MATH 4377/6308 - Advanced linear algebra I - Summer 2024
Homework 1

Exercises:

1. Let $A = \{1, 2, 5\}$, $B = \{4, 5\}$, $C = \{4, 6\}$. Explicitly write down the sets:

 \[A \cup B, \quad A \cap (B \cup C), \quad B \cap (A \setminus B), \quad A \times C. \]

 SOLUTION:
 \[A \cup B = \{1, 2, 4, 5\}, \quad A \cap (B \cup C) = \{5\}, \quad B \cap (A \setminus B) = \emptyset, \quad A \times C = \{(1, 4), (1, 6), (2, 4), (2, 6), (5, 4), (5, 6)\} \]

2. Let $x, y \in \mathbb{Z}$. Prove if the following relations are equivalence relations or not:

 a) $x \sim y$ if and only if $x - y < 10$.
 b) $x \sim y$ if and only if $x \cdot y \geq 0$.
 c) $x \sim y$ if and only if $x - y$ is even.

 SOLUTION:

 (a) No. Symmetry fails
 (b) No. Transitivity fails. There are $x, y, z \in \mathbb{Z}$ s.t. $x \cdot y \geq 0$ and $y \cdot z \geq 0$, but $x \cdot z < 0$
 (c) Yes. (i) $x - x$ is even; (ii) if $x - y = 2m$, then $y - x = 2(-m)$; (iii) if $x - y = 2m$ and if $y - z = 2n$, then $x - z = 2(m + n)$

3. Give an example of a set A and a relation on A which is reflexive and transitive but not symmetric.

 SOLUTION:

 $x, y \in \mathbb{Z}$, with $x \sim y$ if and only if $x \leq y$
 In this case, $x \leq x$ holds, $x \leq y$ and $y \leq z$ implies $x \leq z$. However $x \leq y$ does not imply $y \leq x$

4. Let $f : \{0, 1, 2, 3, 4\} \rightarrow \mathbb{N}$, $n \rightarrow n^3 + n$.

 a) Find domain, codomain, and range of f.
 b) Is f one-to-one?
 c) Is f onto?

 SOLUTION:

 (a) domain: $\{0, 1, 2, 3, 4\}$, codomain: \mathbb{N}, range: $\{0, 2, 2^2 + 2, 3^3 + 3+, 4^4 + 4\}$
 (b) yes. $n^3 + n = m^3 + m$ implies $n = m$
 (c) no. There is no n in the domain of f such that $f(n) = 1$

5. Let $f : [0, 2\pi] \rightarrow [-1, 1]$ be defined by $f(x) = \sin(x)$.

 a) Is f one-to-one? Is f onto?
 b) Find an interval S, such that $f|_S$ is both one-to-one and onto.
SOLUTION:
(a) \(f \) is not 1-1 since \(f(0) = f(\pi) \). \(f \) is onto.
(b) \(f \) one-to-one and onto in the interval \([\pi/2, 3\pi/2]\)

6. Let \(z = 1 + i2, w = 1 - i3 \). Write: \(z, z + w, zw, \frac{1}{w} \) in the form \(a + ib \). Finally write \(|z| \).

SOLUTION:
\(z = 1 - i2, z + w = 2 - i, zw = 7 - 3, \frac{1}{w} = \frac{1}{10}(1 + 3i), |z|^2 = 5, |z| = \sqrt{5} \)

7. Let \(x, y \in \mathbb{Z} \). Let \(x \sim y \) if and only if \(y + 4x \) is an integer multiple of 5. Prove that \(\sim \) is an equivalence relation.

SOLUTION:
(i) \(x + 4x = 5x \) is an integer multiple of 5; (ii) if \(y + 4x = 5m \), then \(y = 5m - 4x \); hence \(x + 4y = x + 20m - 16x = 20m - 15x = 5(4m - 3x) \) which is also a multiple of 5; (iii) if \(y + 4x = 5m \) and if \(z + 4y = 5n \), then (using these two equations to express \(z \) and \(4x \)) \(z + 4x = (5n - 4y) + (5m - y) = 5(n + m) - 5y = 5(n + m - y) \), which is a multiple of 5.