Representer Theorems

Scribe: Megan Stickler

Question: What properties of a loss function are sufficient to imply the existence
and uniqueness of an SVM solution?

1 Background Defintions, Lemmas, and Theorems

Definition 1. A loss function L: X XY xR — [0, 00) is locally Lipschitz (continuous)
if for all @ > 0 there exists a constant ¢, such that for 7,7’ € [—a,a],

sup |L(x,y,1) = L(x,y,1")] < calt =1
xeX,yeY

e The smallest constant ¢, for which this holds is denoted ||, |
o If {1 =sup,~q|€|a,1 < oo, then the loss function L is Lipschitz (continu-
ous) with Lipschitz constant ¢,

Remarks:

1. If Y is finite (as in, for instance, a classification problem) and the supervised loss
function L: Y X R — [0,0) is convex, then L is automatically locally Lipschitz.
2. Alocally Lipschitz loss is also a Nemitski loss, since

L(x,y,t) < L(x,y,0) + |L(x,y,t) — L(x,y,0)| n
< L(x

L( 7y70) + |£|\t|,1 |t|

In particular, a locally Lipschitz loss is Nemitski p-integrable <= Ry p(-) < co.
Furthermore, a Lipschitz loss is also a Nemitski loss of order p = 1.
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Lemma 1. (Lipschitz continuity of Risks) Let L: X X Y x R — [0,0) be locally Lip-
schitz, and let P be a distribution on X x Y.
Then for all B> 0 and all f,g € L*(Px) such that || f||«, ||g]| < B, we have

\RLp(f) —RLp(8)] <

(Px)

«» ||glle < B gives us that |f(x)[,|g(x)| < B for almost
every x and for almost every x, f(x),g(x) € [-B,B].
L is locally Lipschitz, so this gives that for almost every x,

IL(x,y, f(x)) = L(x,,8(0)| < [[€]|3.1 ] (x) — g(x)]-

Now

Rup(H) ~Rip(@)|=| [ Lo (PP = [ Llry.glo)dP(y)|
| (e ) = L))
< I (0) = Ly dP(x.)
< [ llaal ) = g0l

n [ 1f(0)=g@)laP(x.y)

Definition 2. A loss function L: X X ¥ x R — [0,00) is differentiable if L(x,y,-) :
R — [0,0) is differentiable for all x € X,y € Y. L'(x,y,) denotes the derivative of
L(x,y,t), if such a derivative exists.

Proposition 1. Ler P be a distribution on X XY and L : X XY x R — [0,00) be a
differentiable loss function such that both L and |L'| are p-integrable Nemitski losses
(recall that L is always positive). Then the risk Ry p : L (Px) — [0,00) is Frechét
differentiable and its derivative at f € L (Px) is the bounded linear operator R p :
L*(Px) — R given by '

Rip(Ng= [ eL'(xn s (0)dP(x.y)

for g € L™ (Px).

Proof. Let f € L*(Px) and let (f,) C L”(Px) be a sequence such that f, #0,n > 1,
and lim,, e || ||« = 0. We assume also that || f; || < 1 forall n > 1.
For x € X,y € Y we define

L(xy,f () +fn(x )) (e f(0) Ny : .
Gy(x,y) = {L Ja(x) (X,y,f(x))| ; 8 io
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So then,

RLp(f+ fo) = RLp(f) — Ry p(f)fa
[l flloo

< [ A0 (8 L F0) — AL e S|P
XxY anH‘x’

< [ Gulwy)apxy)
XxY

(2
Also, by the definitions of G, and L’ (x,y,-), we have

lim G, (x,y) =0 3)

n—so0

By the Mean Value Theorem, for x € X,y € Y and n > 1 with f,(x) # 0, there exists
a gu(x,y) such that [g,(x,y)| € [0, fu(x)]] and
L{x,y, f(x) + fu(x)) = L(x,y, f(x))
fa (%)

Since |L'| is a P-integrable Nemitski loss, there also exist b: X X ¥ — [0, ),
b € L'(P) and increasing function / : [0,e0) — [0,0) such that

=L (x,y,f(x)+gu(x)).

L (x,,0)] < b(x,y) +h(t).

This together with || f; ]| < 1 forn > 1 gives

L(xayaf(x) +fn(x)) _L(xvy’f(x))

e < b(x,y) +h(|f(x) + gu(x,)])

<b(x,y) +h((|f e +1).

So G, (x,y) < 2b(x,y) +2h(]|f||l + 1). This together with (2), (3), and Lebesgue
Dominated Convergence theorem gives us the desired expression for R’L’ p(f)g.

2 Margin-based losses and Distance-based losses

Motivation: In many problems (most notably SVM), losses are not convex; how-
ever, these non-convex loss functions can often be replaced by appropriate convex
“surrogate losses’.

Definition 3. A supervised loss L : (Y,R) — [0,00) is a margin-based loss if there
exists a representing function ¢ : R — [0,e0) such that fory € ¥,¢ € R,

L(y,t) = @(y1).
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L is a distance-based loss if there exists a representing function y : R — [0, ) with
¥(0) =0 such that fory € Y.t € R,
L(y,1) = y(y—1).

