
MATH 6397 - Mathematics of Data Science
From signal processing to Convolutional Neural

Networks

Instructor: Demetrio Labate

February 1, 2021



What is data science?

In a way, applied and numerical mathematics has always been
about “data science”.

Classical problems from applied and numerical mathematics:

1. how to predict a pattern?

2. how to recover a signal from measurements?

3. how to interpolate or fit the data?

4. . . .

The hallmark of applied and numerical mathematics is the reliance
on models, e.g., a differential equation, a function space, a
representation system, that is invoked as a way to explain the data.



What is data science?

The current notion of data science by contrast in centered around
the notion of learning: How can we explain data and predict
patterns by learning from examples?

Model-based approach

I Can be applied to
multiple operational
problems

I Low data calibration

I High computational
cost in general

I Requires domain
knowledge

Learning-based approach

I Retraining needed when
operational conditions
change

I Careful data calibration

I Low computational cost
once trained

I No domain knowledge
needed



What is data science?

One day, there was a fire in a wastebasket in the office of the
Dean of Research. In rushed a physicist, a chemist, and a data
scientist.
The physicist immediately starts to work on how much energy
would have to be removed from the fire to stop combustion.
The chemist works on which reagent would have to be added
to the fire to prevent oxidation.
While they are busy with their calculations, the data scientist
is setting fires to all the other wastebaskets in the office.
“What are you doing?” the others inquire. The data scientist
replies: “Well, to solve the problem, you obviously need a
larger sample size.”

[www.analyticsvidhya.com/blog/2015/12/

hilarious-jokes-videos-statistics-data-science/]



What is data science? Shall I ignore models?

There are good reasons for integrating model-based (also called
physics-based) and learning-based methods.

I Learning-based algorithms typically require many training
samples - a situation which is not always feasible.

I Learning-based methods, e.g., deep neural networks, are often
not interpretable.

I While AI was born with the goal to emulate the human brain,
it is known that human learning is not purely based on
learning-by-examples.

Further, model-based ideas play an important role in the design
and interpretation of deep learning architectures and other machine
learning schemes.



Course Outline
1. Mathematics of signal processing

1.1 Fourier series
1.2 Wavelets
1.3 Shearlets
1.4 Wavelet Scattering Transform

2. Mathematics of machine learning

2.1 Geometry of high dimensional data
2.2 Statistical learning theory
2.3 Support Vector Machines
2.4 Convolutional Neural Networks

References:

� The Mathematics of Signal Processing, by Damelin and Miller

� Foundations of Data Science, by Blum, Hopcroft and Kannan

� Foundations of Machine Learning, by Mohri, Rostamizadeh and
Talwalkar

� Deep Learning with PyTorch, by Stevens, Antiga and Viehmann



Course Outline: Deep Learning with PyTorch

PART 1 - CORE PYTORCH

1 Introducing deep learning and the PyTorch Library
2 Pretrained networks
3 It starts with a tensor
4 Real-world data representation using tensors
5 The mechanics of learning
6 Using a neural network to fit the data
7 Telling birds from airplanes: Learning from images
8 Using convolutions to generalize

PART 2 - LEARNING FROM IMAGES IN THE REAL
WORLD: EARLY DETECTION OF LUNG CANCER

9 Using PyTorch to fight cancer
10 Combining data sources into a unified dataset
11 Training a classification model to detect suspected tumors
12 Improving training with metrics and augmentation
13 Using segmentation to find suspected nodules
14 End-to-end nodule analysis, and where to go next



Part I
Mathematics of Signal

Processing



Signals and systems
In classical signal processing, a signal is a function conveying
information about the state of a physical system.

Examples:
A speech signal is a function of time, a photographic image is a
brightness function of two space variables.

Continuous-time or analog signals are represented by a continuous
independent variable.
Discrete-time signals, which typically arise by sampling
continuous-time signals, are represented by a discrete variable.



Signals and systems

Classical signal processing adopts the formalism of Hilbert spaces.
A continuous-time signal is a function f ∈ L2([0,T ])
A (continuous) image is a function f ∈ L2([0, 1]2)
A discrete-time signal is a function f ∈ `2

Often, we consider signal transformations of the form

y = Tx

where x is the input signal, y is the output signal and T is a
linear operator modeling the mapping the output signal to the
input signal.

For instance, T can be used to model a communication channel.
In this case, the problem of interest is how to recover the input
signal x given an altered version y of x.



Signal Processing

A fundamental idea in signal processing and harmonic analysis is to
use function representations

Suppose that any function f in a function space (e.g., a Hilbert
space) can be expressed as a superposition of a simple, easily
generated collections of functions

{ek : k ∈ K}

so that
f =

∑
k∈K

ck(f ) ek .

Then a linear transformation T on f can be broken down into
simpler operations on the elementary functions ek :

Tf =
∑
k∈K

ck Tek



Signal Processing

The three typical steps of a classical signal processing process are:

1. Analysis. It decomposes a signal into basic components.

f 7→ {ck(f ), k ∈ K} e.g., ck(f ) = 〈f , ek〉

2. Processing. It modifies (some of) the basic components of the
signal that were obtained through the analysis.

c̃k = Tck

3. Synthesis. It reconstitute the signal from its (altered)
components.

f̃ =
∑
k

c̃k ek



1.1 Fourier Series



Fourier series

Jean Baptiste Joseph Fourier (1768-1830) was a French
mathematician, physicist and engineer.

Around 1808, he was trying to solve the heat equation (which he
discovered), and was able to compute solutions by expressing them
as superpositions of an infinite number of sinusoidal waves.

f (t) ∼
∑
k

ak cos(kt) +
∑
k

bk sin(kt)

He made the claim, seemingly preposterous at the time, that any
function of time t (in the interval [0, 2π]), continuous or
discontinuous, could be represented as a linear combination of
functions sin kt, cos kt.



Fourier series

Fourier claim about trigonometric representations was literally
incorrect but ‘morally’ true.

The complex exponentials

ek(t) = 1√
2π
e ikt , k ∈ Z

form an orthonormal basis (ONB) in the Hilbert space L2([0, 2π])
with inner product

〈f , g〉 =

∫ 2π

0
f (t) g(t) dt.

Hence, any f ∈ L2([0, 2π]) satisfies

f =
∑
k∈Z
〈f , ek〉 ek ,

where convergence is understood in the sense of L2 convergence.



