
Deep Learning and Neural Networks

Demetrio Labate

April 14, 2025



Part 7
Neural Language Processing

(NLP)

2 / 40



Why transformers?
The transformer neural network is a deep learning architecture
that aims to solve sequence-to-sequence tasks while handling
long-range dependencies with ease.
▶ It was first proposed in the paper “Attention Is All You Need”

(2017) by researchers at Google.
▶ Transformers have the advantage of having no recurrent units,

therefore requiring less training time than RNNs.
▶ State-of-the-art technique in the field of NLP.
▶ Originally introduced for language translation, they are

currently used in
▶ computer vision (Vision Transformers, 2019-20)
▶ audio (Robust Speech Recognition)
▶ reinforcement learning
▶ robotics
▶ playing chess
▶ they also led to the development of pre-trained systems, such

as generative pre-trained transformers (GPTs) and BERT
(bidirectional encoder representations from transformers).

3 / 40



Why transformers?

One main difference with respect to RNNs is that the input
sequence can be passed in parallel so that GPU can be used
effectively and the speed of training can also be increased.

For example, in a translator made up of a simple RNN, we input a
sentence in a continuous manner, one word at a time, to generate
word embeddings. As every word depends on the previous word, its
hidden state acts accordingly, so we have to feed it one step at a
time.

In a transformer, however, we can pass all words of a sentence and
determine the word embedding simultaneously.

It is also based on the multi-headed attention layer, so it easily
overcomes the vanishing gradient issue of RNNs.

4 / 40



Transformers
The original transformer model used an encoder-decoder
architecture.

The encoder consists of encoding layers that process all the input
tokens together one layer after another, while the decoder consists
of decoding layers that iteratively process the encoder’s output and
the decoder’s output tokens so far.

5 / 40



Transformers

All transformers have the same primary components:

▶ Tokenizers, which convert text into tokens.

▶ Embedding layer, which converts tokens and positions of the
tokens into vector representations.

▶ Transformer layers, which carry out repeated transformations
on the vector representations, extracting more and more
linguistic information. These consist of alternating attention
and feedforward layers. There are two types of transformer
layers: encoder layers and decoder layers, with further variants.

▶ Un-embedding layer, which converts the final vector
representations back to a probability distribution over the
tokens.

6 / 40



Transformers

Encoder block
The first step of the encoding block is embedding the input words
into an Euclidean space - the embedding space.

7 / 40



Transformers

Encoder block
In different sentences, a word may have different meanings. To
solve this issue, positional encoders are used, i.e., vectors that
give context according to the position of the word in a sentence.
Word → Embedding + Positional Embedding → Final Vector,
framed as Context

8 / 40



Transformers

Positional Encoding
Since Transformers do not have a recurrence mechanism like
RNNs, they use positional encoding added to the input
embeddings to provide information about the position of each
token in the sequence.

To do so, they employ a combination of various sine and cosine
functions to create positional vectors, enabling the use of this
positional encoder for sentences of any length. In this approach,
each dimension is represented by unique frequencies and offsets of
the wave, with values ranging from -1 to 1, effectively representing
each position.

9 / 40



Transformers

The multi-head attention is a critical network used to determine
multiple attention vectors per word and take a weighted average to
compute the final attention vector of every word.

10 / 40



Transformers
The multi-headed attention utilizes a specialized attention
mechanism known as self-attention.

This approach enables the models to relate each word in the input
with other words. For instance, in the sentence ”how are you?”,
the model might learn to connect the word ”are” with ”you”.

This mechanism allows the encoder to focus on different parts of
the input sequence as it processes each token. It computes
attention scores based on:

1. A query is a vector that represents a specific word or token
from the input sequence in the attention mechanism.

2. A key is also a vector in the attention mechanism,
corresponding to each word or token in the input sequence.

3. Each value is associated with a key and is used to construct
the output of the attention layer. When a query and a key
match well, which basically means that they have a high
attention score, the corresponding value is emphasized in the
output.

11 / 40



Transformers

This first Self-Attention module enables the model to capture
contextual information from the entire sequence. Instead of
performing a single attention function, queries, keys and values are
linearly projected h times. On each of these projected versions of
queries, keys and values the attention mechanism is performed in
parallel, yielding h-dimensional output values.

12 / 40



Transformers

Once the query, key, and value vectors are passed through a linear
layer, a dot product matrix multiplication is performed between the
queries and keys, resulting in the creation of a score matrix.

The score matrix establishes the degree of emphasis each word
should place on other words. Therefore, each word is assigned a
score in relation to other words within the same time step. A
higher score indicates greater focus.

This process effectively maps the queries to their corresponding
keys.

13 / 40



Transformers

The scores are then scaled down by dividing them by the square
root of the dimension of the query and key vectors. This step is
implemented to ensure more stable gradients, as the multiplication
of values can lead to excessively large effects.

14 / 40



Transformers

A softmax function is applied to the adjusted scores to obtain the
attention weights. This results in probability values ranging from 0
to 1.

