HW 10

Please, write clearly and justify all your statements using the material covered in class to get credit for your work.

(1) Let

\[f(x) = \begin{cases}
 x^2 \sin \frac{1}{x} & \text{if } x \neq 0; \\
 0 & \text{if } x = 0.
\end{cases} \]

(a) Use the chain rule and the product rule to show that \(f \) is differentiable at each \(x \neq 0 \) and find \(f'(x) \).

(b) Use the definition to show that \(f \) is differentiable at \(x = 0 \) and find \(f'(0) \).

(c) Show that \(f' \) is not continuous at \(x = 0 \).

(d) Let \(g(x) = x^2 \) if \(x \leq 0 \) and \(g(x) = x^2 \sin \frac{1}{x} \) if \(x > 0 \). Determine whether or not \(g \) is differentiable at \(x = 0 \). If it is, find \(g'(0) \).

(2) Let \(f(x) = x^2 \) if \(x \) is rational and \(f(x) = 0 \) if \(x \) is irrational.

(a) Prove that \(f \) is continuous at exactly one point, namely at \(x = 0 \).

(b) Prove that \(f \) is differentiable at exactly one point, namely at \(x = 0 \).

(3) Use the mean value theorem to establish the following inequalities

(a) \(e^x > 1 + x \), for \(x > 0 \).

(b) \(\frac{x-1}{x} < \ln x < x - 1 \), for \(x > 1 \).

(f) \(\sin x \leq x \), for \(x \geq 0 \).

(4) A differentiable function \(f \) is said to be increasing on an interval \(I \) if \(x_1 < x_2 \) in \(I \) implies that \(f(x_1) \leq f(x_2) \). Prove that \(f \) is increasing on \(I \) iff \(f'(x) \geq 0 \) for all \(x \in I \).