Fourier series

The detailed analysis of the convergence properties of Fourier
series is a complex topic.

Theorem. Suppose f has the following properties

• f (t) is periodic with period 2π,

• f (t) is continuous on [0, 2π],

• f ′(t) is piecewise continuous on [0, 2π].

Then the Fourier series of f∑
k∈Z

ake
ikt , ak =

1

2π

∫ 2π

0
f (t)e−ikt dt

converges pointwise and uniformly.

Pointwise convergence of a Fourier series does not hold in general.
If f has a discontinuity at t0, then the Fourier series does not
converge uniformly at t0.



Fourier series

Gibbs phenomenon: The Fourier sums overshoot at a jump
discontinuity and that this overshoot does not die out as more
terms are added to the sum.

This behavior reflects the difficulty inherent in approximating a
discontinuous function by a finite series of continuous sine and
cosine waves



Fourier series

General principle: the decay of the Fourier coefficients of a
function at infinity is controlled by the smoothness of that
function; very smooth functions will have very rapidly decaying
Fourier coefficients (resulting in the rapid convergence of the
Fourier series), whereas discontinuous functions will have very
slowly decaying Fourier coefficients (causing the Fourier series to
converge very slowly).



Fourier series

Riemann-Lebesgue Lemma suppose f is piece-wise continuous
in the interval [0, 2π]. Then the Fourier coefficients of f satisfy

lim
k→∞

ak = 0.

Proof. If f = χ[a,b], then, by direct integration,

lim
k→∞

ak = lim
k→∞

1

2π

∫ b

a
e−ikt dt = lim

k→∞

e ikb − e ika

2πik
= 0.

The proof follows by observing that any f ∈ L1([0, π]) can be
approximated using simple functions (finite linear combinations of
characteristic functions) and that simple functions are dense in
L1([0, π]).

Remark. The argument also shows that the Fourier coefficients of
the characteristic functions decay as O( 1

k ).



Fourier series

Proposition Let f ∈ C 1([0, 2π]). Then the Fouries coefficients ak
of f satisfy

|ak | = o( 1
k ) (decay is faster than 1

k )

Proof. Integration by parts gives that

ak =
1

2π

∫ 2π

0
f (t)e−ikt dt = −f (t)

e−ikt

i2πk

∣∣∣∣2π
0

+
1

2π

∫ 2π

0
f ′(t)

e−ikt

ik
dt

= − i

2πk

∫ 2π

0
f ′(t)e−ikt dt,

showing that kak = − i
2π

∫ 2π
0 f ′(t)e−ikt dt.

By the Riemann-Lebesgue Lemma, the RHS converges to 0 as
k →∞.



Fourier series

The same argument can be repeated with higher order derivatives
showing
Proposition Let f ∈ Cn([0, 2π]). Then the Fouries coefficients ak
of f satisfy

|ak | = o( 1
kn )

and
Proposition Let f ∈ C∞([0, 2π]). Then the Fouries coefficients ak
of f satisfy

lim
k→∞

kn|ak | = 0, for all n.



Sparse representations

How useful and effective is a representation system {ψi , i ∈ I}
depends on its approximation properties.
Consider the N term approximation to f ∈ X ⊂ L2([0, 2π]):

fN =
∑

N terms

ci (f )ψi .

The approximation error of f is measured by

EN(f ) = ‖f − fN‖2

If EN(f ) decays rapidly as N increases for all f ∈ X , the
representation system {ψi : i ∈ I} is sparse in X .
This means that most of the information of any f ∈ X can be
recovered using a relatively few terms in the representation.



Sparse representations

If a signal f is highly regular, that is, f ∈ Cn([0, 2π]) with large n,
the Fourier coefficients of f have rapid decay.
This implies that if we approximate f with an N-term Fourier
approximation fN , then the approximation error

‖f − fN‖2 ≤ C N−2n

has rapid decay as N →∞.

However, if f has a discontinuity, the Fourier coefficients ak of f
only decay as O(k−1) in which case

‖f − fN‖2 ≤ C N−1

This estimate holds for functions of bounded variation
BV ([0, 2π]).

The results above show that Fourier series have limitations when
dealing with discontinuous signals.



Sparse representations

Why Sparse Representations?

• Data Compression. If f has a sparse representation with
respect to a basis {ψi : i ∈ I}, then it is sufficient to keep only a
“small” number of representation coefficients to have a
“sufficiently good” approximation of f .
This is useful to store or to transmit information.

s(t) =
∑
µ∈M

cµψµ → (compress) → {cµ}µ∈MN

 (transmit)  sN(t) =
∑
µ∈MN

cµψµ

Examples: MP3 (audio); JPEG, JPEG2000 (image); MPEG (video)



Sparse representations

Why Sparse Representations?

Sparsity goes beyond compression. Capturing the sparse
representation of a signal entails capturing its essential features.

• Denoising. Let s be a signal corrupted by noise:

s(t) = f (t) + n(t).

By representing s with respect to a sparse representation

s(t) =
∑
i

ci (s)ψi (t)

most of the information of f is concentrated in a few coefficients.
By discarding the other coefficients, most of the noise is also
removed.
• Also: Feature Extraction, Inverse problems, . . .



1.2 Wavelets



Wavelet representations

One major problem about Fourier series is that trigonometric
functions are not local.

Wavelets were introduced to address this issue.

A wavelet basis is constructed by taking dilated and translated
copies of an appropriate ‘mother’ function ψ ∈ L2(R).
Define the unitary operators of L2(R)

I Translation operator. Ty f (x) = f (x − y), y ∈ R
I Dilation operator. Daf (x) = a1/2f (ax), a > 0

A wavelet system has the form

Ψ = {ψj ,k(x) = D j
2Tkψ(x) = 2j/2 ψ(2jx − k) : j , k ∈ Z} ⊂ L2(R)

Note: ‖ψj ,k‖ = ‖ψ‖, for each j , k .



Wavelet representations - The Haar wavelet

Example: Haar wavelet system (1910)

The Haar wavelet is: h(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2 < x < 1

0 otherwise



Wavelet representations - The Haar wavelet
The Haar system {hj ,k(x) = 2j/2 h(2jx − k) : j , k ∈ Z} is an
orthonormal system of L2(R).

I Each hj ,k is supported on an interval Ij ,k of size 2−j .

I Ij ,k ∩ Ij ,k ′ = ∅ if k 6= k ′. Hence 〈hj ,k , hj ,k ′〉 = 0.

