5.1 Eigenvalues and Eigenvectors

- Diagonalization
- Eigenvalues and Eigenvectors
- Characteristic Polynomial
- Properties
A linear operator T on a finite-dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_\beta$ is a diagonal matrix. A square matrix A is diagonalizable if L_A is diagonalizable.
5.1 Eigenvalues and Eigenvectors

Definition

Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar eigenvalue λ corresponding to the eigenvector v such that $T(v) = \lambda v$.

Let $A \in M_{n \times n}(F)$. A nonzero vector $v \in F^n$ is an eigenvector of A if v is an eigenvector of L_A; that is, if $Av = \lambda v$ for some scalar eigenvalue λ of A corresponding to the eigenvector v.
5.1

Eigenvalues and Eigenvectors: Example

Example

Let

\[
A = \begin{bmatrix}
0 & -2 \\
-4 & 2 \\
\end{bmatrix},
\]

\[
u = \begin{bmatrix}
1 \\
1 \\
\end{bmatrix}, \text{ and } v = \begin{bmatrix}
-1 \\
1 \\
\end{bmatrix}.
\]

Examine the images of \(u\) and \(v\) under multiplication by \(A\).

Solution

\[
Au = \begin{bmatrix}
0 & -2 \\
-4 & 2 \\
\end{bmatrix} \begin{bmatrix}
1 \\
1 \\
\end{bmatrix} = \begin{bmatrix}
-2 \\
-2 \\
\end{bmatrix} = -2u
\]

\(u\) is called an eigenvector of \(A\) since \(Au\) is a multiple of \(u\).

\[
Av = \begin{bmatrix}
0 & -2 \\
-4 & 2 \\
\end{bmatrix} \begin{bmatrix}
-1 \\
1 \\
\end{bmatrix} = \begin{bmatrix}
-2 \\
6 \\
\end{bmatrix} \neq \lambda v
\]

\(v\) is not an eigenvector of \(A\) since \(Av\) is not a multiple of \(v\).
Example

Show that 4 is an eigenvalue of \(A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \) and find the corresponding eigenvectors.

\textit{Solution:} Scalar 4 is an eigenvalue of \(A \) if and only if \(Ax = 4x \) has a nontrivial solution.

\[
Ax - 4x = 0
\]

\[
Ax - 4 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0
\]

\[
(A - 4I)x = 0.
\]

To solve \((A - 4I)x = 0 \), we need to find \(A - 4I \) first:

\[
A - 4I = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ -4 & -2 \end{bmatrix}
\]
Eigenvalues and Eigenvectors: Example

Now solve \((A-4I)x = 0\):

\[
\begin{bmatrix}
-4 & -2 & 0 \\
-4 & -2 & 0 \\
\end{bmatrix}
\sim
\begin{bmatrix}
1 & \frac{1}{2} & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

\[\Rightarrow \quad x = \begin{bmatrix}
-\frac{1}{2}x_2 \\
x_2 \\
\end{bmatrix} = x_2 \begin{bmatrix}
-\frac{1}{2} \\
1 \\
\end{bmatrix}.
\]

Each vector of the form \(x_2 \begin{bmatrix}
-\frac{1}{2} \\
1 \\
\end{bmatrix}\) is an eigenvector corresponding to the eigenvalue \(\lambda = 4\).

Eigenspace for \(\lambda = 4\)

The set of all solutions to \((A-\lambda I)x = 0\) is called the eigenspace of \(A\) corresponding to \(\lambda\).
Theorem (5.1)

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. If T is diagonalizable, $\beta = \{v_1, \cdots, v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_\beta$, then D is a diagonal matrix and D_{jj} is the eigenvalue corresponding to v_j for $1 \leq j \leq n$.
To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.
Theorem (5.2)

Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.
Characteristic Polynomial

Definition

Let $A \in M_{n\times n}(F)$. The polynomial $f(t) = \det(A - tl_n)$ is called the characteristic polynomial of A.
Definition

Let \(T \) be a linear operator on an \(n \)-dimensional vector space \(V \) with ordered basis \(\beta \). We define the characteristic polynomial \(f(t) \) of \(T \) to be the characteristic polynomial of \(A = [T]_\beta \):

\[
f(t) = \det(A - tl_n).
\]
Properties

Theorem (5.3)

Let $A \in M_{n \times n}(F)$.

(a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^n$.

(b) A has at most n distinct eigenvalues.
Theorem (5.4)

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.
5.2 Diagonalizability

- Diagonalizability
- Multiplicity
- Direct Sums
Diagonalizability

Theorem (5.5)

Let T be a linear operator on a vector space V, and let $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of T. If v_1, \cdots, v_k are the corresponding eigenvectors, then $\{v_1, \cdots, v_k\}$ is linearly independent.

Corollary

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.
Definition

A polynomial $f(t)$ in $P(F)$ splits over F if there are scalars c, a_1, a_2, \ldots, a_n in F such that

\[f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n). \]

Theorem (5.6)

The characteristic polynomial of any diagonalizable operator splits.
5.2

Multiplicity

Definition
Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of $f(t)$.