Proposition 2. Letr L be a margin-based loss function with representing function .
Assume Y = {—1,1} (binary classification problem). Then

1. Lis (strictly) convex <= @ is (strictly) convex

2. L is continuous <= @ is continuous

3. Lis (locally) Lipschitz <= ¢ is (locally) Lipschitz

4. If L is convex, then it is both Lipschitz and a p-integrable Nemitski loss.

Examples of Margin-based losses:

e Hinge Loss:
Lhinge(yyt) = maX{O, 1 —yt}

— Convex
— Lipschitz
— Hinge loss is a surrogate (convexification) of classification loss.

e Least Squares Loss:
Lis(vt) = (v—1)°
= (1-y)
(since y = £1)

— Convex
— Locally Lipschitz
— Note that Ly is also an example of a distance-based loss function.

e Truncated Least Squares:
Ly, (1) = (max{0, (1 —yr)})?

— Convex
— Locally Lipschitz

e Similar propositions apply in the case of distance-based losses.

3 Existence and Uniqueness of SVM Solutions

Recall: The SVM problem can be formulated as finding the minimizer of

Repa(f)=AIflE+Rep(f),
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where f € H and D are identically distributed data. By the Law of Large Numbers,
we expect that Ry p, 5 (f) is close to

Ry pyp(f) =2l fllu+Rep(f)

Question: Does a solution exist? If so, can we represent the solution f in a practical
(e.g., computable) form?
We attempt to answer this question with Representer Theorems.

Definition 4. Let L : X x Y X R — [0,0) be a loss, H a Reproducing Kernel Hilbert
Space with measurable kernel k on X, and P a distribution on X x Y. For A >0, a
function fp) g satisfying

Ml fpanll® +Rep(fpan) = ]}2}31 £+ Rep(f)

is a general SVM solution.

Note:

Mfeanll? <A feanll* +Rer(fornm)

<R p(0).

Hence

1
I foamlle < IRL,P(O)~

Theorem 1. Let L: X XY X R — [0,00) be a convex loss, P a distribution on X x
Y and H a Reproducing Kernel Hilbert Space of X with a bounded measureable
kernel. Then

1. If Ry p(f) < oo for some f € H, then for all A > 0 there exists at most one general
SVM solution.

2. If L is a p-integrable Nemitski loss, then for all A > 0 there exists a general SVM
solution.

Proof. 1) Assume that the map f — A f||% + R.p(f) has two minimizers fi, f»
€ H such that fi # f>. Then A f1]|4 +Rrr(f1) = 2| £2]|% + Rep(f>). Recalling
that ||%(f1 + ) < %Hf] 12 + %||f2| 2, this with the convexity of f — R p(f)
gives that for f* := %(fl + f2),

ANz +Rep(fY) < ANl +Rep(f1);

that is, fi is not a minimizer of f — A| f||% + R..p(f), and so the assumption that
there are two minimizers is false.

2) Since the kernel k is bounded, the map id : H — L*(Px) is continuous. The
convexity and boundedness of L imply that L is continuous. By prior results, it
follows that the map Rz p : L*(Px) — R is a continuous map; hence, R p: H — R
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is also continuous. Since L is convex, the map R; p : H — R is also convex. Since
f = Alfl% is convex, f — A||f||% + Rep(f) is a linear combination of convex
functions and is also convex.

SetA:={f€H:A|f|}+R+L,P(f) <Ryp(0)}. Then f =0 € A. For f € A,

A7 < Rep(0), (Rp >0), 50 A C ( iR,ﬁp(O)) By, where By is the closed
unit ball on H. By convex analysis, there exists a minimizer fpj (= fpa u)-

Remark: Convexity of L is not necessary for the existence of a general SVM
solution; it was used in the proof, but its absence does not preclude the presence of
a solution.

Corollary 1. Let L be a convex, locally Lipschitz loss, P a distribution on X X Y with
Ry p < o, and H a measureable Reproducing Kernel Hilbert Space with bounded,
measureable kernel k. Then, for all A > 0, there exists a unique general SVM solu-

tion fpy u (fpa € H).

Proof. Recall that a locally Lipschitz loss is also a p-integrable Nemitski loss if and
only if Ry p(0) < eo. Since Ry p < oo, L is a convex p-integrable Nemitski loss and
the hypotheses of the above theorem are satisfied.

e In the textbook, there are special results for margin-based and distance-based
losses.

4 Representer Theorems

There are a number of results in the literature providing representation formulas for
the SVM solutions.

Theorem 2. (Representer Theorem for Empirical SVM Solutions) Let L : X XY X
R — [0,0) be a convex loss and D = {(x1,y1)...(xu,yn)} C X X Y. Let H be a
Reproducing Kernel Hilbert Space over X. Then, for all L > 0, there exists a unique
empirical SVM solution fp 5 such that

o2l +Reo(fp2) = inf Allflli+Reo(f)

and there exist &...0, € R such that
fD,)L (x) = Zi":l(xik(x,xi), xeX.