I If j < j ′, hj ,k and hj ′,k ′ can only overlap on Ij ′,k ′ where hj ,k is
constant. Hence 〈hj ,k , hj ′,k ′〉 = 0.



Wavelet representations - The Haar wavelet

Theorem. The Haar system {hj ,k : j , k ∈ Z} is an orthonormal
basis of L2(R). For any f ∈ L2(R) :

f =
∑
j∈Z

∑
k∈Z
〈f , hj ,k〉 hj ,k ,

with convergence in L2 sense

‖f ‖2 =
∑
j∈Z

∑
k∈Z
|〈f , hj ,k〉|2

Interpretation: The Haar coefficients 〈f , hj ,k〉 measure the energy

content of f at location 2−jk and scale 2−j .

Remark. The Haar system is an unconditional basis for Lp,
1 < p <∞ [Paley, 1932]. It is a conditional basis for L1. (cf. A
basis theory primer, by C. Heil)



Wavelet representations - The Haar wavelet
Proof. I consider the alternate Haar system

B = {Tkχ[0,1] : k ∈ Z} ∪ {hj ,k = D j
2Tkh : j ≥ 0, k ∈ Z}

Since I have already shown orthogonality, I only need to prove
completeness. For that, I will show that there is no f ∈ L2(R)
which is orthogonal to all elements of B.
Since

〈f , χ[0,1]〉 =

∫ 1

0
f =

∫ 1/2

0
f +

∫ 1

1/2
f = 0

and

〈f , h〉 =

∫ 1/2

0
f −

∫ 1

1/2
f = 0,

by adding and subtracting we have that∫ 1/2

0
f =

∫ 1

1/2
f = 0



Wavelet representations - The Haar wavelet

Proof (continued)
Applying the same ideas for general j , k , it follows that∫

Ij,k

f = 0 for any Ij ,k = [kj ,
k+1

2j
]

Given x ∈ R, for each j ∈ N there is a dyadic interval
Jj(x) = Ij ,kj (x) such that x ∈ Jj(x).

Note that |Jj(x)| = 2−j so that limj→∞ Jj(x) = {x}.
By the Lebesgue Differentiation Theorem, for almost all x ∈ R,

f (x) = lim
j→∞

1

|Jj(x)|

∫
Jj (x)

f (u) du = 0

This shows that f = 0 a.e.



Wavelet representations - MRA

There is a great number of examples of wavelet systems

ψj ,k(x) = D j
2 Tk ψ(x) = 2j/2 ψ(2j x − k)

Multiresolution Analysis (MRA) [Mallat, Meyer, 1989] provides a
general method to construct orthonormal wavelet bases, even with
additional properties such as regularity, decay, support.

The mother wavelet ψ can be chosen to be a well-localized
function, i.e., ψ has rapid decay both in R (the ‘time’ domain) and
R̂ (the ‘frequency’ domain).

Note that the Haar wavelet is not well-localized since it is
discontinuous (hence its Fourier transform decay a O( 1

ω )).



Wavelet representations - MRA

The idea of multiresolution analysis is that dyadic wavelet bases
naturally divide L2(R) into subspaces with spaces resolution levels.
If we define closed subspaces

Wj = span{D j
2Tkψ}k∈Z, j ∈ Z

and let Qj denote the orthogonal projection of L2(R) onto Wj ,
then we can write any f ∈ L2(R) as

f =
∑
j∈Z

∑
k∈Z
〈f , ψj ,k〉ψj ,k =

∑
j∈Z

Qj f

Interpretation: The space Wj is generated by functions D j
2Tkψ

that all have the same ‘detail size.’



Wavelet representations - MRA

Next, we define closed subspaces

Vj = span{D i
2Tkψ}i<j ,k∈Z, j ∈ Z

and let Pj denote the orthogonal projection of L2(R) onto Vj .
In some sense Pj f is an approximation to f at ‘resolution level j.’
We move from resolution level to resolution level by adding
‘details’ from Wj :

Pj+1f = Pj f + Qj f .

By definition of orthonormal basis, Pj f converges to f as j
increases

f =
∑
j∈Z

∑
k∈Z
〈f , ψj ,k〉ψj ,k = lim

j→∞

∑
i<j

∑
k∈Z
〈f , ψi ,k〉ψi ,k

and we accomplish this by adding information with finer and finer
details Wj f as j increases.



Wavelet representations - MRA

Definition (Multiresolution Analysis). A multiresolution analysis
(MRA) for L2(R) is a sequence {Vj}j∈Z of closed subspaces of
L2(R) such that:

1. Vj ⊂ Vj+1 for each j ∈ Z,

2. Vj+1 = D2(Vj) for each j ∈ Z,

3. ∪j∈ZVj is dense in L2(R),

4. ∩j∈ZVj = {0},
5. there exists a function φ ∈ V0 such that {Tkφ}k∈Z is an

orthonormal basis of V0.

φ is called a scaling function of the MRA.

Remarks. Statements 1-5 above are not independent. Statement
4 can be shown to be implied by the other statements.
One can create a more general definition of MRA by requiring only
that {Tkφ}k∈Z be a Riesz basis or a frame for V0.



Wavelet representations - MRA

This follows directly from the MRA definition.

Proposition. Suppose that {Vj}j∈Zis an MRA for L2(R) and let
Pj denote the orthogonal projection of L2(R) onto Vj . Then the
following statements hold.

1. Vj = D j
2(V0) = {f (2jx) : f ∈ V0} for each j ∈ Z.

2. {D i
2Tkφ}k∈Z is an ONB of Vj .

3. V0 is shift invariant and Vj is 2−j -shift invariants.

4. limj→∞ Pj f = f in L2(R), for every f ∈ L2(R).

5. limj→−∞ Pj f = 0 in L2(R), for every f ∈ L2(R).

According to the Proposition, the spaces Vj in an MRA are
completely determined by the base space V0. Therefore, if we want
to build an MRA then we can focus on the space V0 and the
scaling function φ.



Wavelet representations - Haar MRA
Example: Haar MRA. While in the direct construction above we
have begun with a wavelet and the wavelet system that it
generates, here we start with the Haar scaling function and show
how the Haar wavelet is produced from this MRA.

The base space V0 for the Haar MRA is the space of all step
functions in L2(R) that are constant on intervals [k , k + 1):

V0 =

{∑
k

ckχ[k,k+1] : ck ∈ `2(Z)

}
⊂ L2(R)

We define Vj = D j
2(V0) (property 2 of the MRA).

