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1 Introduction

In this section, we discuss the properties of loss functions and their risks following
the material from [1, Ch.2]. To motivate this discussion, let us recall that the goal of
supervised learning methods is to find a solution function f* that (approximately)
minimizes the risk R p(f)

Ry p(f) = f:)i(H_ER Rpp(f). (D

In practice, the probability P is unknown, so we examine the empirical risk
1 n
Rip=—Y L(yif(x), )
i=1

where D is the set of training samples D = {(x;,y;) : i = 1,...,n}.

In general, equation (1) may have non-unique solution and, in any case, com-
puting the solution may be unfeasible. For example, the 0/1 loss function used in
binary classification is non-convex and, consequently, solving equation 1 is NP-hard
as Hoffgen er al. (1995) showed.

Let us explain how SVMs make the optimization problem computationally feasi-
ble. The first step is to replace the 0/1 classification loss by a convex surrogate. The
most common choice in this regard is the hinge loss, which is defined by

Lhinge<y7t) = max{ovl_yt}v VS {_11"_1}7 teR

To show that hinge loss is a convex surrogate of the 0/1 classification, we make
some observations below.

Explanation. Let us consider the classical SVM setting where input dataxy,...x, €
X are mapped into a possibly infinite dimensional Hilbert space Hy by a feature map
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& : X — Hp. Thea soft-margin SVM problem requires to solve the following con-
strained minimization problem:

vIvané 3 ww)+CY & 3)
s.t. yi((w, @(x;))+b) >1-¢&,

where w € Hy,b € R,&; > 0,i = 1,...,n. We can write the constraint inequality as

& > 1=yi((w, @(x;)) +b), & >0
which is equivalent to

L 07 lf yi(<Wv(p(xi)> +b) >1
5= {1 —yi((w, @ () +b) if yil(w, D (x:)) +b) < 1 @)

and this, in turn, is equivalent to

& = max{0,1—y;((w,@(x;)) +b)} &)
= Lhinge (Yia fw,b (xi)) (6)

where f,,5(-) = (w, @(-)) + b. Thus, the soft-margin SVM problem can be state as:
inf A [|f|7 +R
Jnf Alf 1l + Re.o(f)

where
1l = i { il = w € Ho, Fun(-) = @ () + b |

1 N
Rip(f) = 5 X Luinge(vis f (x1)).
i=1

Here the regularization term A || f ||?{ penalizes solution functions with a large RKHS
norm.

Remark. Due to the convexity of the hinge loss function, the minimization prob-
lem is convex hence it has unique solution.

In the next section, we analyze in details the basic properties of a loss function.

2 Loss Functions and Risks

2.1 Loss Functions

Definition 1. Let (X,R) be a measurable space and ¥ C R be a closed subset. Then
a function f: X XY X R — [0,0) is called a loss function if it is a measurable
function.
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In the following, we will interpret L(x,y, f(x)) as the cost or loss of predicting
the value y using f(x) when x is observed, i.e., the smaller the value L(x,y, f(x)) is,
the better f(x) predicts y with respect to the loss L. From this, it is clear that constant
loss functions, such as L := 0, are rather meaningless for our purposes, since they
do not distinguish between good and bad predictions.

Let us now recall that our major goal is to have a small average loss for future
unseen observations (x,y). This leads to the following definition.

Definition 2. Let L: X x Y X R — [0,00) be a loss function and P be a probability
measure on X X Y. Then, for a measurable function f : X — R, the L-risk is defined
by

Rip= [ Ll f)dPy) = [ [ L0y f(6)dP(oix) dp (o),

where P(y|x) is a conditional probability.
Let D={(x;,y;):i=1,...n} be i.i.d. points in X x Y. The empirical risk is

1 n
Rip=- Y L(xi,yi, f(xi))-
i=1

By the law of large number, Ry, p(f) gets closer to Ry, p(f) as n is large. In this
sense, the empirical risk can be seen as an approximation of L-risk of f (for f a
fixed funstion).

Now recall that L(x,y, f(x)) was interpreted as a cost that we wish to keep small
and, hence, it is natural to look for functions f whose risks are as small as possi-
ble. Since the smallest possible risk plays an important role, we give the follwoing
definition.

Definition 3. Let L: X x Y X R — [0,00) be a loss function and P be a probability
measure on X X Y. Then the minimal L-risk

R} p:=inf{Ry p(f)|f : X = R measurable}
is called the Bayes risk with respect to P and L. In addition, a measurable f7 p: X —
R with R p(f} p) = R} p is called a Bayes decision function.