Proof. In this case, the convexity of L implies its continuity. Since convergence in
H implies pointwise convergence, the continuity of R p : H — [0,90) follows from
the continuity of L. The existence and uniqueness of the SVM solution fp 3 follow
from the same arguments as in Theorem 1. '

To derive a representation of fp ;, let
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X' = {x1..x%,}

and
H|x: = span{k(-,x;) : x; € X'}.

H|y is a Reproducing Kernel Hilbert Space with kernel k|, x’, and there exists an
empirical SVM solution fp 3 |, € H lx’-

For f € orthogonal complement (H|x/)*, f(x;) = (f,k(-,x;)) = 0 for x; € X'. Let
Py be the orthogonal projection of H — H|xs so that

Ryp(Py f) =Rep(f)

and
1P fller < (11l
Then
inf A||f||% +R < inf Allf|%+R
inf 271+ Rup(f) < in 2171+ Reo()
so that

inf A||Py f||% +Rep(Py f) < inf A||f||% +R .
oL 1P f Iz + L,D(xf)_j}gH £l +Re.o(f)

Uniqueness follows the proof of uniqueness from Theorem 1. Suppose there are
two unique solutions f7, f> so that

Ml +Re.p () = A2l + Rep(f2) = inf AL£ 1+ Rep():

Then, letting f* := %(fl + f2), by the convexity of f — Ry p(f) we have

AF I +Reo(F%) < A filli +Rep(fi),

SO

MAill7 # inf AlLFII7 +Reo(f)
feH
and fi is not a solution.

Proposition 3. (Non-trivial solution). Let L be a convex loss function and P a dis-
tribution on X X Y such that L is a p-integrable Nemitski loss. Assume H is a Re-
producing Kernel Hilbert Space with a bounded measureable kernel over X with
REP < Rpp(0). Then, for all A >0, fp; #O0.

Proof. By the hypotheses, there exists an f* € H such that Ry p(f*) < Ry p(0). By
the convexity of Ry, p, for a € [0, 1] we have

Mloef 7 +Rep(onf*) < 20| £l +aRep(f*) + (1= 0)RLp(0) =: h(ar).

Since Rz p(f*) < Rrp(0), there exists some o* € (0,1] that minimizes 4 : [0,1] —
[0,00) and so
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Ao fI5 +Rep(o ) < h(or™) < h(0) = A|[0][3 +Rp.p(0).

Theorem 3. Let L be a convex, p-integrable Nemitski loss, P a distribution on X X
Y, and k a bounded measureable kernel on X with separable Reproducing Kernel
Hilbert Space H and canonical feature map @ : X — H. Also, assume the derivative

of L, ||, is a p-integrable Nemitski loss. Then, for A > 0, the general SVM solution
fpa is

Foa0) = 5 [ Lo o Wk )P(Y )
that is,

_ 1 '
fea= ﬂ]EP[L D].

Note: If L is not differentiable, one can replace L' with a sub-differential of L, which
is included as a case in the more general theorem.

Proof. Let X be a measureable space. Since L is differentiable, the risk function
Ry p:L”(Pyx) — [0,0) is Frechét differentiable and

Rip(£)e) = [ gL' (3. f(0)dP(x.).

XxY

Let H be a separable Reproducing Kernel Hilbert Space with bounded, measureable
kernel k and let @ : X — H be the corresponding canonical feature map.

By prior results, the embedding id : H — L*(Px) is well-defined and continuous so
that for fy € H,

(Rrpoid) (fo) = Ry p(fo) o id.
Hence, for f € H,

(Repoid) (fo)f =Ry p(fo)oid(f)

= | L' (xy, folx))dP(x,y)
XxY

Note: Alternatively, one can think of this as

(RL,P o ld)/(fo) = E(X,Y) [L’(x,y,fo(x))<f¢(x)>]
= (.Exx)[L' (%, fo(x))P])
— By L (3. fo(x) ()]

where i : H — H’ is an isomorphism. In this case, f is an element in H so the final
expectation Ey y) is an H-valued expectation.

Let G : H — R be given by G(f) = || f||- The Frechét derivative of G is G’ fy =
2ifo. Let us consider the regularized loss Ry py : H — R
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RL,P,}, = A«G"‘RL’P oid.
The solution fp; minimizes R; p,. Hence,

0= (AG—FRL’P o l.d)/(fp_yl)
=24 fpa +Ex y) L' (x,y, fpa (x)) @ (x)]).

Thus,
20 fpp = —Exy) Il (x,3, fpa (x)) @ (x)].
This shows that

-1
Fo2 )= 37 | LW foa(k(ed )P, )

For data D = {(x;,y;)}} with corresponding empirical distribution, from the above
expression we derive

foa(x) = mzﬁ@'(/‘i,}’hfal (xi))k (x, x7),

showing that the coefficients ¢ from the prior formula have the form

p— _1 / . . )
o= mL (xhynfD,l (xl))'
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