Let us verify the other properties of the MRA .

I Clearly V1 = D2(V0) ⊂ V0 since V1 is the space of step
functions that are constant on intervals [k/2, (k + 1)/2).
Since Vj = D j

2(V0) is the space of step functions that are
constant on intervals [k/2j , (k + 1)/2j), the nestedness
requirement Vj ⊂ Vj+1 is satisfied (property 1 of the MRA).



Wavelet representations - Haar MRA

I If we set φ = χ[0,1], {Tkφ : k ∈ Z} is an ONB of V0, hence φ
is the scaling function of the MRA (property 5 of the MRA).

I Suppose that f ∈ L2(R) belongs to every subspace Vj . Then
f must be constant on every interval [k/2j , (k + 1)/2j) for all
j ∈ Z. In particular, f is constant on [0, 2j) for every j ∈ N,
which implies f is constant on [0,∞) and similarly it is
constant on (∞, 0]. Since f ∈ L2(R), this implies that f = 0.
This shows property 4 of the MRA.



Wavelet representations - Haar MRA

I To show that ∪j∈ZVj is dense in L2(R), I will show that the
projection Pj f of f onto Vj converges to f as j →∞. In fact,

Pj f =
∑
k

〈f ,D j
2Tkφ〉D j

2Tkφ =
∑
k

ck,j χ[2−jk,2−j (k+1))

where

ck,j = 2j
∫ 2−j (k+1)

2−jk
f (x) dx

is the average of f over the interval [2−jk , 2−j(k + 1)).



Wavelet representations - Haar MRA
To explain the connection with the Haar wavelet, define

ψ(x) = χ[0,1/2)(x)− χ[1/2,1)(x) = φ(2x)− φ(2x − 1)

and set
W0 = span{Tkψ}k∈Z

It is easy to see that {Tkψ}k∈Z is an ONB of W0.
In addition, ψ and φ are orthogonal so that the spaces V0 and W0

are also orthogonal.
The definition of ψ shows that W0 ⊂ V1, hence

V0 ⊕W0 = {f + g : f ∈ V0, g ∈W0} ⊂ V1.

In fact, we do have an equality as, by direct calculation, one that
any h ∈ V1 can be written as

h =
∑
k

ckD2Tkφ =
∑
k

akTkφ+
∑
k

bkTkψ



Wavelet representations - Haar MRA

Next, let
Wj = span{D j

2Tkψ}k∈Z.

The spaces Wj are orthogonal and, for any j > 0 we have

Vj+1 = Vj ⊕Wj .

Hence, iterating we have

Vj+1 = V0 ⊕W0 ⊕ · · · ⊕Wj .



Wavelet representations - Haar MRA

Since {Tkφ}k∈Z is an ONB for V0 and {D j
2Tkψ}k∈Z is an ONB of

Wj , then we can write

Pj+1f =
∑
k∈Z
〈f ,Tkφ〉Tkφ+

j∑
m=0

∑
k∈Z
〈f ,Dm

2 Tkψ〉Dm
2 Tkψ

Since Pj f → f , we therefore have

f =
∑
k∈Z
〈f ,Tkφ〉Tkφ+

∞∑
m=0

∑
k∈Z
〈f ,Dm

2 Tkψ〉Dm
2 Tkψ,

which is to the Haar wavelet expansion I derived above.

By writing Vj+1 = V−n ⊕W−n ⊕ · · · ⊕W0 ⊕ · · · ⊕Wj and
observing that P−nf → 0 and n→∞, then we can similarly show
that the Haar system {D j

2Tkψ : k , j ∈ Z} is an ONB for L2(R).



Wavelet representations - approximation spaces
In the MRA, the orthogonal projection onto the spaces Vj is

Pj f =
∑
m≤j

∑
k∈Z
〈f , φm,k〉φm,k ,

where φm,k(t) = 2m/2φ(2mt − k) and the coefficients are

〈f , φm,k〉 =

∫
R
f (t) 2m/2φ(2mt − k)dt

=

∫
R
f (t) 2m/2φ(2m(t − 2−mk))dt

= f ∗ φ̃m(2−mk) (φ̃m(t) = 2m/2φ(−2mt))

measures the energy content of f at scale 2−m and
location 2−mk .

In the Haar case:

〈f , φm,k〉 =

∫
Im,k

f (t) dt, Im,k = [2−mk , 2−m(k + 1)]



Wavelet representations - Haar MRA

Figure: Left: Haar approximations at different scales



Wavelet representations - Shannon MRA

The scaling function of the Shannon MRA is

φ(x) =
sinπx

πx
,

whose Fourier transform is φ̂(ξ) = χ
[−1

2 ,
1
2 ]

(ξ).

Figure: Left: Shannon scaling function. Right: Its Fourier transform.



Wavelet representations - Shannon MRA

Hence (recalling that (Tkφ)∧(ξ) = e−2πikξφ̂(ξ))

V0 = span{Tkφ : k ∈ Z} = {f ∈ L2(R) : supp(f̂ ) ⊂ [−1
2 ,

1
2 ]}

Dilating, the space Vj contains the functions in L2(R) that are
bandlimited to [−2j−1, 2j−1], that is

Vj = {f ∈ L2(R) : supp(f̂ ) ⊂ [−2j−1, 2j−1]}

It is clear that Vj ⊂ Vj+1.
It is a simple consequence of Fourier analysis that ∪j∈ZVj = L2(R)
and ∩j∈ZVj = {0}.

This shows that the subspaces {Vj}j∈Z form an MRA.



Wavelet representations - Shannon MRA

Let ψ(x) = sin 2πx
πx − sinπx

πx . Then ψ̂ = χ[−1,1]\[− 1
2
, 1

2
].

The detail spaces of the Shannon MRA are

Wj = span{D j
2Tkψ : k ∈ Z}

= {f ∈ L2(R) : supp(f̂ ) ⊂ [−2j , 2j ] \ [−2j−1, 2j−1]}

As for the Haar MRA, the spaces Wj are mutually orthogonal and
we have

Vj+1 = Vj ⊕Wj and Vj+1 = V0 ⊕W0 ⊕ · · · ⊕Wj .