Example 1. (Standard binary classification). Let ¥ := {—1, 1} and P be an unknown
data-generating distribution on X x Y. Then the goal of binary classification is to
predict y for a pair (x,y) € X x Y when x is observed. The most common loss func-
tion describing this learning goal is the classification loss Lejgss - Y X R — [0,00),
which is defined by

Letass(0:1) := 1(—w (v sgn(t)), y€Y,t €R

or, equivalently,

_ _ JO,if y=sen(r)
Letass : ¥ xR = [0, 00) := {1, if y# sen(t) "
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Note that L., only penalizes predictions ¢ whose signs disagree with that of
¥, so it indeed reflects our informal learning goal. Now, for a measurable function
f: X — R, an elementary calculation shows

RLC[,m,P(f) = ‘/X/YLclass(yvf(x))dP(yh) dPx (x) ®)
= [ MO a6 + (=0 0 (W) B O)
=P({(x,y) € X xY :signf(x) # y} (10)

where 1(x) := P(y = 1|x),x € X. From this we conclude that f is a Bayes decision
function if and only if (217 (x) — 1) sgnf(x) > 0 for Px-almost all x € X. In addition,
this consideration yields

R o= /X min{n,1—n}dPy

Example 2. (Weighted binary classification). Let Y := {—1,1} and ¢ € (0,1). Then
the a-weighted classification 10ss Ly —¢jgss : ¥ X R — [0, 00) is defined by

l—a ify=1and? <0
Lo—class(3,1) := a ify=—landr >0 (11)
0 otherwise

for all y € Y,t € R. Obviously we have 2L%

classification scenario is a special case of the general weighted classification sce-
nario. Given a probability measure P on X x ¥ and a measurable f : X — R, the
Ly cjass-risk can be computed by

—class = Lelasss 1.€., the standard binary

Riy e =(1=0) [ naPcta [ (1-mpdex
f<0 /=0

where 1(x) := P(y = 1|x), x € X. From this we easily conclude that f is a Bayes
decision function if and only if (1(x) — o) sgnf(x) > 0 for Py-almost all x € X.
Finally, the Bayes Ly _¢jqs-TisK is

Ri, = [ min{(1=an.a(l =)} dny

In the two examples above the goal was to predict labels y from the set {—1,1}.
In the next example, we wish to predict general real-valued labels.

Example 3. (Least squares regression). The informal goal in regression is to predict
predict the label y € Y = R of a pair (x,y) drawn from an unknown probability
measure P on X x Y if only x is observed. The most common way to formalize this
goal is based on the least square loss Lys : Y X R — [0, 0) defined by

Lis(y,t):=(y—t)%, yeY,teR, (12)
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In other words, the least squares loss penalizes the discrepancy between y and ¢
quadratically. Obviously, for a measurable function f : X — R, the L;g-risk is

Rugr(£) = [ [ (0= 5002 dP(s1e) dPe ().

By minimizing the inner integral with respect to f(x), we then see that f is a
Bayes decision function if and only if f(x) almost surely equals the expected Y-
value in x, i.e., if and only if

10 =Ep(v]):= [ yaPOl) (13)

for Py-almost all x € X. Moreover, plugging x — Ep(Y|x) into Ry, ,(-) shows that
the Bayes Ljg-risk is the average conditional Y-variance, i.e.,

Riyor= [ Ep(Y?l) = (Ep(Y]2)2dPe(x).

In all examples above we assumed that L(x,y, f(x)) = L(y, f(x)), with no depen-
dence on X directly. This setting is part of a more general situation.

Definition 4. A function L: Y x R — [0,00) is called a supervised loss function if it
is measurable. A function L : X x R — [0,00) is called an unsupervised loss function
if it is measurable.

In case L is an unsupervised loss function, the risk has the form

Rip(f) = /X L(x, £(x)) dPy (x)

and it is independent of the supervisor P(-|x) that generates the labels.

Example 4. (Density distribution)

Let 1 be a known probability measure on X, g : X — [0,00) be an unknown
density w.r.t. u. The goal is to estimate g. In this case, a possible choice is the
unsupervised loss L, : X X R — [0,00),g > 0 given by

Ly(X.1) = [g(a) 11
Let Py = U, then
Riyo(f) = [ 186 = F()1*dn()

where f is any measurable function on X. Clearly, qu,p =0if f* = g modulo sets
of u-measure zero.
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2.2 Properties of loss functions and their risks

Definition 5. Aloss L: X x Y X R — [0,0) is strictly convex if L(x,y, ) : R — [0, )
is strictly convex for all x € X,y € Y. L is continuous if L(x,y,-) : R — [0,00) is
continuous forallx € X,y €Y.

