You must show your work and justify your steps to receive credit.

Problems:
(1) [4Pts] Let \(x, y \in \mathbb{Z} \). Prove that the following relation is an equivalence relation or show that it is not:
\(x \sim y \) if and only if \(x - y \) is a multiple of 3

SOLUTION:
Yes.
(i) \(x - x = 0 \) is a multiple of 3 with multiplicative constant 0;
(ii) if \(x - y = 5m \), then \(y - x = 5(-m) \), which is also a multiple of 5;
(iii) if \(x - y = 5m \) and if \(y - z = 5n \), then \(x - z = 5(m + n) \)

(2) [6Pts] For each one of the statements below, construct an example or explain why such example does not exist.

a) A subspace of \(\mathbb{R}^3 \) of dimension 1.
b) A non-trivial subset of \(\mathbb{R}^3 \) that is not a subspace (non-trivial means it should not be the empty set).
c) A linearly independent set of 2 vectors in \(\mathbb{R}^3 \).
d) A linearly independent set of 4 vectors in \(\mathbb{R}^3 \).
e) A spanning set of \(\mathbb{R}^3 \) that is not a basis.
f) An infinite dimensional vector space (that is, a vector spaces with no basis of finite cardinality).

SOLUTION.
(a) The set \(\{(a, a, a) : a \in \mathbb{R}\} \)
b) The set \(\{(1,1,1)\} \).
c) The set \(\{(1,0,0),(0,1,0)\} \)
d) Not possible since a basis in \(\mathbb{R}^3 \) has dimension 3 and any set of more than 3 elements is linearly dependent.
e) The set \(\{(1,0,0),(0,1,0),(0,0,1),(2,0,0)\} \).
f) The space of continuous function with domain in \(\mathbb{R} \).

(3) [6Pts] Determine if the following subsets of the vector space of 2 \(\times \) 2 matrices with real entries are subspaces:

a) \(S = \left\{ \begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R} \right\} \)
b) \(R = \left\{ \begin{bmatrix} a & b-a \\ a-b & b \end{bmatrix} : a, b \in \mathbb{R} \right\} \)

SOLUTION.
a) This is not a subspace. Note that:
\[
\begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix} + \begin{bmatrix} a' & b' \\ 0 & \frac{1}{a'} \end{bmatrix} = \begin{bmatrix} a + a' & b + b' \\ 0 & \frac{1}{a} + \frac{1}{a'} \end{bmatrix} \neq \begin{bmatrix} a + a' & (a + a')(b + b') \\ 0 & \frac{1}{a + a'} \end{bmatrix}
\]
This shows that the matrix resulting from adding two matrices in \(S \) does not belong to \(S \).

(b) This is a subspace.

(i) For any \(\alpha \in \mathbb{R} \), \(\alpha \begin{bmatrix} a & b-a \\ a-b & b \end{bmatrix} = \begin{bmatrix} \alpha a & \alpha(b-a) \\ \alpha(a-b) & \alpha b \end{bmatrix} = \begin{bmatrix} \tilde{a} & \tilde{b}-\tilde{a} \\ \tilde{a}-\tilde{b} & b \end{bmatrix} \), for \(\tilde{a}, \tilde{b} \in \mathbb{R} \).

(ii) \(\begin{bmatrix} a & b-a \\ a-b & b \end{bmatrix} + \begin{bmatrix} a' & b'-a' \\ a'-b' & b' \end{bmatrix} = \begin{bmatrix} a + a' & (b + b') - (a + a') \\ (a + a' - (b + b')) & b + b' \end{bmatrix} = \begin{bmatrix} \tilde{a} & \tilde{b}-\tilde{a} \\ \tilde{a}-\tilde{b} & b \end{bmatrix} \), for \(\tilde{a}, \tilde{b} \in \mathbb{R} \).

(4) [6Pts] Let \(T : \mathbb{R}^4 \rightarrow \mathbb{R}^3 \) be given by
\[
T(a_1, a_2, a_3, a_4) = (a_1 + a_2 + a_3, -a_1 + 2a_2 + a_4, 3a_2 + a_3 + a_4)
\]

(a) Find the nullity and the rank of \(T \).
(b) Find bases for the null space and the range of \(T \).

SOLUTION.

(a) The null space is determined by the equations
\[
\begin{align*}
 a_1 + a_2 + a_3 &= 0, \\
 -a_1 + 2a_2 + a_4 &= 0, \\
 3a_2 + a_3 + a_4 &= 0
\end{align*}
\]
This gives
\[
\begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 3 & 1 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]
The solution is: \(a_3 = -a_1 - a_2, a_4 = a_1 - 2a_2 \), with \(a_1, a_2 \in \mathbb{R} \). This shows that nullity = 2. By the dimension theorem, we also derive that \(\text{rank}(T) = 2 \).

(b) From the equations of the nullspace, choosing the free parameters as \((a_1, a_2) = (1, 0) \) and \((a_1, a_2) = (0, a) \) we have that a basis for the null space is
\[
B = \{(1, 0, -1, 1), (0, 1, -1, -2)\}
\]
The range is determined by the equations
\[
\begin{align*}
 a_1 + a_2 + a_3 &= x_1, \\
 -a_1 + 2a_2 + a_4 &= x_2, \\
 3a_2 + a_3 + a_4 &= x_3
\end{align*}
\]
This gives
\[
\begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 3 & 1 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]
Hence the range of \(T \) satisfies the condition \(x_3 - x_1 - x_2 = 0 \) A basis for the range is
\[
D = \{(1, 0, 1), (0, 1, 1)\}.
\]

(5) [5Pts] Let \(L = \left\{ \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix} \right\} \). Let \(G = \left\{ \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 3 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\} \). You can assume without proof that \(G \) spans \(M^{2\times 2} \). Find a subset \(H \subset G \) such that \(H \cup L \) spans \(M^{2\times 2} \). You need to justify that the set you build spans \(M^{2\times 2} \).
Note that the first two matrices of G are already in the span of L since
\[
\begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 0 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} + 2 \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}
\]
Because G spans $M^{2 \times 2}$, and the first two matrices are already in the span of L, then we need to choose the other two matrices of G to form the set H, that is $H = \{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \}$ so that $H \cup L$ spans $M^{2 \times 2}$.

(6) [5Pts] Let V be a finite-dimensional vector space and V_0 be a proper subspace of V (where proper means that $V_0 \neq V$). Prove that $\dim V_0 < \dim V$.

SOLUTION.

Suppose that $\dim V_0 = m$ and that $B = \{v_1, \ldots, v_m\}$ be a basis of V_0. Since $V_0 \subset V$, we also have that $S \subset V$.

Since $V_0 \neq V$ and $V_0 \subset V$, it follows that there is a vector $u \in V$ that is not in $\text{span}B$. Hence the set $E = \{u, v_1, \ldots, v_m\} \subset V$ is linearly independent. It follows that $\dim V \geq m + 1$.