Similarly, we have that

{Tkφ}k∈Z ∪ {D j
2Tkψ : j ≥ 0, k ∈ Z} and {D j

2Tkψ : k , j ∈ Z}

are each ONBs for L2(R)



Wavelet representations - Shannon MRA

Figure: Illustration of Shannon MRA (Fourier domain).



Wavelet representations - MRA constructions

The Haar and Shannon wavelets are useful to illustrate the idea of
multiresolution analysis.

However they are not the best examples for most practical
applications.

I The Haar wavelet is discontinuous.

I The Fourier transform of the Shannon is discontinuous.

As a result, neither one is well-localized.

The Haar and Shannon examples presented above are not
representative of the power of the MRA approach.



Wavelet representations - MRA constructions

• How can we construct a scaling function so that the resulting
wavelet has desirable properties such as compact support,
regularity, vanishing moments, ....?

The key to using an MRA to construct a wavelet orthonormal basis
is the scaling function φ.
The scaling function determines V0, hence Vj . These spaces
determine the detail spaces Wj and ultimately the wavelet ψ.

There is a well developed and rather involved mathematical theory
to construct ONBs of wavelets with desirable properties .

I will sketch the main ideas.



Wavelet representations - MRA constructions

Definition. A function φ ∈ L2(R) is refinable if there exists a
sequence of scalars (ck) such that the series

∑
k∈Z ckφ(2x − k)

converges in L2(R) and

φ(x) =
∑
k∈Z

ckφ(2x − k) (refinement equation)

The scalars ck are called the refinement coefficients.

Example: Haar scaling function satisfies φ(x) = φ(2x)−φ(2x − 1)

Proposition. Suppose φ ∈ L2(R) is refinable with refinement
coefficients (ck) ∈ `2. Then

φ̂(ξ) = m0( ξ2 ) φ̂( ξ2 ) a.e.,

where m0(ξ) = 1
2

∑
k cke

−2πikξ

The 1-periodic function m0 is called the symbol (or low-pass filter)
of the refinement equation.



Wavelet representations - MRA constructions

Proof (sketch).

φ =
∑
k

2−1/2ckD2Tkφ

Hence

φ̂(ξ) =
∑
k

2−1/2ck (D2Tkφ)∧(ξ)

=
∑
k

2−1/2ck D1/2M−k φ̂(ξ) (My f (x) = e2πixy f (x))

=
∑
k

2−1/2ck 2−1/2e−2πik ξ
2 φ̂( ξ2 )

=
1

2

(∑
k

ck e
−2πik ξ

2

)
φ̂( ξ2 )



Wavelet representations - MRA constructions

Given a refinable function, we construct an MRA as follows.

Theorem. Assume φ ∈ L1(R) ∩ L2(R) is a refinable function with
refinement coefficients (ck) and {Tkφ : k ∈ Z} is an orthonormal
sequence. If we set

V0 = span{Tkφ : k ∈ Z} and Vj = D j
2V0, j ∈ Z,

then {Vj}j∈Z is an MRA of L2(R).
If we set

ψ(x) =
∑
k

(−1)k−1c1−k φ(2x − k)

or, equivalently,

ψ̂(ξ) = m1( ξ2 ) φ̂( ξ2 ) where m1(ξ) = e−2πikξm0(ξ + 1
2 )

then {D j
2Tkψ : j , k ∈ Z} is an ONB of L2(R).

m1 is called the high-pass filter of the MRA.



Wavelet representations - MRA constructions

The properties of the ONB wavelet basis {D j
2Tkψ : j , k ∈ Z} can

be completely determined by appropriately choosing the refinement
coefficients (ck) or the corresponding symbol m0.

I A wavelet is compactly supported iff the corresponding (ck)
is a finite sequence.

I A wavelet has p vanishing moments iff m
(n)
0 ( 1

2 ) = 0 for
n = 0, . . . , p − 1.

Definition. A wavelet ψ has p vanishing moments if∫
R
tk ψ(t) dt = 0, for k = 0, . . . , p − 1.

Regularity implies vanishing moments.
Proposition. If ψ ∈ C r (R) and |ψ(x) ≤ C ∈ (1 + |x |)−r−1−ε for
some ε > 0, then ψ has r vanishing moments.



Wavelet representations - MRA constructions

Having p vanishing moments means that ψ is orthogonal to any
polynomial up to degree p − 1.
This implies that, if f is regular and ψ has sufficiently many
vanishing moments, then the wavelet coefficients

〈f , ψj , k〉 =

∫
R
f (t)21/2ψ(2j t − k) dt

are small at fine scale 2j .

Explanation: If f is locally C k , then over a small interval it is well
approximated by its Taylor polynomial of degree k . If the number
of vanishing moments is p > k , then the wavelet coefficients are
negligible at fine scales.



Wavelet representations - MRA constructions
Daubechies in 1988 was the first to construct compactly supported
ON wavelets with some degree of smoothness.

Daubechies wavelets are chosen to have the highest number p of
vanishing moments, (this does not imply the best smoothness)
for given support width (number of coefficients) 2p.

Note: there is no compactly supported ON wavelet with infinitely
many vanishing moments or C∞ regularity.
There are two naming schemes in use, DN using the length or
number of taps, and dbA referring to the number of vanishing
moments.

I D2 = db1 = Haar wavelet

I D4 = db2 = Daubechies wavelet with filter length 4 and 2
vanishing moments.

Daubechies wavelets do not have an explicit form of the scaling
and wavelet functions (except than the Haar wavelet = D2); in
fact, they are not possible to write down in closed form.



Wavelet representations - MRA constructions

Figure: Examples of wavelets.



Wavelet representations - Approximations
To quantify approximation properties of ON wavelet bases, it is
useful to introduce a notion of non–linear approximation.

• The M-term non–linear approximation of f ∈ L2 in a basis {ψi}
is obtained by taking the largest M coefficients of a representation:

f̃M =
∑
i∈IM

〈f , ψi 〉ψi , |IM | = M,

IM is the set of indices of the M largest coefficients |〈f , ψi 〉|.

f̃M is obtained by thresholding: IM = {i : |〈f , ψi 〉| > T (M)}.

• The non-linear approximation contrasts with the linear
approximation of f which is obtained by keeping only the first M
coefficients of its expansion:

f̃
(lin)
M =

M∑
i=1

〈f , ψi 〉ψi .



Wavelet representations - Approximations

• The non–linear approximation error is

E (n)(f ;M) = ‖f − f̃M‖2 =
∑
i /∈IM

|〈f , ψi 〉|2.

