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1 Properties of Reproducing Kernel Hilbert Spaces

We have seen that there is a one-to-one correspondence between kernels and re-
producing kernel Hilbert spaces (RKHS). In this section, we study properties of
functions in a RKHS that are inherited from the reproducing kernel function. Con-
versely, properties of a reproducing kernel such as boundedness, measurability and
integrability are characterized in terms of analogous properties of all functions in
the associated RKHS.

1.1 Boundedness

We recall that, for a function f on a topological space Z, the uniform norm of f is
given by || f||» = sup_c,|f(z)| (see [1, Chapters 4.2]). For kernel functions K on X x
X, we introduce the norm || - || (not to be confused with the essential supremum)
that is given by:
1K oo := sup /K (x,x). ey
xeX

Note that in general, ||K|| # ||K ||« for any such K. However, it is natural to inquire
whether there exists a correlation between the two norms in terms of characterizing
the boundedness of K. The following lemma is a consequence of the reproducing

property.
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Lemma 1. Let K : X X X — K be a kernel on a reproducing kernel Hilbert space
JC with the feature map ® : X — . Then K is bounded iff

|K |0 := sup /K (x,x) < oo.
xeX

Proof. Recall that the reproducing property of J# implies that for any x,x’ € X,
K(x,x') = (D), ®(x)) = (K(-,x),K(-,x)). 2)
Hence, by the Cauchy-Schwarz inequality, we get that
|K(x7xl)‘2 = | <K(~,x),K(~,xl)> ‘2
< K215 - IK )15
=K(x,x) - K(x',x).

Using properties of the supremum, along with the continuity and monotone increas-
ing nature of the square root function on [0, ), we get that

IKllp == sup |K(x,x')
(xx)eX XX

< sup \/K(x,x)-\/K(x’,x’)

xx'eX

=sup+/K(x,x)-sup \/K(x',x")
xeX xeXx

= supK(x,x).
xeX

On the other hand, we have that

sip |K(¥)| > sup K(x,9)
(rx)eX xX (xx)EX XX

since {(x,x)|x € X} C {(x,x')|x,x’ € X} by choosing x' = x. Thus, equality holds
and we get that K is bounded iff

IK||p:= sup |K(x,x')] =supK(x,x) < .
(xx")EX XX xeX

Again, by the monotone continuity of the square root and the fact K(x,x) > 0, this
is equivalent to boundedness with respect to our more useful norm definition from
[2} Chapter 4.3]. Thus, K is bounded iff || K||, < oo iff

[IK || := sup /K (x,x) < o0
xeX

Thus, we conclude that either of the norms, ||.|| and ||.||-, can be used to determine
boundedness of K. O
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Next, we relate the boundedness of K to the boundedness of its feature map .

Lemma 2. Let K : X X X — K be a kernel on a reproducing kernel Hilbert space
FC with feature space 4 and feature map ® : X — 4. Then K is bounded iff ®
is bounded.

Proof. Since @ : X — 4 is a feature map for K, an application of (2) gives that
”q)(x)”ii‘f) = <¢(x)7¢(x)>ﬁ’() = <K('7x)7K('ﬂx>>%” = K(x,x).

Taking the supremum over X on both sides gives || ®||? = ||K||%. Thus, || P < e
iff || K||2, < oo which is our desired characterization of boundedness.
O

Now we are able to characterize the boundedness of the reproducing kernel in
terms of the feature space elements f € 7.

Lemma 3. Let K : X x X — K be a kernel on X with a reproducing kernel Hilbert
space €. Then K is bounded iff every f € 5 is bounded (as a function).
Moreover, in this case the induction map (id) : 7 — 1°(X) is continuous, with

1(id) : A = I (X)|| = [ K]]oo-

Proof. (= ): Assume K is bounded. By virtue of the properties of RKHS’s for
#¢ and the Cauchy-Schwarz inequality, we have for all x € X and f € JZ,

F)P = 1K) 50 [P < 1150 K(x,).
Taking the supremum over X gives
£ lls < [1f 1L 1Kl

Since K is assumed bounded and f € 5 = || f||» < oo, then we have || f||, < oo,
showing boundedness.
This also shows that (id) : 5 — [=°(X) is well-defined, and that

1(id) : A = I (X)|| < [[K]]eo- ©)

