we get that the inclusion (id) :
H → l∞(X) is well-defined. We also observe that (id) is clearly a linear map since

(id)(α f +g)(x) = (α f +g)(x) = α f (x)+g(x) = α(id)( f )(x)+(id)(g)(x)

for any α ∈K and f ,g ∈H .
We will use the closed graph theorem to prove that (id) is bounded. To show that

(id) has a closed graph, let ( fn)
∞
n=1 be a sequence of functions in H such that
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lim
n→∞
‖ fn− f‖H = 0 (4)

and lim
n→∞
‖id( fn)−g‖∞ = lim

n→∞
‖ fn−g‖∞ = 0 (5)

for some f ∈H and g ∈ l∞(X). Then, we have that for any x ∈ X ,

lim
n→∞
| fn(x)− f (x)|2 = lim

n→∞
| 〈 fn,K(·,x)〉H −〈 f ,K(·,x)〉H |

2 (reproducing kernel property)

= lim
n→∞
| 〈 fn− f ,K(·,x)〉H |

2 (inner product property)

≤ lim
n→∞
‖ fn− f‖2

H ‖K(·,x)‖2
H (Cauchy-Schwarz inequality)

= 0. (by (5))

This relation holds iff fn converges to f pointwise as n→ ∞. Also, since | fn(x)−
g(x)| ≤ ‖ fn−g‖∞ for any x ∈ X , line (5) implies that limn→∞ | fn(x)−g(x)|= 0 for
every x ∈ X , which means that f (x) = g(x) for all x ∈ X iff f = (id)( f ) = g. There-
fore, we conclude that (id) : H → l∞(X) has a closed graph and hence is bounded.
Since (id) is linear, this means that it is also continuous.

Finally, for any x ∈ X we have that

|K(x,x)| ≤ ‖K(·,x)‖∞ ≤ ‖(id) : H → l∞(X)‖‖K(·,x)‖H
= ‖(id) : H → l∞(X)‖

√
(K(x,x)

which implies that
√

K(x,x) ≤ ‖(id) : H → l∞(X)‖. Since this holds for every
x ∈ X , taking the sup over X on both sides gives that

‖K‖∞ ≤ ‖(id) : H → l∞(X)‖. (6)

By Lemma 1, this shows that K is bounded. In addition, inequalities (3) and (6) give
that ‖K‖∞ ≤ ‖(id) : H → l∞(X)‖. ut

1.2 Measurability

Here, we focus on kernels over a measurable space, (X ,µ). We start with the follow-
ing characterization of the measurability of a kernel K in terms of the measurability
of the functions in the associated RKHS.

Lemma 4. Let (X ,µ) be a measurable space and K be a kernel on X with reproduc-
ing kernel Hilbert space H . Every f ∈H is µ-measurable iff the restricted kernel
function K(·,x′) : X → R is µ-measurable for all x′ ∈ X.
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If, in addition, we know that the feature space H is separable, then we are able
to relate the measurability of K(·,x) to that of its feature map Φ . The next lemma
gives sufficient conditions for the measurability of the Φ and the measurability of
the reproducing kernel.

Lemma 5. Let (X ,µ) be a measurable space and K be a kernel on X with reproduc-
ing kernel Hilbert space H such that the restricted kernel function K(·,x′) : X→R
is µ-measurable for all x′ ∈ X. If H is separable, then

(i) the canonical feature map Φ : X →H is µ-measurable,
(ii) the full kernel K : X×X →R is µ×µ-measurable on the product space X×X.

Proof. (sketch):

1. Consider an element of the dual space of bounded linear functionals w∈H ′. By
the Riesz representation theorem, there exists f ∈H such that for any x ∈ X

w(Φ(x)) = 〈w,Φ(x)〉H ′,H = 〈 f ,Φ(x)〉H = f (x). (7)

Hence, w(Φ(·)) is measurable by the above lemma (4).

2. Recall the statement of Petti’s measurability theorem [2, A.5.19]:
Let E be a Banach space and (Ω ,A ) be a measurable space. Then f : Ω → E is
an E-valued measurable function iff the following two conditions are satisfied:

(i) f is weakly measurable (i.e. 〈x′, f 〉 : Ω → R is measurable for all x ∈ E ′).
(ii) f (Ω) is a separable subset of E

Hence, (7) and the seperability of H imply that Φ is µ-measurable.

3. The second assertion now follows from K(x,x′) = 〈Φ(x),Φ(x′)〉 and the fact
that the inner product is continuous (Continuity implies measurability on metric
or topological spaces). ut

1.3 Integrability

Finally, we investigate the integrability of measurable kernels, K, over a measurable
space, (X ,µ). We start by stating some useful properties of Lp integral operators of
kernels.

Theorem 1. Let (X ,µ) be a measurable space, µ be a σ -finite measure on X, and
H be a separable RKHS over X with measurable kernel K : X ×X → R. If there
exists p ∈ [1,∞) such that

‖K‖Lp :=
(∫

X
K(x,x)p/2 dµ(x)

)1/p

< ∞, (8)
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then the following holds:

(i) H consists of Lp(µ)-integrable functions.
(ii) The inclusion map (id) : H → Lp(µ) is continuous.
(iii) The adjoint of the inclusion map exists. It is the operator SK : Lp′ →H given

by

SKg(x) =
∫

X
K(x,x′)g(x′)dµ(x′) (9)

for g ∈ Lp′ , x ∈ X, and conjugate exponents 1
p +

1
p′ = 1.