The softmax function emphasizes higher scores while diminishing
lower scores, thereby enhancing the model’s ability to effectively
determine which words should receive more attention.

15 / 40



Transformers

Finally, the weights derived from the softmax function are
multiplied by the value vector, resulting in an output vector.

In this process, only the words that present high softmax scores are
preserved. Finally, this output vector is fed into a linear layer for
further processing.

16 / 40



Transformers

A feed-forward neural network is applied to every attention
vector to transform the attention vectors into a form that is
acceptable to the next encoder or decoder layer.

17 / 40



Transformers

The feed-forward network accepts attention vectors one at a time,
each independently of one another. So, we can apply parallelization
and pass all the words at the same time into the encoder obtaining
the encoded vectors for every word simultaneously.

18 / 40



Transformers

Output of the Encoder

The output of the final encoder layer is a set of vectors, each
representing the input sequence with a rich contextual
understanding. This output is then used as the input for the
decoder in a Transformer model.

This careful encoding paves the way for the decoder, guiding it to
pay attention to the right words in the input when it is time to
decode.

Think of it like building a tower, where you can stack up N encoder
layers. Each layer in this stack gets a chance to explore and learn
different facets of attention, much like layers of knowledge. This
not only diversifies the understanding but could significantly
amplify the predictive capabilities of the transformer network.

19 / 40



Transformers

Decoder block
20 / 40



Transformers

The Decoder WorkFlow

The decoder’s role centers on crafting text sequences. Mirroring
the encoder, the decoder is equipped with a similar set of
sub-layers.

These components function in a way akin to the encoder’s layers,
yet with a twist: each multi-headed attention layer in the decoder
has its unique mission.

The final step of the decoder’s process involves a linear layer,
serving as a classifier, topped off with a softmax function to
calculate the probabilities of different words.
The Transformer decoder has a structure specifically designed to
generate this output by decoding the encoded information step by
step.

21 / 40



Transformers

In the decoder, embedding layer and positional encoder map the
words into vectors similarly to the encoder block.

22 / 40



Transformers

The decoder operates in an autoregressive manner, kickstarting its
process with a start token. It cleverly uses a list of previously
generated outputs as inputs, in tandem with the outputs from the
encoder that are rich with attention information from the initial
input.

Suppose we are training a translator for English to French.

For training, we need to give an English sentence along with its
translated French version for the model to learn.
So, our English sentences pass through encoder block, and French
sentences pass through the decoder block.

23 / 40



Transformers

Encoded words pass through the self-attention block, where
attention vectors are generated for every word in the French
sentences to represent how much each word is related to every
word in the same sentence, just like in the encoder block.

24 / 40



Transformers
This block is called the masked multi-head attention block.

When we provide an English word, it is translated into its French
version using previous results. It is then matched and compared to
the actual French translation that we fed into the decoder block.
After comparing both, it will update its matrix value. This is how
it will learn after several iterations.

We observe that we need to hide the next French word so that, at
first, it will predict the next word itself using previous results
without knowing the real translated word. For learning to take
place, it would make no sense if it already knows the next French
word. Therefore, we need to hide (or mask) it.

We can take any word from the English sentence, but we can only
take the previous word of the French sentence for learning
purposes. So, while performing parallelization with the matrix
operation, we need to make sure that the matrix will mask the
words appearing later by transforming them into zeroes so that the
attention network can’t use them.

25 / 40



Transformers

The attention vectors from the previous layer and the vectors from
the encoder block are passed into another multi-head attention
block. This is where the results from the encoder block also come
into the picture.

26 / 40



Transformers

By passing each attention vector into a feed-forward unit, the
output vectors is converted into a form that is easily acceptable by
another decoder block or a linear layer.

27 / 40



Transformers

Finally the code is passed through a softmax layer that transforms
the input into a probability distribution, and the resulting word is
produced with the highest probability after translation.

28 / 40



Real-Life Transformer Models: BERT

Google’s 2018 release of BERT, an open-source natural language
processing framework, revolutionized NLP with its unique
bidirectional training, which enables the model to have more
context-informed predictions about what the next word should be.

By understanding context from all sides of a word, BERT
outperformed previous models in tasks like question-answering and
understanding ambiguous language. Its core uses Transformers,
connecting each output and input element dynamically.

BERT, pre-trained on Wikipedia, excelled in various NLP tasks,
prompting Google to integrate it into its search engine for more
natural queries. This innovation sparked a race to develop
advanced language models and significantly advanced the field’s
ability to handle complex language understanding.

29 / 40



Real-Life Transformer Models: LaMDA

LaMDA (Language Model for Dialogue Applications) is a
Transformer-based model developed by Google, designed
specifically for conversational tasks, and launched during the 2021
Google I/O keynote. They are designed to generate more natural
and contextually relevant responses, enhancing user interactions in
various applications.

LaMDA’s design enables it to understand and respond to a wide
range of topics and user intents, making it ideal for applications in
chatbots, virtual assistants, and other interactive AI systems where
a dynamic conversation is key.

This focus on conversational understanding and response marks
LaMDA as a significant advancement in the field of natural
language processing and AI-driven communication.