( <=): Conversely, if every f € . is bounded, we get that the inclusion (id) :
A — 1”(X) is well-defined. We also observe that (id) is clearly a linear map since

(id)(af +8)(x) = (af +8)(x) = otf (x) + g (x) = &(id) (f) (x) + (id) (&) (x)

forany oo € Kand f,g € 7.
We will use the closed graph theorem to prove that (id) is bounded. To show that
(id) has a closed graph, let (f,,);>_; be a sequence of functions in % such that
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r}g{i“fn_f”)?‘”:o 4)
and  lim [id(f,) = g[lw = lim [| f — 8[| = O (5)

for some f € 5 and g € [*(X). Then, we have that for any x € X,

Tim [ £ () = f)IP = Tim | (£, K(-00) s = (F.KC20) [

(reproducing kernel property)

= r}gr; | (fo—fK(-%)) 0 |2 (inner product property)
< lim || fu = 21K )13 (Cauchy-Schwarz inequality)
=0. (by (5))

This relation holds iff f;, converges to f pointwise as n — oo. Also, since |f,(x) —
g(x)] < fn — &l for any x € X, line (5) implies that lim,,_e. | f;, (x) — g(x)| = O for
every x € X, which means that f(x) = g(x) for all x € X iff f = (id)(f) = g. There-
fore, we conclude that (id) : 77 — [ (X) has a closed graph and hence is bounded.
Since (id) is linear, this means that it is also continuous.

Finally, for any x € X we have that
K (x,x)| < [|K(-,x)[|leo < [ (i) = A7 = IZ(X)[[K(,5) [ 2

= [[(id) : A = IZ(X)[|/ (K (x,x)

which implies that \/K(x,x) < ||(id) : 2 — I*(X)||. Since this holds for every
x € X, taking the sup over X on both sides gives that

1Kl < [[(id) : 77 = IZ(X)]. (6)

By Lemma this shows that K is bounded. In addition, inequalities (3) and (6) give
that || K||e < ||(id) : 5 — I*(X)||. O

1.2 Measurability

Here, we focus on kernels over a measurable space, (X, it). We start with the follow-
ing characterization of the measurability of a kernel K in terms of the measurability
of the functions in the associated RKHS.

Lemma 4. Let (X, ) be a measurable space and K be a kernel on X with reproduc-
ing kernel Hilbert space 5€. Every f € S is i-measurable iff the restricted kernel
Sfunction K(-,x') : X — R is p-measurable for all x' € X.
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If, in addition, we know that the feature space ¢ is separable, then we are able
to relate the measurability of K(-,x) to that of its feature map ®. The next lemma
gives sufficient conditions for the measurability of the @ and the measurability of
the reproducing kernel.

Lemma 5. Let (X, ) be a measurable space and K be a kernel on X with reproduc-
ing kernel Hilbert space 3¢ such that the restricted kernel function K(-,x') : X — R
is W-measurable for all X' € X. If H is separable, then

(i) the canonical feature map ® : X — F is [L-measurable,
(ii) the full kernel K : X x X — R is W X (i-measurable on the product space X x X.

Proof. (sketch):

1. Consider an element of the dual space of bounded linear functionals w € #”’. By
the Riesz representation theorem, there exists f € ¢ such that for any x € X

w(PW)) = (W, PW)) s s = ([, P (X)) s = [ (%) )

Hence, w(®(-)) is measurable by the above lemma (4).

2. Recall the statement of Petti’s measurability theorem [2, A.5.19]:
Let E be a Banach space and (£2,97) be a measurable space. Then f : Q — E is
an E-valued measurable function iff the following two conditions are satisfied:

(i) f is weakly measurable (i.e. (X', f) :  — R is measurable for all x € E').
(ii)f (Q) is a separable subset of E

Hence, (7) and the seperability of .77 imply that @ is y-measurable.
3. The second assertion now follows from K(x,x') = (®(x),®(x')) and the fact

that the inner product is continuous (Continuity implies measurability on metric
or topological spaces). O

1.3 Integrability

Finally, we investigate the integrability of measurable kernels, K, over a measurable
space, (X, ). We start by stating some useful properties of L? integral operators of
kernels.