Remark: The Lp norm here is not the standard one, rather it takes the Lp norm of
the square root of the input K. This is analogous to the special ∞-norm for kernels
developed above.

Proof. (i),(ii) Fix f ∈H . Then since ‖K(·,x)‖H =
√

K(x,x) we have

‖ f‖p
Lp =

∫
X
| f (x)|p dµ(x)

=
∫

X
| 〈 f ,K(·,x)〉 |p dµ(x)

≤ ‖ f‖p
H

∫
X
(K(x,x))p/2 dµ(x)

= ‖ f‖p
H ‖K‖

p
Lp

This shows that f ∈ Lp(µ) and that (id) : H → Lp(µ) is continuous with

‖(id) : H → Lp(µ)‖ ≤ ‖K‖Lp .

(iii) For g ∈ Lp′ we have that∫
X
|K(x,x′)g(x′)|dµ(x′)≤

√
K(x,x)

∫
X

√
K(x′,x′)

∣∣g(x′)∣∣ dµ(x′) (10)

≤
√

K(x,x)‖K‖Lp‖g‖Lp′ (11)

Here, line (10) follows from the Schwartz inequality and the fact (from the proof
of Lemma 1) that |K(x,x′)|2 ≤ K(x,x)K(x′,x′). Line (11) is due to Hölder’s in-
equality. Altogether, this shows the integrability of K(x,x′)g(x′) and thus the ex-
istence (as a number in R) of SKg(x) for all x ∈ X . Finally, we have

SKg(x) =
∫

X

〈
Φ(x′), Φ(x)

〉
H

g(x′)dµ(x′)

=

〈∫
X

g(x′)Φ(x′)dµ(x′), Φ(x)
〉

H

.

This shows that SKg := ḡ =
∫

X g(x′)Φ(x′)dµ(x′) ∈H . ut

Remark: (Topological properties of H in relation to the adjoint SK)
Under the conditions of Theorem 1, using the fact that a bounded linear operator has
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a dense image if and only if its adjoint is injective, one can also derive the following
properties for the feature space H in terms of the adjoint map SK

1. H is dense in Lp iff the adjoint operator SK : Lp′ →H is injective.
2. The adjoint SK : Lp′ → H has a dense image SK(Lp′) iff the inclusion (id) :

H → Lp is injective.

We conclude by stating some special properties of L2 integral kernel operators
over a measurable space (X ,µ) for which there exists a σ -finite measure µ .

Theorem 2. Let (X ,µ) be a measurable space, µ be a σ -finite measure on X, and
H be a separable RKHS over X with measurable kernel K : X×X → R such that

‖K‖L2 =

(∫
X

K(x,x)dµ(x)
)1/2

< ∞, (12)

then

(i) the Hilbert-Schmidt (adjoint) operator SK : L2→H given by

SKg(x) =
∫

X
K(x,x′)g(x′)dµ(x′)

exists for g ∈ L2, x ∈ X.
(ii) the Hilbert-Schmidt (adjoint) operator has

‖SK‖HS = ‖K‖L2 (13)

where we define ‖S‖2
HS := ∑i ‖Sei‖2

L2 for general operator S and orthonormal
basis {ei} ⊆H .

(iii) The integral operator TK = S∗KSK : L2(µ)→ L2(µ) is compact, positive, and
self-adjoint.

Proof. (i) Recall from the proof of Theorem 1 that for f ∈H , g ∈ L2, and (id) :
H → L2,

〈g,(id) f 〉L2 =
∫

X
g(x)〈 f ,K(·,x)〉H dµ

=

〈
f ,
∫

X
g(x)K(·,x)dµ(x)

〉
H

= 〈 f ,SKg〉H

which gives that ḡ := SKg ∈H .
(ii) Let {ei} ⊆H be an orthonormal basis. Then
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‖SK‖2
HS =

∞

∑
i=1
‖S∗Kei‖2

L2

=
∫

X

∞

∑
i=1
|S∗Kei(x)|2 dµ(x)

=
∫

X

∞

∑
i=1
|ei(x)|2 dµ(x)

∗
=
∫

X
K(x,x)2 dµ(x)

= ‖K‖2
L2

where the equality (*) follows from a previous result that K(x,x′) = ∑ j ei(x)ei(x′).
Since ‖S∗K‖2

HS = ‖K‖L2 < ∞, this shows S∗K is HS-norm bounded, and S∗K ∈ HS.
Consequently, its adjoint SK is Hilbert-Schmidt as well.

(iii) The properties of the integral operator TK follow directly from its definition
and the properties of Sk. ut

Note: Here, we have that S∗K = (id) : H → L2(µ), and so TK := S∗KSK = (id)S∗K .
However, it does not follow that TK = SK . The critical point is that L2(µ) is not a
space of functions, but rather a space of equivalence classes of functions. Hence,
SKg(x) ∈H is defined for x ∈ X but TK f (x) ∈ L2(µ) is not.
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