30 / 40



Real-Life Transformer Models: GPT

GPT and ChatGPT, developed by OpenAI, are advanced
generative models known for their ability to produce coherent and
contextually relevant text. GPT-1 was its first model launched in
June 2018 and GPT-3, one of the most impactful models, was
launched two years later in 2020.

These models are adept at a wide range of tasks, including content
creation, conversation, language translation, and more. GPT’s
architecture enables it to generate text that closely resembles
human writing, making it useful in applications like creative
writing, customer support, and even coding assistance. ChatGPT,
a variant optimized for conversational contexts, excels in
generating human-like dialogue, enhancing its application in
chatbots and virtual assistants.

31 / 40



Real-Life Transformer Models

The landscape of foundation models, particularly transformer
models, is rapidly expanding. A study identified over 50 significant
transformer models, while the Stanford group evaluated 30 of
them, acknowledging the field’s fast-paced growth. NLP Cloud, an
innovative startup part of NVIDIA’s Inception program, utilizes
around 25 large language models commercially for various sectors
like airlines and pharmacies.

There is an increasing trend towards making these models
open-source, with platforms like Hugging Face’s model hub leading
the way. Additionally, numerous Transformer-based models have
been developed, each specialized for different NLP tasks,
showcasing the model’s versatility and efficiency in diverse
applications.

https://www.datacamp.com/blog/what-are-foundation-models

32 / 40



Vision transformers (Vit)

A vision transformer (ViT) is a transformer designed for
computer vision.

It carries out the following operations

1. it decomposes an input image into a series of patches (rather
than text into tokens)

2. it serializes each patch into a vector

3. it maps the vector into a smaller dimension with a single
matrix multiplication

4. the vector embeddings are then processed by a transformer
encoder as if they were token embeddings.

ViTs were designed as alternatives to convolutional neural
networks (CNNs) in computer vision applications. Compared to
CNNs, ViTs are less data efficient, but have higher capacity.

33 / 40



Vision transformers (ViT)

▶ In the basic ViT architecture, an image is first split into
square-shaped patches.

34 / 40



Vision transformers (ViT)
▶ Each patch is pushed through a linear operator, to obtain

”patch embedding” vector. The position of the patch is also
transformed into a vector by ”position encoding”. The two
vectors are added, then pushed through several Transformer
encoders.

35 / 40



Vision transformers (ViT)

▶ The attention mechanism in a ViT repeatedly transforms
representation vectors of image patches, incorporating more
and more semantic relations between image patches in an
image.

▶ This is analogous to how in natural language processing, as
representation vectors flow through a transformer, they
incorporate more and more semantic relations between words,
from syntax to semantics.

The ViT turns an image into a sequence of vector representations.
To use these for downstream applications, an additional head
needs to be trained to interpret them.

36 / 40



Vision transformers (ViT)
▶ For example, to use the ViT for image classification, one can

add a shallow MLP on top of it that outputs a probability
distribution over classes.

37 / 40



ViT vs CNN

▶ Typically, ViT uses patch sizes larger than standard CNN
kernels (3x3 to 7x7).

▶ ViT is more sensitive to the choice of the optimizer,
hyperparameters, and network depth.

▶ ViTs require more data thah CNNs to train, but they can
ingest more training data compared to CNN, which might not
improve after training on a large enough training dataset.

▶ CNN applies the same set of filters for processing the entire
image. This allows them to be more data efficient and less
sensitive to local perturbations. ViT applies self-attention,
allowing them to easily capture long-range relationships
between patches.

▶ ViTs also appear more robust to input image distortions such
as adversarial patches or permutations.

38 / 40



ViT applications
▶ ViTs provide state-of-the-art performance in many Computer

Vision tasks such as Image Classification, Object Detection,
Video Deepfake Detection, Image segmentation, Anomaly
detection, Image Synthesis, Cluster analysis, Autonomous
Driving.

▶ ViT had been used for image generation as backbones for
GAN and for diffusion models (diffusion transformer, or DiT).

▶ DINO (self-distillation with no labels) - a refinement of the
ViT proposed by researchers at META in 2021- has been
demonstrated to learn useful representations for clustering
images and exploring morphological profiles on biological
datasets, such as images generated with the Cell Painting
assay.

▶ In 2024, a 113 billion-parameter ViT model was proposed (the
largest ViT to date) for weather and climate prediction, and
trained on the Frontier supercomputer with a throughput of
1.6 exaFLOPs.

39 / 40



Analysis of data with temporal dependencies

The discipline of dynamical systems is concerned with developing
tools used to model dynamic datasets, by which we mean
ordered data, where often (but not always) ordering refers to the
time variable.

Definition.
A dynamical system with fixed order consists of a function f
and a sequence (x1, x1, . . . ) determined by the recursive equation

xt = γt , t = 1, . . . ,W ,

xt = f (xt−1, . . . , xt−W ), t > W

where γt , for t = 1, . . . ,W are called the initial conditions of the
system.

40 / 40


	The tranformers
	The tranformer network
	The vision tranformer network