The error depends on the decay rate of the sorted coefficients.

Let us compare Fourier vs. wavelet nonlinear approximation error
E (n)(f ;M) = ‖f − f̃M‖ for piece-wise regular functions.



Wavelet representations - Approximations



Wavelet representations - Approximations

The numerical example suggests that wavelets provide a sparser
representation than Fourier series for functions with discontinuities.

In general, if f is Cα(R), α ≥ 1, apart from finitely many
discontinuities, the nonlinear approximation error satisfies:

I Fourier approximation error:

E (F )(f ;N) = ‖f − f̃
(F )
N ‖2 ≤ C N−1, N →∞

I Wavelet approximation error:

E (W )(f ;N) = ‖f − f̃
(W )
N ‖2 ≤ C N−2α, N →∞

Wavelets do not ‘feel’ the discontinuity and provide the optimal
approximation error rate for univariate functions with
discontinuities (including BV).



Wavelet representations - Higher dimensions

The theory and numerical example show that wavelets provide a
sparse representation for piecewise smooth signals.

In fact, they provide optimally sparse representations for this class
of signals.

Unfortunately, the multi-D situation is more complicated, and
(conventional) wavelets do not work as well, even though their
approximation properties outperform Fourier methods.



Wavelet representations - Higher dimensions
The simplest way to extend the wavelet construction to L2(R2) is
by using a tensor product

{ψj ,k(x) = ψj1,k1(x1)ψj2,k2(x2) : j = (j1, j2) ∈ Z2, k = (k1, k2) ∈ Z2}

This idea leads to a MRA construction based on separable wavelets
whose elements are products of function dilated at the same scale.

Give a MRA {Vj}j∈Z of L2(R), a separable 2-dimensional MRA is
composed of tensor product spaces

V 2
j = Vj ⊗ Vj , j ∈ Z.

If φ is a scaling of function of the 1-dimensional MRA {Vj}j∈Z,
using the observation that {φj ,m}m∈Z is an ONB of Vj , a
straightforward argument shows that

{φ2
j ,k(x1, x2) = φj ,k1(x1)φ2

j ,k2
(x2) : k = (k1, k2) ∈ Z2}

is an ONB of V 2
j .



Wavelet representations - Higher dimensions

To build a 2-dimensional MRA, we write

V 2
j+1 = V 2

j ⊕W 2
j = (Vj ⊗Vj)⊕W 2

j (1)

where W 2
j , the orthogonal complement to V 2

j in V 2
j+1 is the detail

space at scale j .
Since Vj+1 = Vj ⊕Wj , it follows that

V 2
j+1 = Vj+1 ⊗ Vj+1

= (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj) (2)

Combining (1) and (2) we see that

W 2
j = (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj)



Wavelet representations - Higher dimensions

Since {φj ,m}m∈Z is an ONB of Vj and {ψj ,m}m∈Z is an ONB of
Wj , it follows that

{φj ,k1(x1)ψj ,k2(x2), ψj ,k1(x1)φj ,k2(x2), ψj ,k1(x1)ψj ,k2(x2)}j ,k1,k2∈Z

is an ONB of L2(R2)

It is called a separable 2D wavelet basis.

Note: a 2d separable wavelet basis of L2(R2) has 3 generators.



Wavelet representations - Higher dimensions

Figure: 2d Shannon decomposition.

V 2
1 = (V0 ⊗ V0)⊕ (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0)



Wavelet representations - Higher dimensions

Figure: 2d separable Meyer wavelets in Fourier domain.



Wavelet representations - Higher dimensions
Separable wavelets are sub-optimal.

The problem is that, while wavelets are ‘optimal’ in handling
point–discontinuities, in higher dimensions there are other kind of
discontinuities, e.g., discontinuities along lines and surfaces.



Wavelet representations - Higher dimensions

Consider a cartoon-like image, i.e., f ∈ C 2(R2) apart from C 2

edges as in the numerical example.

The estimate of the nonlinear approximation error gives:

I Fourier approximation error:

E (F )(f ;N) = ‖f − f̃
(F )
N ‖2 ≤ C N−1/2, N →∞

I Wavelet approximation error:

E (W )(f ;N)‖f − f̃
(W )
N ‖2 ≤ C N−1, N →∞

I Theoretical optimal approximation error [Donoho, 2001]:

E (T )(f ;N) = ‖f − f̃N‖2 ≤ C N−2, N →∞



Wavelet representations
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1.3 Shearlets



Wavelet representations - Higher dimensions

Separable wavelets are unable to capture the geometry of edges
discontinuities efficiently. To improve upon separable wavelets, one
needs analyzing functions with improved directional sensitivity.

A number of methods were introduced:

I Ridgelets (Candès and Donoho; 1999)

I Complex wavelets (Kingsbury; 2001)

I Curvelets (Candès and Donoho; 2002)

I Contourlets (Do and Vetterli; 2002)

I Wavelets with composite dilations (Guo, Labate, Lim, Weiss,
and Wilson, 2004)

I Shearlets (Guo, Kutyniok, and Labate; 2005)

I Bandlets (LePennec and Mallat; 2005)



Wavelet representations - Shearlets

To define a directional version of the wavelet representation in
dimensions n = 2, we consider an affine-like system of the form

{ψj ,`,k = 2
3
4
j ψ(Mj ,`x − k) : j , ` ∈ Z, k ∈ Z2},

where Mj ,` =

(
22j 2j`
0 2j

)
Note that Mj ,` = B` Aj where

I B =

(
1 1
0 1

)
is the shear matrix;

I A =

(
2 0

0
√

2

)
is the anisotropic dilation matrix.

This system is called a shearlet system.



Wavelet representations - Shearlets

We can construct a well-localized generator by choosing ψ as:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2

ξ1
),

where

I ψ1 is a wavelet with ψ̂1 ∈ C∞(R) and
suppψ̂1 ⊂ [−2,−1

2 ] ∪ [ 1
2 , 2],

I ψ2 satisfies ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊂ [−1, 1].



Wavelet representations - Shearlets

With this choice of generator, the shearlet system

{ψj ,`,k = | detA|j/2 ψ(B` Ajx − k) : j , ` ∈ Z, k ∈ Z2},

is a Parseval frame for L2(R2)

That is, for all f ∈ L2(R2)

‖f ‖2 =
∑
j∈Z

∑
`∈Z

∑
k∈Z2

|〈f , ψj ,`,k〉|2

Each element ψj ,`,k is associated with a scale 2−j , location 2−j k
and orientation 2−j`.