Theorem 1. Ler (X, 1) be a measurable space, [t be a G-finite measure on X, and
FC be a separable RKHS over X with measurable kernel K : X x X — R. If there
exists p € [1,00) such that

1/p
Kl = (K 2auo) < ®



6 Scribes: Malcolm Davies and Ahmed Abouserie

then the following holds:

(i) A consists of LP (l)-integrable functions.
(ii) The inclusion map (id) : 7€ — LP () is continuous.
iii e adjoint of the inclusion map exists. It is the operator Sk : " s given
(iii) The adj f th l p It is the op Sk LP g
by

Skgl) = [ K(x.)g(x)du() ©)

forge L x€X, and conjugate exponents ; + ? =1

Remark: The L” norm here is not the standard one, rather it takes the L” norm of
the square root of the input K. This is analogous to the special eo-norm for kernels
developed above.

Proof. (i),(ii) Fix f € . Then since ||K(-,x)||,» = /K(x,x) we have

1715 = [ 1 du)

= [ 1K) P dut)
<A1 | (K(rx))? 2 dp
=171 1K1,

This shows that f € LP(u) and that (id) : 5# — LP(u) is continuous with
1(id) - A — LP() || < [|K][zr-

(iii) For g € L” we have that

/|Kxx Ndu(x' <\/Kxx/\/Kxx )|g(x)| du(x') (10)
< \/K X, X ”KHL””g”LP’ (11

Here, line (10) follows from the Schwartz inequality and the fact (from the proof
of Lemmall) that |K (x,x')> < K(x,x)K(x,x’). Line (11) is due to Holder’s in-
equality. Altogether, this shows the integrability of K (x,x’)g(x") and thus the ex-
istence (as a number in R) of Sk g(x) for all x € X. Finally, we have

Skgl) = /K¢wx@>ug<wmw

= ([ sr0)aute). o)

This shows that Sxg := g = [y g(¥)@(X)du(x') e 5. O

Remark: (Topological properties of 7 in relation to the adjoint Sk)
Under the conditions of Theorem|T] using the fact that a bounded linear operator has
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a dense image if and only if its adjoint is injective, one can also derive the following
properties for the feature space 7 in terms of the adjoint map Sk

1. 2 is dense in L? iff the adjoint operator Sk : LY — s injective.
2. The adjoint Sg : L — J# has a dense image Sk (L? ) iff the inclusion (id) :
JC — LP is injective.

We conclude by stating some special properties of L integral kernel operators
over a measurable space (X, i) for which there exists a o-finite measure (.

Theorem 2. Ler (X, L) be a measurable space, L be a G-finite measure on X, and
F be a separable RKHS over X with measurable kernel K : X x X — R such that

1/2
Kl = ([ Kxau) < (1

then

(i) the Hilbert-Schmidt (adjoint) operator Sk : L* — € given by
Skgl) = [ K(xx)g()du(x)

exists for g € L?, x € X.
(ii) the Hilbert-Schmidt (adjoint) operator has

ISk ||ms = (1Kl 2 (13)

where we define ||S||45 := ¥ ||Se,-H12‘2 for general operator S and orthonormal
basis {e;} C .

(iii) The integral operator Tx = Sk Sk : L*(1) — L*(u) is compact, positive, and
self-adjoint.

Proof. (i) Recall from the proof of Theorem |I| that for f € 2%, g € L%, and (id) :
H — L7,

(8,) )2 = [ 80 (K (-2)) o dp
= (#. st

= <f7SKg>j"f

which gives that § := Sgg € 7.
(ii) Let {e;} C 5 be an orthonormal basis. Then
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HSK”IZ'-IS = Z ||57<ei||i2
i=1
— [ ¥ ISkeit) Pdut)
Xi=1

= [, Ll duo)
= [ Ko dut)
X

2
= [IK1lz

where the equality (*) follows from a previous result that K (x,x') =¥ ; e; (x)ei(x)).
Since ||Sk||%s = I|K||,2 < o, this shows Sk is HS-norm bounded, and Sy € HS.
Consequently, its adjoint Sk is Hilbert-Schmidt as well.

(iii) The properties of the integral operator Tx follow directly from its definition

and the properties of Sy. O

Note: Here, we have that S = (id) : # — L*(u), and so Ty := SgSk = (id)S}.
However, it does not follow that Tx = Sk. The critical point is that L>(u) is not a
space of functions, but rather a space of equivalence classes of functions. Hence,
Skg(x) € # is defined for x € X but Tx f(x) € L*(u) is not.
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