Math 3339
Name: SOLUTION

HW #5

You have the following commands in R to compute probabilities associated with Poisson distributions.
- `dpois(x, lambda)`: \(P(X = x) \) for \(X \sim \text{Poisson}(\lambda) \)
- `ppois(q, lambda)`: \(P(X \leq q) \) for \(X \sim \text{Poisson}(\lambda) \)

(1)[3 Pts] On average, 2.5 telephone calls per minute are received at the UH’s switchboard. Assuming that the number of incoming calls per minute follows a Poisson distribution, compute the probability that at any given minute there will be more than 2 calls.

Denote as \(X \) the number of incoming calls per minute. Thus
\[
P(X > 2) = 1 - P(X \leq 2)
\]

Using R with \(\lambda = 2.5 \):
```r
> 1 - ppois(2, 2.5)
[1] 0.4561869
```

(2)[3 Pts] Suppose that in one year the number of industrial accidents \(X \) follows a Poisson distribution with mean 3.0. If each accident leads to an insurance claim of $5,000, how much money would an insurance company need to keep in reserve to be 95% certain that the claims are covered?

You can list the values of the cumulative Poisson distribution with \(\lambda = 3 \) until you find a value above 0.95. Using R:
```r
> ppois(4, lambda=3)
[1] 0.8152632
> ppois(5, lambda=3)
[1] 0.9160821
> ppois(6, lambda=3)
[1] 0.9664915
```

Hence to be 95% confident to be covered, the insurance company should be expected to cover up to 6 claims per year. Thus, it needs to set aside $6 \cdot 5,000 = $30,000.

(3)[4 Pts] A delivery company found that the number of complaints was six per years on average. Assuming that the number of complaints follows a Poisson distribution, calculate the probability of having no complaints in

(a) all of next year;
(b) the next quarter.

(a) Poisson distribution with \(\lambda = 6 \). We compute \(P(X = 0) \):
```r
> dpois(0, lambda=6)
[1] 0.002478752
```

(b) Poisson distribution with \(\lambda = 1.5 \). \(P(X = 0) \):
```r
> dpois(0, lambda=1.5)
[1] 0.2231302
```

(4)[6 Pts] Let \(X \) and \(Y \) have the following joint p.d.f.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

(a) Calculate the marginal densities. Are \(X \) and \(Y \) are independent?

(b) Compute the means and variances.

(c) Are \(X \) and \(Y \) positively correlated? negatively correlated? uncorrelated?

Here is the solution with the R.

```r
> p <- matrix(c(.05,.10,.15,.15,.10,.15,.15,.10,.05),ncol=3)
> px <- apply(p,2,sum)  ## column-sum: it creates marginal probabilities for \( X \)
> px
[1] 0.3 0.4 0.3
> py <- apply(p,1,sum)  ## row-sum: it creates marginal probabilities for \( Y \)
> py
[1] 0.35 0.30 0.35
> x <- c(1,2,3)
> y <- c(1,2,3)
> EX <- sum(px*x)
> EX
[1] 2
> EY <- sum(py*y)
> EY
[1] 2
> EX2 <- sum(px*x*x)
> EY2 <- sum(py*y*y)
> VarX <- EX2-EX*EX
> VarX
[1] 0.6
> VarY <- EY2-EY*EY
> VarY
[1] 0.7
> A=0
> for(i in 1:3)for(j in 1:3)A <- A+p[i,j]*x[i]*y[j]
> EXY<-A
> EXY
[1] 3.8
> COVXY <- EXY-EX*EY
> COVXY
[1] -0.2
Negative correlation.
\( X, Y \) not independent since \( f(2,2) = 0.10 \neq f_1(2) \ast f_2(2) = 0.4 \ast 0.3 \)
(5)[4 Pts] Let $W = 1 - X + 2Y$ be a discrete random variable where $X$, $Y$ are independent discrete random variables with $\mu_X = 5$, $\mu_Y = 2$, and $\sigma_X^2 = 1$, $\sigma_Y^2 = 2$. Compute $\mu_W$ and $\sigma_W^2$.

$\mu_W = 1 - \mu_X + 2\mu_Y = 1 - 5 + (2)(2) = 0$

$\sigma_W^2 = \sigma_X^2 + 4\sigma_Y^2 = 1 + (4)(2) = 9$