Wavelet representations - Shearlets

In the Fourier domain, the elements of the shearlet system

ψ̂j ,`,k(ξ) = 2−3j/4 e2πiξA−jB−`k ψ̂1(2−j ξ1) ψ̂2(2j/2 ξ2

ξ1
− `)

are supported on trapezoids, at various scales 2j , with
orientations controlled by `.



Wavelet representations - Shearlet approximations

Because of their elongated supports and directionality, shearlets are
sparser than wavelets in approximating functions with edge
discontinuities

Theorem [Guo, Labate 2006] Let f̃N be the approximation of a
cartoon-like function f obtained by taking the N largest coefficient
in the shearlet expansion. Then:

‖f − f̃N‖2 ≤ C (logN)3 N−2, N →∞.

Up to the log-like factor, this is the optimal approximation rate.

The curvelets by Candès and Donoho [2002] and the compactly
supported shearlet frames of Kutyniok and Lim [2011] have similar
sparsity properties.



Wavelet representations - Shearlet approximations

Here is a heuristic (non-rigorous) argument to compare shearlets
and shearlets approximations representation:

Consider an image f on [0, 1]2, which is smooth apart from a
discontinuity along a smooth edges.

Consider its wavelet representation

f =
∑
j

2j∑
k1=1

2j∑
k1=1

〈f , ψj ,k〉ψj ,k

Since f is smooth outside of the edge, essentially all significant
coefficients are those associated with the edge.



Wavelet representations - Shearlet approximations
At scale 2−j , there are 22j wavelet coefficients 〈f , ψj ,k〉, and O(2j)
of them intersect the edge.

Since |cj ,k | = |〈f , ψj ,k〉| ≤ C 2−j , then the N−th largest
coefficients |cj ,k |(N) is bounded by C N−1 and

‖f − f WN ‖2 ≤
∑
m>N

|cj ,k |2(m) ≤ C N−1



Wavelet representations - Shearlet approximations
Let us repeat the calculation for shearlets.
At scale 2−j , there are O(2j/2) shearlet s ψj ,`,k tangent to the
edge. The other elements have negligible impact (at fine scales).

Since |cj ,`,k | = |〈f , ψj ,`,k〉| ≤ C 2−3j/4, the N−th largest
coefficients |cj ,`,k |(N) is bounded by C N−3/2 and

‖f − f SN ‖2 ≤
∑
m>N

|cj ,`,k |2(m) ≤ C N−2



Wavelet representations - Shearlet approximations

In general, shearlets provide:

I Optimal sparsity for functions with edge discontinuities
(similar to curvelets)

I Affine mathematical structure. They are generated from the
action of dilations, translations and shear transformations on a
single function.

I Generalizations to 3D and similar optimal sparsity property
[Guo, Labate, 2010]. However, numerical implementation is
computationally intensive in 3D.

I Because of sparsity and directional sensitivity, shearlet
representations are useful in image processing applications
including image denoising and enhancement, feature detection
and inpainting.



Wavelet representations - Shearlet decomposition



Wavelet representations - Shearlets

Shearlet-based image enhancement.

Figure: From left to right. Original mammogram. Enhanced
mammogram using a shearlet-based routine.



Wavelet representations - Shearlets

Shearlet-based edge detection.

Figure: Comparison of edge detection methods on a retina image. From
left to right: Original noisy image (PSNR=24.58 dB), Prewitt
(FOM=0.15), Canny (wavelet) (FOM=0.27), shearlet-based algorithm
(FOM=0.45). The Figure Of Merit (FOM) measures how close is the
reconstruction to the true edge map.



Wavelet representations - Shearlet approximations

Shearlets bibliography:

1. P. Grohs, Optimally Sparse Data Representations, in Applied
and Numerical Harmonic Analysis, pp. 199-248, Birkhauser,
2015.

2. G. Kutyniok and D. Labate, Shearlets: Multiscale analysis for
multivariate data, Birkhauser, 2012.

3. K. Guo, D. Labate, W. Lim, G. Weiss, and E. Wilson,
Wavelets with composite dilations and their MRA properties,
Appl. Comput. Harmon. Anal., 20 , pp. 231-249 (2006).

4. K. Guo and D. Labate, Optimally sparse multidimensional
representation using shearlets, SIAM J Math. Anal., 39 pp.
298-318 (2007)

5. K. Guo, and D. Labate, The construction of smooth Parseval
frames of shearlets, Math. Model. Nat. Phenom. 8(1) p.
82-105 (2013)



1.4 Wavelet Scattering
Transform



Wavelet scattering transform

The wavelet scattering transform [Mallat,2012, Mallat &
Bruna,2013] was introduced to compute function representations
targeted to problems of pattern recognition.

Recall that the wavelet transform

Wψ : f 7→ Wψf (j , k) = f ∗ ψ̃j(2−jk)

(where ψ̃j(·) = 2j/2ψ(−2j ·)), maps a function f into
coefficients/components at multiple scales and location.
Such components can be associated to signal or image features for
problems of pattern recognition (e.g., classification).

Key features of the wavelet scattering transform

I It extracts locally translation invariant, stable features.

I It is implemented through a cascade of wavelet filters and
modulus operators over multiple layers (cf. multi-layer
convolution network)



Invariant features

Figure: Object detection and retrieval algorithms: one major challenge is
to handle variations in position, angle, scale and viewpoint.



Invariant features

Definition. An operator Φ from L2(Rd) to a Hilbert space H is
translation-invariant if Φ(Ty f ) = Φ(f ) for all f ∈ L2(Rd) and
y ∈ Rd .

Fact: The Fourier transform modulus

Φ(f ) = |f̂ |

is translation invariant.

Proof. For any y ∈ Rd , we have

Ty f (x) = f (x − y), (Ty f )∧(ω) = e2πiωy f̂ (ω).

Hence
|(Ty f )∧(ω)| = |f̂ |.

However, if one includes the effect of deformations into f , the
situation becomes more involved.



Invariant features

We can model deformations of f as

Lτ f (x) = f (x − τ(x)),

where τ is a differentiable map.

As a result of the dependence on x of τ , the Fourier transform
modulus is not deformation invariant.

For example, if τ(x) = −αx , 0 < α < 1 (scaling deformation),
then

(Lτ f )∧(ω) = 1
1+α f̂ ( ω

1+α)

which may create instability at higher frequency.