Definition
Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_\lambda = \{x \in V : T(x) = \lambda x\} = N(T - I_V)$. The set E_λ is the eigenspace of T corresponding to the eigenvalue λ. The eigenspace of a square matrix A is the eigenspace of L_A.
Theorem (5.7)

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_\lambda) \leq m$.
Lemma
Let T be a linear operator, and let $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \cdots, k$, let $v_i \in E_{\lambda_i}$. If

$$v_1 + v_2 + \cdots + v_k = 0,$$

then $v_i = 0$ for all i.

Theorem (5.8)
Let T be a linear operator on a vector space V, and let $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \cdots, k$, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i}. Then $S = S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent subset of V.
Theorem (5.9)

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. Then

(a) T is diagonalizable if and only if the multiplicity of λ_i is equal to $\dim(E_{\lambda_i})$ for all i.

(b) If T is diagonalizable and β_i is an ordered basis for E_{λ_i}, for each i, then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T.
Test for Diagonalization

Let T be a linear operator on an n-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold.

- The characteristic polynomial of T splits.
- The multiplicity of each eigenvalue λ equals $n - \text{rank}(T - \lambda I)$.
Direct Sums

Definition

The sum of the subspaces \(W_1, \ldots, W_k \) of a vector space is the set

\[
\sum_{i=1}^{k} W_i = \{ v_1 + \cdots + v_k : v_i \in W_i \text{ for } 1 \leq i \leq k \}.
\]

Definition

A vector space \(V \) is the direct sum of subspaces \(W_1, \ldots, W_k \), denoted \(V = W_1 \oplus \cdots \oplus W_k \), if

\[
V = \sum_{i=1}^{k} W_i \quad \text{and} \quad W_j \cap \sum_{i \neq j} W_i = \{0\} \text{ for each } j, 1 \leq j \leq k.
\]
Theorem (5.10)

Let W_1, \cdots, W_k be subspaces of finite-dimensional vector space V. The following are equivalent:

(a) $V = W_1 \oplus \cdots \oplus W_k$.

(b) $V = \sum_{i=1}^{k} W_i$ and for any v_1, \cdots, v_k s.t. $v_i \in W_i$ $(1 \leq i \leq k)$, if $v_1 + \cdots + v_k = 0$, then $v_i = 0$ for all i.

(c) Each $v \in V$ can be uniquely written as $v = v_1 + \cdots + v_k$, where $v_i \in W_i$.

(d) If γ_i is an ordered basis for W_i $(1 \leq i \leq k)$, then $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.

(e) For each $i = 1, \cdots, k$ there exists an ordered basis γ_i for W_i such that $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.
Direct Sums (cont.)

Theorem (5.11)
A linear operator T on finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T.
5.3 Matrix Limits and Markov Chains

- Matrix Limits
- Existence of Limits
5.3 Matrix Limits

Definition

Let L, A_1, A_2, \cdots be $n \times p$ matrices with complex entries. The sequence A_1, A_2, \cdots is said to converge to the limit L if
\[
\lim_{m \to \infty} (A_m)_{ij} = L_{ij}
\]
for all $1 \leq i \leq n$ and $1 \leq j \leq p$. If L is the limit of the sequence, we write $\lim_{m \to \infty} A_m = L$.

Theorem (5.12)

Let A_1, A_2, \cdots be a sequence of $n \times p$ matrices with complex entries that converges to L. Then for any $P \in M_{r \times n}(C)$ and $Q \in M_{p \times s}(C)$,
\[
\lim_{m \to \infty} PA_m = PL \quad \text{and} \quad \lim_{m \to \infty} A_m Q = LQ.
\]
Corollary

Let \(A \in M_{n \times n}(C) \) be such that \(\lim_{m \to \infty} A^m = L \). Then for any invertible \(Q \in M_{n \times n}(C) \),

\[
\lim_{m \to \infty} (QAQ^{-1})^m = QLQ^{-1}.
\]
Consider the set consisting of the complex number 1 and the interior of the unit disk: \(S = \{ \lambda \in \mathbb{C} : |\lambda| < 1 \text{ or } \lambda = 1 \} \).

Theorem (5.13)

Let \(A \) be a square matrix with complex entries. Then \(\lim_{m \to \infty} A^m \) exists if and only if both of the following hold:

(a) *Every eigenvalue of \(A \) is contained in \(S \).*

(b) *If 1 is an eigenvalue of \(A \), then the dimension of the eigenspace corresponding to 1 equals the multiplicity of 1 as an eigenvalue of \(A \).*
Existence of Limits (cont.)

Theorem (5.14)

Let $A \in M_{n \times n}(C)$. $\lim_{m \to \infty} A^m$ exists if

(a) Every eigenvalue of A is contained in S.

(b) A is diagonalizable.