If L is a strictly convex loss then it is easy to see that also the L-risk is strictly
convex. However, the continuity of the loss does not imply the continuity of the
corresponding risk.

Proposition 1 (semi-continuous of Risk). If L : X x Y x R — [0,0) is a strictly
convex loss, P is a distribution on X XY and (f,)n>1 is a sequence of measur-
able function on X converging to a measurable function f in probability w.r.t. the
marginal distribution Py, then

RLAP (f) < lirll’iiol‘}fRLm (fn)

Before proving this proposition, we recall some definitions. Given a probability
space (X,0,P), a sequence (f,)n>1 of measurable functions f, : X — R converge
to a measurable function f : X — R in probability if for any € > 0,8 > 0, there is N
s.t. forany n > N,

P{xeX:|fulx) = f(x)| = €}) <.
We say that (f,,) converges to f P-almost surely if

fu(x) = f(x) for P-almost all x € X.

We have the following properties:

e P-almost sure convergence = converge in probability.
e Convergence in probability = there is (f;, )i>1 C (fa)n>1 that converges P-
almost surely.

We can now prove the proposition.

Proof. Since (f,),>1 converges in probability to f, then there exists a subsequence
( f,,k)kzl C (fu)u>1 that converges to f almost Py-almost surely. By the continuity
of L, we have that

klim L(x,y, fn,(x)) = L(x,y, f(x)) for Py-almost all (x,y) € X x Y.
—yo0
By Fatou’s Lemma,

Rup(f) = [ Jim L(x,y,f, (9)dP(x.y)

X xY k—roo

< liminfL(x,y, f,, (x))dP(x,y) = liminfR; ,(f,).
k—yo0 n—yoo
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Remark 1. Tt is clear that if there is an integrable majoranof t L(,-, f,,(+)), then we
can use dominated convergence theorem to show that Ry p(f,,) — Rr.p(f).

Definition 6. A loss L: X XY x R — (0,0) is a Nemitski loss if there is a mea-
surable b : X x Y — [0,e0) and an increasing £ : [0,00) — [0,00) s.t. L(x,y,t) <
b(x,y)+h(|t]) for all (x,y,r) € X xY x R.

Definition 7. L is a Nemitski loss of order p € (0, ) if there is ¢ > 0 s.t.
L(x,y,t) < b(x,y)+cl|t|’ for all (x,y,t) €X xY¥ xP.

If, in addition, P is a distribution on X x Y and b is P integrable, then L is a P-
integrable Nemitski loss.

Remark 2. If L is a P-integrable Nemitski loss and f € L”(Px), then Ry p(F) < co
and R} p < o by continuity of the risk.

Proposition 2. Let P be a distribution on X XY and L a continuous P-integrable
Nemitski loss.

1. Let (f)n>1 be uniformly bounded measurable functions from X — R such that
[|full= < B, where B > 0 is independent of n. If f, — f Px-almost surely, then

lim Ry p(fn) = RLp(f)-

2. The map Ry p : L (Px) — [0,00) is well-defined and continuous.
3. IfLis of order p € [1,), then Ry p : L’ (Px) — [0,00) is well-defined and contin-
uous.

Proof. 1. Ttis clear that || f||.= < B. By the continuity of L,

1211 L(x,y, fa(x)) = L(x,, f(x)) P-almost surely for all(x,y) € X x Y.
n—oo

Also,
L(x,y, fu(x)) = L(x,y, £ (x))]

< 2b(x,y) +h(fa(x)) +h(|f(x)]) < 2b(x,y) +2h(B).

Since the RHS is P-integrable, by dominated convergence theorem,

RLp(fo) = Rep(f)] < /IL(x,y,fn(X)) —L(x,y, f(x))|dP(x,y)

which implies
Rep(fn) = RLp(f)-

2. The Nemitski loss assumption and the integrability of b imply that Ry p(f) is
bounded for any f € L*(Px). The continuity follows from part 1.
3. The hypothesis on the loss function directly gives that
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Rpp(F) <o, if f€LP(Px).

For the continuity, let (f,)n>1 C LP(Px) with f, — f in L”. Since L? convergence
implies convergence in probability, so by Proposition 1 we have that

R p(f) <liminf(Rp p(f,))-
Set L(x,y,) := b(x,y) +c|t|? — L(x,y,t). This is also a continuous loss. Thus
[bll1 +cllf11f — Rep(F) = Ry p(f) < iminfRy ,(f,)
= liminf(=Rpep(fu) + |bllz + [1/allZr)-
Using the continuity of L”-norm, we conclude

limsupRy p(fn) < Rrp(f) when f, — f in LPnorm.

n—yoo
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