Invariant features

Figure: Impact of translation and scaling deformation.



Invariant features

The distance between 1 and 1− τ over any compact subset S of
Rd is defined as

dS(1, 1− τ) = sup
x∈S
|τ(x)|+ sup

x∈S
|∇τ(x)|,

where |τ(x)| is the Euclidean norm on Rd and |∇τ(x)| measures
the deformation amplitude at x .

Definition. A translation invariant operator Φ is Lipschitz
continuous to the action of C 1 diffeomorphisms is, for any
compact S ⊂ Rd , there exits a constant C such that, for all
f ∈ L2(Rd) supported in S and all τ ∈ C 1(Rd),

‖Φ(f )− Φ(Lτ f ))‖H ≤ C ‖f ‖
(

sup
x∈S
|∇τ(x)|

)



Wavelet scattering transform

How to build scattering wavelets?

We start with two-dimensional multiscale directional wavelets.

Littlewood-Paley wavelets include both dilations and rotations by
elements in a finite rotation group G .

ψλ(x) = 2jψ(2j rx), x ∈ R2

with λ = 2j r , j ∈ Z, r ∈ G .

W [λ]f (x) = f ∗ ψλ(x) =

∫
f (u)ψλ(x − u) du

As opposed to standard wavelet bases, the Littlewood-Paley
wavelet transform is translation co-variant:

W [λ](Ty f )(x) = W [λ]f (x − y) = TyW [λ]f (x)



Wavelet scattering transform

Let ΛJ = {λ = 2j r : j ≥ J, r ∈ G} and φ be a scaling function
such that

|φ̂J(ω)|2 +
∑
λ∈ΛJ

|ψ̂λ(ω)|2 = 1

The Littlewood-Pale wavelet transform is defined as

Wj f = {f ∗ φJ , f ∗ ψλ, λ ∈ ΛJ}

Here f ∗ φJ covers the low-frequency range which is not covered by
the elements f ∗ ψλ, λ ∈ ΛJ .

Because we can choose a mother wavelet that is regular and
localized, the wavelet transform WJ is Lipschitz-continuous under
the action of diffeomorphisms. However, a wavelet transform is not
invariant to translations.
The goal is to build translation-invariant coefficients while
maintaining stability under actions of diffeomorphisms.



Wavelet scattering transform
The basic idea is to compute translation invariant wavelet
coefficients, which remain stable to the action of diffeomorphisms
without losing high frequency information.

The first step is to compute wavelet coefficients

W [λ]f (x) = f ∗ ψλ(x) (Lipschitz-continuous)

To achieve translation invariance, we take U[λ]f = |f ∗ ψλ| and
then integrate∫

U[λ]f (x) dx =

∫
|f ∗ ψλ(x)| dx (translation invariant).

However, this operation removes the high frequencies of |f ∗ ψλ|.
To recover these frequencies, we take U[λ]f ∗ ψλ′ = |f ∗ ψλ| ∗ ψλ′ .
To achieve translation invariance, again we take∫

U[λ′]U[λ]f (x) dx =

∫
||f ∗ ψλ| ∗ ψλ′(x)| dx

We repeat this process.



Wavelet scattering transform
Definition. An ordered sequence p = (λ1, λ2, . . . , λm) with
λk ∈ 2Z × G is called a path. The empty path is p = ∅.
For f ∈ L2(R2) and λ ∈ 2Z × G , let

U[λ]f = |f ∗ ψλ|.

A scattering propagator is path-ordered product of U[λ]
operators:

U[p] = U[λm] · · ·U[λ2]U[λ1]

with U[∅] = I .

The scattering propagator of f is a cascade of convolutions and
modulus operators

U[p]f = | · · · |f ∗ ψλ1 | ∗ ψλ2 | · · · ∗ ψλm |

Note: each U[λ] filters the frequency component in the band
associated with ψλ and maps it to lower frequencies through the
modulus operator.



Wavelet scattering transform

Definition. Let J ∈ Z and PJ be a set of finite paths
p = (λ1, λ2, . . . , λm) with λk ∈ ΛJ × G . A windowed scattering
transform is defined for all p ∈ PJ as

SJ [p]f (x) = U[p]f ∗ φJ(x) =

∫
U[p]f (u)φJ(x − u) du

Hence

SJ [p]f (x) = | · · · |f ∗ ψλ1 | ∗ ψλ2 | · · · ∗ ψλm | ∗ φJ(x)

The convolution with φJ localizes the windowed scattering
transform over spatial domains of size proportional to 2J .

We define a countable family of functions indexed by PJ

SJ [PJ ]f = {SJ [p]f : p ∈ PJ}



Scattering Convolution Network

The wavelet scattering transform is obtained by recursively
applying convolutions with the low pass filter φJ to each U[p]f
along paths of length m ≤ mmax , starting with U[0]f = f .

This results in the Scattering Convolution Network:



Scattering Convolution Network

I In the Scattering Convolution Network, the filters are
predefined wavelet filters. They are not learned as in
Convolutional Neural Networks.

I A scattering network outputs coefficients SJ [p] at all layers
m = 0, 1, . . . ,mmax .

I Scattering coefficients are locally translation invariant and
stable to deformations.



Wavelet scattering transform

Properties of the wavelet scattering transform.

I Contractivity. For every f , g ∈ L2(R2),

‖SJ [PJ ]f − SJ [PJ ]g‖ ≤ ‖f − g‖.

I Energy conservation. For every f ∈ L2(R2) and for
appropriate wavelets,

‖SJ f ‖2 =
∑
m

∑
p∈Λm

J

‖SJ [p]f ‖2 = ‖f ‖2

I Stability to deformation. Let Lτ f (x) = f (x − τ(x)) with

‖∇τ‖∞ < 1 then, for J > log ‖τ‖∞
‖∇τ‖∞ ,

‖SJ f − SJ(Lτ f )‖ ≤ C mmax ‖f ‖ ‖∇τ‖∞



Wavelet scattering transform
The Wavelet Scattering Transform is useful to generates image
features
I invariant to local translations and stable to small

deformations;
I Other invariances, e.g., rotation and affine invariance, can be

built into this approach [Sifre, Mallat, 2014].

Multiple applications including:
I texture classification [Sifre,Mallat,2014]

I image registration [Easley,Mc-Innis,Labate,2015]



Wavelet scattering transform
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