(1) [6 Pts]
 (a) Determine the number of parameters of a feedforward neural network with the following architecture:
 - Input layer: 2 neurons.
 - 11 Hidden layers: 9 neurons each layer.
 - Output layer: 1 neurons.
 (b) Modify the network architecture above by changing the number of hidden layers to obtain a feedforward neural network containing at least 390 but no more than 410 parameters.

Solution:
 (b) Since each pair of layers contributes \((N_\ell + 1) \times N_{\ell+1} \) parameters, observing that 11 hidden layers create 10 pairs of hidden layers, we have

\[
\text{Total parameters} = 3 \times 9 + 10(10 \times 9) + 10 \times 1 = 937
\]

(c) We choose 5 hidden layers. Then we have

\[
\text{Total parameters} = 3 \times 9 + 4 \times (10 \times 9) + 10 \times 1 = 397
\]

(2) [4 Pts] In class I have shown that a shallow neural network with ReLU activation function implementing the following function

\[
T(x) = \begin{cases}
2x & \text{if } 0 \leq x < \frac{1}{2} \\
2(1-x) & \text{if } \frac{1}{2} \leq x \leq 1
\end{cases} \quad x \in [0,1]
\]

is obtained by writing as \(T(x) = 2(x - 0)_+ - 4(x - \frac{1}{2})_+ \) which gives the architecture below

Modifying the example above write networks implementing the functions below
Solution:
The function T_1 is obtained by adding $1/2$ to the function T

$$T_1(x) = T(x) + 1/2$$

Hence the only change to the original NN needed to generate the new NN implementation is the last bias at the output layer, which must be $1/2$ (it was 0 for T).

For the function T_2, the slope of the first linear component is now 3 rather than 2. For the second linear component, the slope is -3, hence we need to set the coefficient -6 to compensate for the first linear component. Hence:

$$T_2(x) = 3(x - 0)_+ - 6(x - \frac{1}{2})_+$$

An alternative argument to determine the coefficient of the second component is to impose the condition $T_2(1) = 0$. Hence the changes to the original NN needed to generate the new NN implementation are the weights to the output layer, which must be 3 and -6, where in T is was 2 and -4, respectively.