Test #1

This is a closed-book, no-notes test. Please, write clearly and justify your arguments using the material covered in class to get credit for your work.

(1)[4 Pts] Use an argument by induction to prove that, if \(x \geq 0 \), then
\[
(1 + x)^n \geq 1 + nx \quad \text{for all } n \in \mathbb{N}.
\]

Proof.
- For \(n = 1 \), \((1 + x)^1 \geq 1 + 1 \cdot x = 1 + x\).
- Assume \((1 + x)^n \geq 1 + nx\) for some \(n \in \mathbb{N} \).
- We now derive the case \(n + 1 \). Using the statement above for \(n \), we observe that
\[
(1+x)^{n+1} = (1+x)(1+x)^n \geq (1+x)(1+nx) = 1+nx+nx^2 \geq 1+nx = 1+(n+1)x.
\]
This shows that statement is true for \(n + 1 \), hence it is true for all \(n \in \mathbb{N} \). \(\Box \)

(2)[6 Pts] Let \(A, B \) be subsets of \(\mathbb{R} \).

(a) State the definition of *boundary* for a subset \(S \) of \(\mathbb{R} \).

(b) Prove that \(\text{bd}(A \cup B) \subseteq \text{bd}(A) \cup \text{bd}(B) \).

(c) Show that the converse containment \(\text{bd}(A) \cup \text{bd}(B) \subseteq \text{bd}(A \cup B) \) may fail by giving a counterexample, i.e., find sets \(A, B \) such that \(\text{bd}(A) \cup \text{bd}(B) \nsubseteq \text{bd}(A \cup B) \).

(a) The boundary of \(S \) is the set of its boundary points. A boundary point of \(S \) is a point \(x \) such that for any \(\epsilon > 0 \) we have that \(N(x, \epsilon) \cap S \neq \emptyset \) and \(N(x, \epsilon) \cap S^c \neq \emptyset \).

(b) *Proof.* We will show that, for any \(x \in \text{bd}(A \cup B) \) then \(x \in \text{bd}(A) \) or \(x \in \text{bd}(B) \).

If \(x \in \text{bd}(A \cup B) \), then for any \(\epsilon > 0 \) we have that \(N(x, \epsilon) \cap (A \cup B) \neq \emptyset \) and \(N(x, \epsilon) \cap (A \cup B)^c \neq \emptyset \). Note that \((A \cup B)^c = (A^c \cap B^c)\). Hence, for any \(\epsilon > 0 \) we have that \(N(x, \epsilon) \cap A \neq \emptyset \) and \(N(x, \epsilon) \cap A^c \neq \emptyset \) or \(N(x, \epsilon) \cap B \neq \emptyset \) and \(N(x, \epsilon) \cap B^c \neq \emptyset \). That is, we have that \(x \in \text{bd}(A) \) or \(x \in \text{bd}(B) \). \(\Box \)

(c) Let \(A = [1, 3] \) and \(B = (2, 4) \). Observe that \(\text{bd}(A) = \{1, 3\} \), \(\text{bd}(B) = \{2, 4\} \) and \(\text{bd}(A \cup B) = \text{bd}([1, 4]) = \{1, 4\} \). Hence in this case \(\text{bd}(A \cup B) \) is strictly contained in \(\text{bd}(A) \cup \text{bd}(B) \) so that \(\text{bd}(A) \cup \text{bd}(B) \nsubseteq \text{bd}(A \cup B) \).
(3)[5 Pts] Find a set (or sets) satisfying the description below, or explain why they do not exist.

(a) A set $S \in \mathbb{R}$ that is neither open nor closed.

$S = [1, 2)$

(b) A set $S \in \mathbb{R}$ that has a maximum, a minimum and is not closed.

$S = [1, 2) \cap (3, 4]$. Note that $\min S = 1$ and $\max S = 4$ but S is not closed.

(c) A collection of open sets A_n such that $\bigcap_n A_n$ is not open.

$A_n = (-\frac{1}{n}, \frac{1}{n})$. Then $\bigcap_n A_n = \{0\}$, closed set.

(d) A collection of open sets A_n such that $\bigcup_n A_n$ is not open.

Not possible. By theorem in class, the union of any collection of open sets is open.

(e) An unbounded set containing no accumulation points.

The set \mathbb{N} is unbounded and contains no accumulation points.